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Abstract: The Southern Ocean has undergone significant climate-related changes in recent decades.
As a result, pelagic communities inhabiting these waters, particularly mesozooplankton, have adapted
to new conditions. The present study considers the patterns of horizontal and vertical (up to 1000 m)
distribution, the composition, abundance, and biomass of mesozooplankton, and the relationships
of these parameters to the extreme environmental conditions off the western Antarctic Peninsula
throughout the record-warm austral summer season of 2022. Sampling was conducted using the
opening/closing Multinet system (0.25 m2 aperture) equipped with five 150-µm mesh nets and a
WP-2 net. The mesozooplankton was represented by the three most abundant groups: eggs and
larvae of euphausiids such as Euphausia superba, small copepods such as Oithona similis, and large
calanoid copepods such as Calanoides acutus, Calanus propinquus, Metridia gerlachei, and Rhincalanus
gigas. The composition and quantitative distribution of the mesozooplankton significantly varied:
the copepods were abundant in the west, off the Antarctic Peninsula, while eggs and larvae of
euphausiids were abundant in the east, off the South Orkney Islands. Most mesozooplankton
occurred in the upper 200 m layer, and each taxon showed characteristic depth preference: small
copepods, euphausiids larvae, and cirripeds cypris larvae were abundant in the epipelagic layer,
while large calanoid copepods, euphausiids eggs, amphipods, pelagic polychaetes, and ostracods
were found mostly in the mesopelagic layer. The composition and quantitative distribution of
mesozooplankton had clear relationships with environmental factors, particularly with a combination
of variables such as water salinity, temperature, and chlorophyll a concentration.

Keywords: mesozooplankton; copepods; euphausiid larvae; distribution; abundance; biomass;
Bransfield Strait; Antarctic Sound; Weddell Sea; South Orkney Islands; Southern Ocean

1. Introduction

The condition of Antarctic marine ecosystems has recently attracted major attention
from scientists, the public, nature conservation activists, and authorities alarmed by the
dramatic ecosystem shifts that took place in the region under the effect of global climate
change associated with warming and increasing anthropogenic pressure [1–4]. In the
West Antarctic sector of the Southern Ocean, climate change has caused the following
consequences over the past few decades: an increase in sea surface temperature (SST) of
up to 0.2 ◦C per decade, with projections indicating further extensive increase at a rate of
0.27–1.08 ◦C per decade that may occur by the late 21st century [5–7], a reduction in sea-ice
cover near the Antarctic Peninsula [8,9], and significant interannual variations in chloro-
phyll a (Chl a) concentrations [10]. Some significant changes in the plankton communities
were reported previously, including replacement of dominant phytoplankton species by
others [11–13], variations in the dominance and abundance of taxonomic groups of zoo-
plankton, in particular copepods [14–20], variations in the abundance, biomass, and spatial
distribution of the pelagic tunicate Salpa thompsoni [21,22], krill Euphausia superba [23–26],
and krill larvae [18,27–29]. Such changes might be either part of a natural ecosystem
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mechanism [30,31] or a negative trend that caused communities to adapt to new habitat
conditions [15,32,33].

Recent studies in the Southern Ocean have focused on the most important zooplankton
taxa such as krill, salps, and copepods that constitute the largest portion of the total
abundance and biomass [15,17,21,34]. These taxa form the major food supply in the food
web between primary producers and predators and are used as a commercially valuable
source of marine-derived animal protein [14,35–37]. To date, the distribution patterns,
life cycles, and interannual variability of the most common zooplanktonic species in the
Antarctic marine ecosystems have been sufficiently well studied [33,38]. Nevertheless,
Antarctica requires continuous scientific research in order to identify emerging trends
and provide predictions. Annual surveys of zooplanktonic communities will help timely
identify the responses of Antarctic marine ecosystems to the ongoing climate changes.

Previously, data on the mesozooplankton together with the other plankton cate-
gories (phytoplankton, macroplankton, and ichthyoplankton) were obtained as prelimi-
nary results, e.g., [20,29]; in the present study, we provide more details and carried out
additional analyses.

We hypothesize that the mesozooplankton communities in the Southern Ocean have
changed habitat conditions in these ecosystems. The main objectives of this study were
as follows: update existing information on the summer mesozooplankton composition,
abundance, biomass, and distribution patterns during the record-warm SSTs [9]; study
the vertical distribution patterns of the dominant taxa to a 1000 m depth; and identify the
environmental factors having no/having effects on the composition and distribution of
mesozooplankton in the study region.

