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Abstract: Accurate rainfall prediction remains a challenging problem because of the high volatility
and complicated essence of atmospheric data. This study proposed a hybrid model (DSP) that
combines the advantages of discrete wavelet transform (DWT), support vector regression (SVR), and
Prophet to forecast rainfall data. First, the rainfall time series is decomposed into high-frequency
and low-frequency subseries using discrete wavelet transform (DWT). The SVR and Prophet models
are then used to predict high-frequency and low-frequency subsequences, respectively. Finally, the
predicted rainfall is determined by summing the predicted values of each subsequence. A case study
in China is conducted from 1 January 2014 to 30 June 2016. The results show that the DSP model
provides excellent prediction, with RMSE, MAE, and R2 values of 6.17, 3.3, and 0.75, respectively. The
DSP model yields higher prediction accuracy than the three baseline models considered, with the
prediction accuracy ranking as follows: DSP > SSP > Prophet > SVR. In addition, the DSP model is
quite stable and can achieve good results when applied to rainfall data from various climate types,
with RMSEs ranging from 1.24 to 7.31, MAEs ranging from 0.52 to 6.14, and R2 values ranging from
0.62 to 0.75. The proposed model may provide a novel approach for rainfall forecasting and is readily
adaptable to other time series predictions.

Keywords: rainfall time series prediction; discrete wavelet transform; machine learning; hybrid model

1. Introduction

Rainfall, as an essential process in the hydrological cycle, is one of the most studied
components of hydrological and climate science, as it directly or indirectly affects our
society [1]. Accurate rainfall prediction is vital in daily life, risk assessment, natural
disaster prevention, and water resource planning and management [2,3]. However, the
prediction of rainfall is a difficult task due to the dynamic complexity and nonstationary
nature of measured hydrological data [4]. Models used for hydrometeorological time series
prediction can be divided into physical process-driven models and data-driven models [5].
The former requires complex equations to be solved with large amounts of data, and it
cannot be extended to new regions [6]. The latter learns long-term patterns of physical
phenomena directly from data and can be quickly developed and easily implemented [7].

Statistical and machine learning methods are often used to develop data-driven models.
Traditional statistical models, such as the autoregressive moving average (ARIMA) and
multiple linear regression (MLR) models, may not be suitable methods [8], which only
yield satisfactory results when predicting linear or near-linear time series and fail to capture
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nonlinear and nonstationary factors in hydrometeorological time series [9]. Machine
learning techniques have a powerful learning capability ideal for modeling linear and
nonlinear relationships in data without necessarily understanding the physical mechanisms
associated with the data [10,11]. Therefore, various machine learning models have been
applied for hydrometeorological time series prediction, such as the artificial neural network
(ANN), support vector regression (SVR), Prophet, and random forest (RF) models. These
models provide satisfactory predictions of nonlinear hydrological and meteorological
processes [12–15].

Although these single methods have achieved breakthroughs in prediction perfor-
mance, their shortcomings have also been exposed. For example, the SVR model has
limitations in predicting highly nonstationary hydrological time series at different scales;
moreover, prediction performance is influenced by the size of the data set and the param-
eters and kernel functions used [16]. The strong nonlinear mapping capability of neural
networks has led to their increased application in climate data prediction. However, as
the amount of data increases, the structure of neural networks becomes more complex,
significantly decreasing the processing speed and leading to convergence to local minima,
resulting in lower prediction accuracy [17].

In recent years, time series decomposition algorithms have been applied for feature
extraction and prediction involving hydrometeorological time series. The combination of
time series decomposition methods and machine learning has facilitated the development of
hybrid models and improved prediction accuracy [18–20]. Apaydin et al. [21] used singular
spectrum analysis to process monthly flow data and combined this approach with neural
networks for prediction. The results showed that this method yields higher prediction
accuracy than other single neural network models and can achieve more accurate river
flow predictions. Ravansalar et al. [22] constructed a wavelet linear genetic programming
(WLGP) approach to predict monthly flows at two stations. They compared the WLGP
model with a linear genetic programming (LGP) model, a neural network model, a hybrid
wavelet neural network model (WANN), and an MLR model. The results showed that
the WLGP model could significantly improve the accuracy of flow predictions and other
hydrological predictions. Samani et al. [23] predicted groundwater level (GWL) changes
with a set of supervised machine learning (ML) models, i.e., ANN, adaptive neuro-fuzzy
inference system (ANFIS), group method of data handling (GMDH), least square support
vector machine (LSSVM), and the hybrid wavelet conjunction models. They found that
the hybrid models perform better than single models, and the wavelet transform–least
square support vector machine (WT-LSSVM) model obtained the best accuracy. However,
the decomposed time series components usually exhibit different characteristics, and it is
difficult for a single prediction method to accurately predict all components. Therefore,
according to the characteristics of time series components, some scholars have used different
models for prediction to further improve prediction performance [24,25]. Wei et al. [26]
built a hybrid model (DWT-CLSTM-DCCNN) with discrete wavelet transform (DWT), long
short-term memory (LSTM), and dilated causal convolutional neural network (DCCNN) to
forecast monthly rainfall data. The results showed that the coupled model outperforms
the benchmark models in prediction accuracy and peak rainfall capture. Khan et al. [27]
combined the strengths of the Wavelet transformation (WT), ARIMA, and ANN to predict
droughts. In the experiment, the combined model has improved accuracy compared to the
single ANN and WT-ANN.