2. Materials and Methods

Plankton samples were collected in the research expedition on board the R/V Akademik
Mstislav Keldysh during a period from 19 January to 10 February (austral summer), 2022.
The study region included the Bransfield Strait, the Antarctic Sound, the Powell Basin of
the Weddell Sea, and off the South Orkney Islands (Figure 1). Sampling was performed
using an opening/closing Multinet system (150-µm mesh, 0.25 m2 aperture) equipped
with five nets [39]. Vertical tows of the nets from 1000 (800) m to 500, 500–200, 200–100,
100–50, and 50–0 m were made at night. In addition, at near-shore stations (depths < 200 m)
sampling was carried out with a WP-2 net (150 µm mesh, 0.25 m2 aperture) [40]. A total of
117 plankton samples were collected and processed. The samples delivered to the labora-
tory were viewed in a Bogorov’s chamber under a SZX7 binocular microscope (Olympus,
Tokyo, Japan), and then fixed in a 4% formaldehyde solution. The mesozooplankton taxa
were identified using the relevant identification keys [41,42]. Copepods and euphausi-
ids larvae (such as the krill E. superba) at different development stages, as the dominant
groups of mesozooplankton, were subjected to more detailed taxonomic analysis using
the Marine Planktonic Copepods database [43] and special identification keys [44,45],
respectively. Copepods were identified into species; morphologically indistinguishable
small copepodites from some genera were grouped together (such as Oithona spp. and
Oncaea spp.). The taxonomic groups (Appendicularia, Ctenophora, Echinodermata, Hy-
dromedusae, Polychaeta, Pteropoda, Siphonophorae, eggs, and larvae of fish) that were
represented at sampling stations by less than 5% of the total mesozooplankton abundance
were categorized as “Other”. Abundance (expressed in terms of ind. m−3) and biomass
(expressed in terms of mg wet weight (WW) m−3) of mesozooplankton were calculated by
the standard hydrobiological methods according to [46,47]. The environmental parameters
such as water temperature (T, ◦C), salinity (S, psu), dissolved oxygen (O2, mg/L), and
chlorophyll a (Chl a, µg/L) concentrations at the stations were measured using a CTD
multiparameter probe (Idronaut, Italy) with a calibrated fluorometer (Seapoint Sensors
Inc., Exeter, NH, USA) [20]. The data of water temperature, salinity, oxygen, and Chl a
concentrations between the 500 and 1000 m layers were not significantly different and,
therefore, we here provide values of the environmental variables for the 500 m layer.
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Figure 1. Map of the sampling stations and the main ocean currents designated according
to [20,48–50]. Numerals are codes of the stations. Circles indicate plankton nets used at the sta-
tions: red is the Multinet, and yellow is WP-2. Dashed lines indicate currents in the study region:
ACC is the Antarctic Circumpolar Current; BC, the Bransfield Current; ACoC, the Antarctic Coastal
Current; ASF, the Antarctic Slope Front; WF, the Weddell Front.

Statistical Analysis

We hypothesized that the environmental variables such as water temperature, salinity,
oxygen, and chlorophyll a concentrations at the surface (upper 50 m depth) and in the
50–200 and 200–500 m layers may be key factors that determine distribution patterns of
mesozooplankton communities in the study region. To assess the similarity between the
mesozooplankton communities in the study region, cluster analysis and non-metric mul-
tidimensional scaling (nMDS) were used [51]. The Bray–Curtis similarity was calculated
as a log10 (x + 1) transformation of the species/taxa abundance [52]. Cluster analysis
was applied through average group sorting. To assess the reliability of clustering, the
SIMPROF (Similarity Profile Routine) permutation test (number of repeats 999, p = 0.05)
was performed [51]. The SIMPER (Similarity Percentage) procedure was used to assess the
average percent contribution of each mesozooplankton species to the overall dissimilarities,
the contribution of each species to the average intra-group similarity (SIM) with the stan-
dard deviation (SD), and the contribution of each species to the average between-group
dissimilarity (DISS/SD) [53].

The relationships between the species/taxa abundances and the environmental vari-
ables at different layers of the water column were assessed using Spearman’s rank order
correlation [53]. The BEST analysis (BIO-ENV algorithm) was used to test relationships be-
tween the environmental variables and the biological data (abundance) which best explain
the observed patterns of mesozooplankton distribution. Environmental variables were log-
transformed, normalized (divided by SD), and calculated for Euclidean distances [53]. To
determine the significance of relationships between the similarity matrices (biological data
and environmental variables), the RELATE test was used [53]. Additionally, the Canonical
Correspondence analysis (CCA) was carried out to reveal the environmental variables that
determine the distribution of mesozooplankton communities [53]. Multivariate analyses
were performed in the PRIMER ver. 6 [54] and PAST ver. 4 [55] software. The map of the
sampling stations was composed using Ocean Data View ver. 5 [56].

3. Results
3.1. Dynamics of Environmental Conditions

The detailed dynamics of some environmental variables and the pattern of main
currents in the study region were described earlier elsewhere [20,26,29,57–60]. During the
summer of 2022, the average values of the environmental variables at the sampling stations
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were as follows: water temperature, −0.02 ± 0.70 ◦C; water salinity, 34.56 ± 0.15 psu;
oxygen concentration, 8.84± 1.46 mg/L; and chlorophyll a concentration, 0.30 ± 0.62 µg/L.
The highest values of temperature were recorded from off the South Orkney Islands and
from the Bransfield Strait off the South Shetland Islands; the lowest values, from the
Antarctic Sound and off the Antarctic Peninsula, where one extreme temperature minimum
(Stn. 7336) was recorded (Figure 2a). The highest salinity values were recorded from
the Bransfield Strait off the South Shetland Islands and the Powell Basin; the extreme
lowest values, were off the Antarctic Peninsula (Figure 2b). The average values of the
water temperature and salinity variables increased from off the Antarctic Peninsula to off
the South Orkney Islands, except for the decreasing sea surface salinity and temperature
in the 200 m layer (Table 1). The highest values of oxygen concentrations (>10 mg/L)
were recorded at most stations; they decreased by half at the greatest depth (Figure 2c).
The highest chlorophyll a concentrations were observed in the Antarctic Sound, Powell
Basin, and off the South Orkney Islands, with extreme values at Stn. 7336 off the Antarctic
Peninsula (Figure 2d). The average values of oxygen and chlorophyll a concentrations
decreased from off the Antarctic Peninsula to off the South Orkney Islands, except for the
increasing surface Chl a concentration (Table 1).
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Figure 2. Values of water temperature (a), salinity (b), oxygen concentration (c), and chlorophyll a
concentration (d) in the 50-, 100-, 200-, 500-, and 1000 m layers during the austral summer of 2022.

Table 1. The environmental variables (mean ± SD) in the Bransfield Strait (BS), Antarctic Sound (AS),
Weddell Sea (WS), and off the South Orkney Islands (SOI) during the austral summer of 2022.

Variables
Study Region

BS AS WS SOI

50 m S 34.46 ± 0.14 34.49 ± 0.07 34.27 ± 0.15 34.32 ± 0.08
200 m S 34.56 ± 0.07 34.53 ± 0.04 34.60 ± 0.07 34.59 ± 0.04
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Table 1. Cont.

Variables
Study Region

BS AS WS SOI

500 m S 34.62 ± 0.08 34.54 ± 0.03 34.70 ± 0.09 34.74 ± 0.01
50 m T 0.53 ± 0.61 −0.25 ± 0.14 0.47 ± 0.63 1.35 ± 0.41
200 m T −0.11 ± 0.55 −0.41 ± 0.07 −0.77 ± 0.72 −0.37 ± 0.33
500 m T −0.28 ± 0.68 −0.63 ± 0.37 −0.10 ± 0.91 0.27 ± 0.19
50 m O2 10.49 ± 0.25 10.76 ± 0.01 10.50 ± 0.19 10.46 ± 0.16
200 m O2 8.75 ± 0.95 10.41 ± 0.12 8.17 ± 1.08 8.15 ± 0.75
500 m O2 8.12 ± 0.90 9.74 ± 0.59 7.09 ± 0.9 6.63 ± 0.29
50 m Chl a 0.65 ± 0.26 1.17 ± 0.09 1.38 ± 1.82 1.15 ± 1.1
200 m Chl a 0.12 ± 0.14 0.44 ± 0.14 0.07 ± 0.03 0.06 ± 0.01
500 m Chl a 0.07 ± 0.08 0.11 ± 0.01 0.06 ± 0.03 0.04 ± 0.01

Notes: Abbreviations of environmental variables are as follows: salinity (S), temperature (T), chlorophyll a
concentration (Chl a), and oxygen (O2) concentration in the surface (to 50 m), 200-, and 500 m layers.

3.2. Composition and Distribution Patterns of Mesozooplankton Abundance and Biomass

The total mesozooplankton abundance varied between 47.3 and 2797.8 ind. m−3

with a mean value of 970.3 ± 376.8 ind. m−3. The maximum abundances were recorded
from off the South Orkney Islands (Figure 3a). At the stations of this area, euphausiids
larvae numerically dominated (Figure 3b). At the rest of the stations, mesozooplankton
abundances ranged from 300 to 1200 ind. m−3 with a trend to increase from west to east.
Euphausiids larvae, being the most abundant group of mesozooplankton, constituted
39.9% of total abundance. It was noted that the greatest euphausiids larvae abundances
mostly matched the stations characterized by high phytoplankton concentrations; as, e.g., at
station (Stn.) 7332 eggs and nauplii of euphausiids accounted for >80% of total abundance.
Phytoplankton cells were not counted, and phytoplankton concentration was estimated
visually in the samples. The second abundant group of mesozooplankton, comprised of
small-sized copepods, such as Oithona spp., Oncaea spp., and copepod nauplii (hereafter
referred to as small copepods), constituted 27.2% of total abundance. Contributions of
small copepods at the stations sampled in the Bransfield Strait were higher compared
to other study areas (Figure 3b). The third abundant group of mesozooplankton was
comprised of large-sized calanoid copepods, e.g., Calanoides acutus, Calanus propinquus,
Metridia gerlachei, and Rhincalanus gigas (hereafter referred to as large copepods), that made
up 24.7% of total abundance. At the stations, their distribution did not have any clear
pattern. Other mesozooplankton taxa rarely accounted for more than 5% of total abundance
(Supplementary Material).

The total mesozooplankton biomass varied between 20.1 and 12,287.8 mg WW m−3

with a mean of 1757.5 ± 869.1 mg WW m−3. The highest biomasses were recorded from
two groups of stations off the South Orkney Islands (1st group, Stns. 7377 and 7382; 2nd
group, Stns. 7370 and 7373) (Figure 4a). In the 1st group, euphausiids larvae accounted for
>90% of total mesozooplankton biomass; the stations of the 2nd group were characterized
by generally high concentrations of large calanoid copepods and euphausiids larvae. At
the other stations, the mesozooplankton biomass ranged from 100 to 1100 mg WW m−3

with no clear distribution pattern. Generally, at stations with concentrations less than
500 mg WW m−3, large calanoid copepods accounted for more than 50% of total biomass
(Figure 4b). At some stations, other taxa of mesozooplankton contributed significantly to
total biomass: e.g., small copepods constituted up to 48% (Stn. 7318); pelagic tunicates,
mainly Salpa thompsoni, up to 12% (Stn. 7359); chaetognaths, up to 6% (Stn. 7314);
amphipods, mainly Themisto gaudichaudii, up to 5% (Stn. 7299). We observed a tendency
of total mesozooplankton biomass to increase, similarly to abundance, from the Antarctic
Peninsula towards the South Orkney Islands.
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3.3. Dynamics of Copepod Community

Copepods were the most abundant taxa and prominent components of the mesozoo-
plankton communities in the study region (Figure 3). Usually, the copepod abundance
ranged between 200 and 700 ind. m−3 in the Powell Basin (Weddell Sea), Antarctic Sound,
and off the Antarctic Peninsula. The highest copepod abundance was recorded at the
stations in the Bransfield Strait and off the South Orkney Islands (Figure 5a). At most
stations, small copepods, e.g., Oithona spp. dominated and showed substantial values
in the Bransfield Strait and Powell Basin, while large calanoid copepods, e.g., C. acutus,
C. propinquus, M. gerlachei, and R. gigas numerically dominated off the South Orkney Is-
lands. We also noted that the lowest copepod abundances mostly matched the stations
with high concentrations of pelagic tunicates, S. thompsoni (up to 13 ind. m−3).

The highest copepod biomasses were recorded from the Bransfield Strait, Powell Basin,
and off the South Orkney Islands. The larger calanoid copepods significantly contributed
to the total biomass of copepods in the study region. Metridia gerlachei dominated most
stations; with several exceptions, the samples from the Powell Basin and off the South
Orkney Islands were dominated by C. acutus, C. propinquus, and R. gigas (Figure 5b).

Water 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

stations, small copepods, e.g., Oithona spp. dominated and showed substantial values in 
the Bransfield Strait and Powell Basin, while large calanoid copepods, e.g., C. acutus, C. 
propinquus, M. gerlachei, and R. gigas numerically dominated off the South Orkney Is-
lands. We also noted that the lowest copepod abundances mostly matched the stations 
with high concentrations of pelagic tunicates, S. thompsoni (up to 13 ind. m−3). 

The highest copepod biomasses were recorded from the Bransfield Strait, Powell 
Basin, and off the South Orkney Islands. The larger calanoid copepods significantly con-
tributed to the total biomass of copepods in the study region. Metridia gerlachei domi-
nated most stations; with several exceptions, the samples from the Powell Basin and off 
the South Orkney Islands were dominated by C. acutus, C. propinquus, and R. gigas (Figure 
5b). 

 
Figure 5. Total copepod abundance (a) and biomass (b) during the austral summer of 2022. For an 
explanation of acronyms, see Figure 3. 

3.4. Vertical Distribution Patterns of Mesozooplankton Abundance 
The average mesozooplankton abundance in the waters off the western Antarctic 

Peninsula reduced with increasing depth (Figure 6a). A major part of mesozooplankton 
occurred in the upper 200 m layer. Each mesozooplankton taxon showed characteristic 
depth preference: small copepods had high average abundance values in the depth layer 
100–200 m, while large calanoid copepods were abundant in the layers deeper than 200 m 
(Figure 6b). Usually, euphausiid eggs were concentrated in the layers deeper than 500 m, 
with some exceptions off the South Orkney Islands (Stn. 7370) where eggs occurred in the 
surface layer. Euphausiids larvae were abundant in the upper 200 m layer, with a max-
imum of 100–200 m. The copepods C. acutus and C. propinquus were abundant in the 
200–500 m layer, with several exceptions off the South Orkney Islands where these co-
pepods dominated the warm surface layer. Metridia gerlachei was abundant in the 
100–500 m layer; R. gigas, deeper than the 200 m layer; and Calanus simillimus, Candacia 
spp., Paraeuchaeta antarctica, and Euchirella rostomagna, in the 500–1000 m layer. Amphi-

Figure 5. Total copepod abundance (a) and biomass (b) during the austral summer of 2022. For an
explanation of acronyms, see Figure 3.

3.4. Vertical Distribution Patterns of Mesozooplankton Abundance

The average mesozooplankton abundance in the waters off the western Antarctic
Peninsula reduced with increasing depth (Figure 6a). A major part of mesozooplankton
occurred in the upper 200 m layer. Each mesozooplankton taxon showed characteristic
depth preference: small copepods had high average abundance values in the depth layer
100–200 m, while large calanoid copepods were abundant in the layers deeper than 200 m
(Figure 6b). Usually, euphausiid eggs were concentrated in the layers deeper than 500 m,
with some exceptions off the South Orkney Islands (Stn. 7370) where eggs occurred in
the surface layer. Euphausiids larvae were abundant in the upper 200 m layer, with a
maximum of 100–200 m. The copepods C. acutus and C. propinquus were abundant in the
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200–500 m layer, with several exceptions off the South Orkney Islands where these copepods
dominated the warm surface layer. Metridia gerlachei was abundant in the 100–500 m layer;
R. gigas, deeper than the 200 m layer; and Calanus simillimus, Candacia spp., Paraeuchaeta
antarctica, and Euchirella rostomagna, in the 500–1000 m layer. Amphipods, ostracods, and
pelagic polychaetes concentrated deeper than the 200 m layer; cirripeds cypris larvae were
abundant within the 100–200 m layer.
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contribution of the major species/taxa (abundance, ind. m−3 and proportions, %) (b) off the western
Antarctic Peninsula during the austral summer of 2022.

The pattern of vertical distribution of mesozooplankton major species/taxa for the four
study areas (BS−AS−WS−SOI) is shown in Figure 7. The maximum values of the average
abundance of mesozooplankton were recorded from the warm 0–100 m layer in the waters
off the South Orkney Islands (Figure 7f,g) influenced by the warm and saline-modified
Antarctic Surface Water (AASW). Relatively high concentrations of mesozooplankton
were recorded from the deep-sea (200–500 and 500–1000 m) layers in the cold and saline
Transitional Zonal Water with Weddell Sea influence (TWW) of the Antarctic Coastal
Current (ACoC) and modified circumpolar deep water (mCDW) (Figure 7a), freezing and
freshening Shelf Water (SW) and TWW (Figure 7c,d), warm and saline Warm Deep Water
(WDW) (Figure 7e), except waters off the South Shetland Islands in the Bransfield Strait
influenced by the Transitional Bellingshausen Water (TBW) of the warm Bransfield Current
(BC) and mCDW (Figure 7b).

3.5. Effects of Environmental Variables on Distribution of Summer Mesozooplankton

The BEST analysis between the environmental variables and the biological data (abun-
dance) showed that significant variations in quantitative distribution could be explained
by three environmental variables such as salinity, temperature, and Chl a concentration
(correlation coefficient from 0.353 to 0.400). In contrast, the other variables did not increase
the correlation coefficient (Table 2). These relationships were statistically significant for
each of the four models (RELATE; p < 0.01). The best combination of variables explaining
the variations in mesozooplankton abundance was the salinity and Chl a concentration
at 500 m (correlation coefficient, 0.400). As our study showed, the abundances of meso-
zooplankton in particular copepods negatively correlated with the Chl a concentration at
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500 m, while the mesozooplankton biomass positively correlated with the salinity at 500 m
(p < 0.05) (Table 3). The abundance of euphausiids larvae showed positive relationships
with the salinity at 500 m and negative ones with the sea surface salinity and also with the
temperature at 200 m. The surface Chl a concentration and the salinity at 500 m positively
correlated with the biomass of euphausiids larvae. The correlations between copepod
biomass and all variables considered in the analysis were non-significant.

Table 2. Combination of environmental variables leading to the best results (BEST analysis).

Number of Variables Correlation Coefficient Selections

2 0.400 500 m S, 500 m Chl a
3 0.385 500 m S, 50 m Chl a, 500 m Chl a
3 0.361 500 m S, 200 m T, 500 m Chl a
3 0.353 500 m S, 50 m S, 500 m Chl a

Table 3. Spearman’s rank order correlations between the quantitative value of mesozooplankton and
the environmental variables. Significant correlations (p < 0.05) are highlighted in bold.

50 m
T 50 m S 50 m

O2

50 m
Chl a

200 m
T

200 m
S

200 m
O2

200 m
Chl a

500 m
T

500 m
S

500 m
O2

500 m
Chl a

Abn Meso 0.38 −0.16 −0.20 0.05 −0.06 0.35 −0.13 −0.23 0.11 0.40 −0.24 −0.46
Bm Meso 0.37 −0.28 −0.24 0.12 0.01 0.31 −0.27 −0.34 0.21 0.50 −0.31 −0.41
Abn Cop 0.29 0.08 −0.21 −0.19 0.00 0.26 −0.13 −0.23 −0.10 0.21 −0.12 −0.43
Bm Cop 0.14 −0.07 −0.32 −0.10 −0.02 0.18 −0.21 −0.25 0.11 0.38 −0.29 −0.29
Abn Euph 0.08 −0.36 −0.03 0.12 −0.39 0.34 −0.09 −0.02 0.21 0.44 −0.28 −0.14
Bm Euph 0.17 −0.26 0.02 0.40 −0.26 0.36 −0.17 −0.07 0.27 0.49 −0.33 −0.15

Notes: Abn, abundance (ind. m−3); Bm, biomass (mg WW m−3); Meso, mesozooplankton; Cop, copepods; and
Euph, euphausiids. For explanations for abbreviations of environmental variables, see Table 1.

3.6. Mesozooplankton Community Structure

Using the cluster and nMDS (stress value of 0.14) analyses, two significant groups of
stations were distinguished that geographically matched the inner sector off the Antarctic
Peninsula (ISAP) and the outer sector off the Antarctic Peninsula (OSAP) (Figure 8). The
ISAP was located in the Bransfield Strait, in the northern Antarctic Sound, and the Powell
Basin of the Weddell Sea, while the OSAP was located in the deep-sea area of the southern
Antarctic Sound, in the Powell Basin, and off the South Orkney Islands. A non-recognized
group (Stns. 7294, 7318, and 7336) stood out against the other stations. The ISAP and OSAP
groups off the western Antarctic Peninsula overlapped somewhat but were well separated
from the non-recognized group of stations.

By comparing the locations of the distinguished groups of stations with the key
currents in the study region (Figure 1), we have found that the OSAP was influenced by
the modified warm waters from the Powell Basin: Antarctic Slope Front (ASF) and the
Weddell Front (WF) with the warm and saline modified AASW. On the contrary, the ISAP
was influenced by the cold and freshening AASW and by the TBW of the warm Bransfield
Current and the cool and saline TWW of the cold Antarctic Coastal Current. Stations of the
non-recognized group were influenced by the freezing and freshening water.

Typical species (SIM/SD ratio of >3) of the ISAP community were Oithona spp.,
M. gerlachei, and C. acutus that together accounted for 53.1% of the average intra-group
similarity (SIMPER; average similarity, 64.81%). The OSAP community was characterized
by euphausiids larvae, Oithona spp., M. gerlachei, C. acutus, and ostracods, which together
accounted for 67.66% of the average intra-group similarity (SIMPER; average similarity,
68.78%). The dissimilarity between the tested sectors (OSAP vs. ISAP) was driven by
15 species that represented such taxa as euphausiids, copepods, ostracods, pelagic poly-
chaetes, cirripeds cypris larvae, and pelagic tunicates, which collectively accounted for
41.8% of the dissimilarity, as shown by a SIMPER analysis (Table 4). The samples (non-
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recognized group) collected from the very cold and freshening water were characterized by
a minimum abundance and a low species richness represented by Antarctic species [61,62].
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middle of the Bransfield Strait (BS); (b) in the Bransfield Strait off the South Shetland Islands; (c) in
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the deep-sea waters off the South Orkney Islands (SOI).
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Figure 8. nMDS ordination plot (a) based on abundance of mesozooplankton by the Bray–Curtis
similarity matrix, and location of the groups of stations in the inner (ISAP, green circles) and outer
(OSAP, blue circles) sectors off the western Antarctic Peninsula (b). Blank circles mean non-recognized
group.

Table 4. Result of a SIMPER analysis of average abundance (N, ind. m−3) of mesozooplankton
species/taxa with contributions (Contr, %) to and cumulative total (Cum, %) of intra-group similarity
(SIM/SD) and between-group dissimilarity (DISS/SD) within the station groups of the inner (ISAP)
and outer (OSAP) sectors off the western Antarctic Peninsula. The listed taxa contributed to at least
80% of the dissimilarity between the sectors.

Taxa

OSAP ISAP OSAP vs. ISAP

N SIM/SD Contr, % N SIM/SD Contr, % DISS/SD Contr, % Cum, %

Similarity: 68.78 Similarity: 64.81 Dissimilarity: 41.82

E. superba calyptopis 5.58 9.42 14.81 1.33 2.84 12.48 12.48
E. superba furcilia 4.73 1.73 9.91 0.77 1.82 11.89 24.37
E. superba eggs 4.08 0.92 6.82 1.33 1.43 10.30 34.67
Calanus propinquus 3.42 2.04 6.89 1.67 3.24 6.45 1.13 5.57 40.24
Calanoides acutus 4.93 6.74 12.45 3.39 4.56 14.67 1.31 4.62 44.86
Rhincalanus gigas 2.19 1.64 1.81 5.18 1.28 4.32 49.18
Cirripedia 0.79 1.45 1.20 4.21 53.39
Polychaeta 2.08 1.05 0.85 4.02 57.42
Metridia gerlachei 3.63 8.77 9.41 4.22 3.30 15.77 1.45 3.95 61.37
Oncea spp. 1.00 0.53 0.92 3.54 64.91
Ostracoda 3.00 3.78 7.13 2.38 1.98 8.46 1.10 3.26 68.17
Calanus simillimus 1.03 1.25 1.28 2.99 71.15
Oithona spp. 5.08 11.43 13.95 5.42 5.48 22.66 1.51 2.90 74.06
Metridia spp. 0.88 0.22 0.69 2.81 76.87
Salpa thompsoni 0.96 0.74 1.27 2.63 82.01

A canonical correspondence analysis (CCA) performed to assess relationships between
the mesozooplankton composition and the environmental variables in the two sectors (ISAP
and OSAP) together showed that the revealed models explained 97.1% of the total variation
in the dataset (64.4 and 32.7% for the CCA1 and CCA2 axes, respectively) (Figure 9). The
increase in the abundance of euphausiid eggs was associated with the high oxygen and
Chl a concentrations and the low temperature in the 200 m (T 200 m) layer. In general, the
higher concentrations of euphausiids larvae were associated with the high temperature in
the surface (T 50 m) and 500 m (T 500 m) layers, the high salinity in the 200 m (S 200 m)
and 500 m (S 500 m) layers, and a low oxygen concentration. The abundance of large
copepods was poorly represented on the first two CCA axes (it was located close to the
origin). The high salinity in the surface layer (S 50 m) was associated with the abundance
of small copepods and other mesozooplankton aggregations, ostracods, amphipods, and
chaetognaths. The abundance of pelagic tunicates was associated with the high temperature
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in the 200 m layer (T 200 m) and low Chl a conditions. The abundance of cirripeds cypris
larvae was associated with the high salinity in the surface layer (S 50 m) and the high oxygen
in the 500 m layer (O2 500 m), but the low temperature and the low Chl a concentration
which is the predominant environmental conditions in the ISAP (green circles in Figure 9).
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Figure 9. Canonical correspondence analysis (CCA) of mesozooplankton composition (in red) in
relationships with the environmental variables (in blue). The symbols of the mesozooplankton
communities (circles), as they were disclosed by nMDS analysis (see Figure 8), were superimposed
on the station labels. Abbreviations of the taxa are as follows: large copepods (LCop), small copepods
(SCop), ostracods (Ostr), cirripeds cypris larvae (Cirrip), pelagic tunicates (Salp), amphipods (Amph),
chaetognaths (Chaet), and euphausiid (Euph) eggs and larvae. For explanations for abbreviations of
environmental variables, see Table 1.

4. Discussion

Climate warming [5] and freshening of surface waters due to the extremely rapid
melting of glaciers over the past few decades [2,63,64] have induced marked changes in the
pelagic zone of the Southern Ocean such as a decrease in the photosynthesis efficiency [65]
and in the total phytoplankton biomass, and also a change in the phytoplankton structure
from the predominance of large diatoms to cryptophytes and small flagellates [66–68]. This
has exerted a significant impact on the abundance of krill and salps [33,69]. Overall, the
composition and distribution of mesozooplankton communities in the Austral summer
of 2022 changed slightly compared to data for other years [16,18,19,61,70]. It should,
however, be pointed out that while average abundance and biomass levels were within
the documented range, they showed the highest estimated values. This can be explained
by the 150 µm mesh used in this study. For comparison, most of the other estimates were
derived from net samples where mesh size was often 200 µm or greater, and a 200 µm mesh
preserves by an average of ~10 and ~20% less biomass and density, respectively, compared
to the similarly designed 150 µm mesh net [71]. It is possible that much of small-size
mesozooplankton is underrepresented in many present and historical data sets [72].

According to NOAA [9], the Austral summer of 2022 in the region off the western
Antarctic Peninsula was the second warmest period after 2016 (observations since 1910).
The SST recorded in this period proved to be the highest for the past 113 years, with
a positive anomaly of 1.35 ◦C [9]. Furthermore, the record lows in sea-ice cover in the
Antarctic for the past 44 years, including the retreat of the sea-ice edge up to 64◦30′ S in
the Weddell Sea, and the increased concentration of chlorophyll a were also observed in
the Austral summer of 2022 [73]. Copepods, eggs, and larvae of euphausiids were the
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most abundant taxa and prominent components of the mesozooplankton communities
throughout the record-warm summer season of 2022. The spatial distributions of copepods
and euphausiids larvae together drove distribution patterns for the total mesozooplank-
ton abundance. Copepods showed maximum abundances immediately off the Antarctic
Peninsula, whereas abundances of euphausiid larvae were highest east of the Antarctic
Peninsula, at the Weddell-Scotia Confluence. The trends of variations in total mesozoo-
plankton abundance over time were quite consistent, i.e., a steady increase from 1998 to
2009, a leveling-off, and then a decrease between 2010 and 2014, followed by a second
period of increase that occurred in 2015–2018 [17]. During the warmest summer of 2022, the
distribution of mesozooplankton varied considerably, and abundances were generally high
at the easternmost stations. There was no surprise that small copepods accounted for a
major part of the mesozooplankton abundance off the Antarctic Peninsula [15,16,61,74,75].
A positive trend of increasing small copepod contributions to the total mesozooplankton
abundance off the Antarctic Peninsula has been observed over the last 20 years [17,76,77].
Small copepods and nauplii of large species constitute a very important group of meso-
zooplankton, providing a food supply for fish larvae and macrozooplankton [36,78]. The
average abundance of euphausiid eggs and larvae proved to be 3–5-fold lower than previ-
ously reported [27,28,79]. It is likely that the survey in 2022 could coincide with a period
between years of high abundance of the krill population, as was noted earlier [22,28].
Previous studies showed that the euphausiid abundance did not increase after 2010 [17,33].
Currently, a trend of krill population declines due to climate changes observed since the
late 20th century is very probable [15,17,22,62].

The stability of mesozooplankton communities in the Southern Ocean is related to
changes in the phytoplankton structure, in particular, variations in food availability, which
may be a major factor responsible for differences in the composition and quantitative
distribution of mesozooplankton [17,68,80,81]. Larger-sized phytoplankton organisms (e.g.,
diatoms) are typically grazed by calanoid copepods and krill [82,83], whereas smaller-sized
ones (e.g., flagellates) are grazed by small copepods and pelagic tunicates [84,85]. In our
study, a maximum abundance of small copepods was located in areas with high concentra-
tions of Haptophyta and Dinophyta microalgae, e.g., Phaeocystis antarctica, Polarella glacialis,
and Protoperidinium spp., while a maximum abundance of large copepods and euphausiid
larvae was in waters with high concentrations of diatoms, e.g., Chaetoceros criophilus, C.
concavicornis, Fragilariopsis kerguelensis, Odontella weissflogii, and Rhizosolenia spp., which is
consistent with a previous study [20]. If the change in the phytoplankton structure trend
continues, we may observe the increasing concentration of flagellates microalgae, which
may be a trigger for an increase in abundance and expansive distribution of small copepods
and pelagic tunicates in the Southern Ocean.

Differences in the vertical distribution of mesozooplankton may be caused by sea-
sonal migration of plankton organisms, food availability, and seasonal pycnocline [86–88].
The calanoid copepods C. acutus, C. propinquus, and M. gerlachei commonly occur in the
epipelagic layer of 0–200 m off the Antarctic Peninsula in summer [61,89]. In the warmest
summer of 2022, these calanoid copepods were ubiquitously distributed in the warm and
saline water of the mesopelagic layer (200–500 m), except for a few stations off the South
Orkney Islands where these copepods dominated the warm surface layer of 0–50 m. The
presence of a sharp seasonal pycnocline in the study region, where gradients of thermo-
haline characteristics reached 0.5 ◦C and 0.06 psu per 10 m [20], may have prevented
calanoid copepods from migrating to the surface for feeding and breeding. Nevertheless,
stratification of the water column can contribute to the active vegetation of phytoplankton
as essential food for the development of macro- and mesozooplankton [12,35], as, e.g., off
the South Orkney Islands, where the highest density of euphausiid larvae can be associated
with bloom events of diatoms of the genera Chaetoceros and Rhizosolenia in the warm near-
surface layer. On the contrary, in the Antarctic Sound, characterized by high concentrations
of microalgae (mainly diatoms), with an increase from the surface to the bottom (800 m
depth), the abundance of eggs and nauplii of euphausiids was recorded deeper than 500 m.
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Yet, there is a limited understanding of how environmental conditions can structure
the dynamics of mesozooplankton communities in the Antarctic waters. As was previously
reported, mesozooplankton communities are thermally resilient to the present levels of
sea surface warming, whereas other selective pressures, in particular food availability and
the properties of underlying water masses, imposed greater constraints on the distribution
of mesozooplankton in the Antarctic region [16,90]. Nevertheless, we found that water
salinity, temperature, and chlorophyll a concentration are important factors structuring the
composition and the quantitative distribution of mesozooplankton in the waters off the
Antarctic Peninsula during the warmest austral summer. Each mesozooplankton taxon
showed characteristic environmental preference. Copepods, ostracods, and chaetognaths
were associated with salinity; pelagic tunicates, with temperature; cirripeds cypris larvae and
amphipods, with salinity and oxygen concentration; euphausiids larvae, with temperature
and salinity; euphausiids eggs, with oxygen and chlorophyll a concentrations. The highest
euphausiid egg abundances were observed at the deep-sea stations which were associated
with the highest oxygen concentrations (>10 mg/L), very cold water (−1 ◦C), and high,
bloom-like phytoplankton concentrations. Mackintosh [91] found that euphausiid eggs and
larvae at early stages tend to certain zones as the thermocline disappears; in addition, an
abundance of krill larvae at early developmental stages may be associated with temperature
and Chl a concentration [27,29,92,93]. Further studies are expected to be carried out to
elucidate the relative contributions of the factors driving the abundance of copepods that
dominate the mesozooplankton of the Southern Ocean and form the major food supply in
the food chain between primary producers and predators [94,95].

5. Conclusions

Eggs and larvae of euphausiids such as Euphausia superba, small copepods such
as O. similis, and large calanoid copepods such as C. acutus, C. propinquus, M. gerlachei,
and R. gigas proved to be the most abundant taxa and prominent components of the
mesozooplankton communities off the western Antarctic Peninsula during the record-
warm summer season of 2022. Small copepods dominated substantially in the Bransfield
Strait and off the Antarctic Peninsula, while large calanoid copepods and euphausiid eggs
and larvae numerically dominated in the Powell Basin and off the South Orkney Islands.
The other taxa of mesozooplankton, e.g., Appendicularia, Ctenophora, Echinodermata,
Hydromedusae, Polychaeta, Pteropoda, Siphonophorae, and eggs and larvae of fish did not
play any substantial role in the total abundance. With a few exceptions, the contributions of
amphipods, chaetognaths, ostracods, salps, pelagic polychaetes, and cirripeds cypris larvae
were significant. The total abundance and biomass of the mesozooplankton increased in
an easterly direction, from the Antarctic Peninsula to the South Orkney Islands. Most
mesozooplankton occurred in the upper 200 m layer. Each taxon showed characteristic
depth preference: small copepods, euphausiids, and cirripeds cypris larvae were abundant
in the epipelagic layer (up to 200 m), while large calanoid copepods, euphausiid eggs,
amphipods, ostracods, and pelagic polychaetes were concentrated in the mesopelagic
layer (up to 1000 m). Two significant groups of sampling stations were identified off the
western Antarctic Peninsula. The first group, located in the inner sector off of the Antarctic
Peninsula (ISAP), was represented by copepods Oithona spp., M. gerlachei, and C. acutus;
the second group, located in the outer sector off of the Antarctic Peninsula (OSAP), by
euphausiids larvae, copepods Oithona spp., M. gerlachei, C. acutus, and ostracods. The
composition and quantitative distribution of mesozooplankton showed clear relationships
with environmental factors, particularly with a combination of variables such as water
salinity, temperature, and Chl a concentration. The increase in the abundance of euphausiid
eggs was associated with the high oxygen and Chl a concentrations and the low temperature
in the 200 m layer; euphausiid larvae, with the high temperature (>1 ◦C) in the surface and
500–m layers, the high salinity in the 200 m (S 200 m) and 500 m layers, and a low oxygen
concentration; small copepods, together with ostracods and chaetognaths, with the high
salinity in the surface layer; pelagic tunicates, with the high temperature in the 200 m layer
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and low Chl a conditions; cirripeds cypris larvae, with the high salinity in the surface layer
and the high oxygen concentration in the 500 m layer, but a low temperature and low Chl a
concentration.

The results of the present and future studies do and will provide invaluable data as
regards the life of planktonic organisms in the extreme conditions of the changing Southern
Ocean. These are also expected to have important practical implications for predicting long-
term changes in pelagic communities and designing future programs for the conservation
of Antarctic marine ecosystems and sustainable management of commercial fisheries.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15101948/s1, Table S1: Composition and mean abundance,
ind. m−3 (±SD) of mesozooplankton in the Bransfield Strait (BS), Antarctic Sound (AS), Weddell Sea
(WS), and off the South Orkney Islands (SOI) during the austral summer of 2022.
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