Among the many time series decomposition methods, seasonal decomposition and
discrete wavelet decomposition have been widely used [28,29]. In the seasonal decomposi-
tion method, a time series is divided into the trend, periodic, and residual terms, which
represent different typical characteristics, among which the predictability of the trend and
periodic terms is generally high [30]. The residual term represents irregular fluctuations in
time series with certain volatility and randomness, and thus, a machine learning model
with excellent learning ability must be applied, otherwise it may lead to poor prediction
performance in cases with detailed features. In contrast, in the DWT approach, specific
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frequencies are filtered at each scale, and the original data are decomposed into single-
frequency components, thus smoothing the sequence and making it more conducive to
model fitting and the prediction of each component [8]. The SVR model is based on the
structural risk minimization criterion, which can capture the nonlinear features in data,
is characterized by good generalization ability, and can improve prediction accuracy and
speed [31], so it is suitable for high-frequency component forecasting. The Prophet model
includes simple and intuitive parameters and yields a good prediction effect; notably, it
can provide accurate predictions in cases with periodic data, many outliers, and large
trend changes [32]. Thus, this model has advantages in the prediction of low-frequency
components. Theoretically, the combination of DWT with SVR and the Prophet model
can improve the accuracy of time series prediction, and the performance of this method
deserves further exploration. No study has yet applied such a combined model for rainfall
time series prediction.

This paper builds a hybrid model (DSP) with DWT, SVR, and Prophet to provide an
accurate rainfall time series prediction. To this end, we first decompose the original data
into high-frequency components and low-frequency components using DWT, and then,
SVR is applied for high-frequency component prediction, and the Prophet model is used
for low-frequency component prediction. Finally, the prediction results of each subseries
are combined to obtain the final prediction results. The effectiveness of the DSP method is
verified by using daily rainfall time series as a case study. Compared with the three baseline
methods, the superiority of the DSP approach is verified. Moreover, the DSP model is used
to predict rainfall from stations in different climate types to further verify its universality.
Next, the seasonal decomposition method is compared with DWT to demonstrate the
advantages of the proposed approach for data preprocessing. Overall, the DSP method
decomposes complex rainfall time series into subseries with a single fluctuation frequency
and establishes different models for different components, which improves the accuracy of
rainfall time series prediction.

The rest of this paper is organized as follows. Section 2 presents the prediction method
used in the DSP model, as well as the parameter optimization and model evaluation
schemes. Detailed experimental results are given in Section 3. Section 4 discusses the
applicability of the DSP model, the advantages of the DSP model in rainfall prediction, and
improvements in the prediction accuracy compared to other models. Finally, a summary is
presented in Section 5.

2. Methodology
2.1. Hybrid Model Based on DWT-SVR-Prophet

We propose a DSP model for rainfall time series prediction, and the framework is
shown in Figure 1.

(i) Data preparation and preprocessing: We construct a dataset with daily rainfall data
from the National Meteorological Center. The validity and superiority of the model
introduced in this paper are verified using this dataset. We preprocess the measured
rainfall data to ensure the fitting effect of the applied machine learning model. This
process is described in detail in Section 2.2.

(ii) DWT processing: The rainfall time series are decomposed using DWT to obtain high-
frequency subsequences with high randomness and volatility and low-frequency
subsequences with high periodicity (see Section 2.3.1). This approach allows us to
choose forecasting models based on the characteristics of each subseries.

(iii) Hyperparameter optimization: The hyperparameters of the three methods in the
coupled model are optimized to obtain the optimal prediction effect. Notably, the
parameters of the DWT method are determined by referring to the previous literature,
and a grid search method is used to set the hyperparameters of the SVR and Prophet
models. The specific process of parameter selection is described in detail in Section 2.5.
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(iv) Rainfall prediction: The optimized SVR model and Prophet model are used to predict
high-frequency subseries and low-frequency subseries, respectively. The prediction
results for each subseries are summed to obtain the final prediction results.
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Figure 1. Main flowchart of the hybrid model.

2.2. Data Preprocessing

The data used in this paper were obtained from the National Weather Science Data
Center (http://data.cma.cn, accessed on 25 April 2023). To construct the dataset, we
selected daily rainfall data (from 1 January 2014 to 30 June 2016) from five stations in
different climate zones. The rainfall statistics are shown in Table 1. It is worth mentioning
that the annual average rainfall and rainfall frequency of station 59855, station 58345,
and station 57348 are higher; the annual rainfall of station 54823 is moderate, and the
precipitation frequency is the lowest; the annual average rainfall of station 56018 is the
lowest, but the rainfall frequency is higher.

Table 1. Rainfall data statistics.

Station (ID)

Rainfall (mm)
Rainfall Frequency

(%)
Climatic Type

Per Year Per Month Daily
Maximum

Hainan (59855) 1972.2 182.6 253.1 41.4 Northern tropics
Jiangsu (58345) 1362.7 126.2 154.8 36.0 Northern subtropics

Chognqi (57348) 881.9 81.7 113.6 35.8 Mid-subtropics
Shandon (54823) 642.5 59.5 127.1 20.7 Southern temperate
Qinghai (56018) 466.3 43.2 31.3 40.4 Plateau climate

One of the prerequisites for a data-driven model is ensuring that the data quality meets
the relevant modeling requirements [33]. Therefore, before performing data decomposition,
the measured rainfall data need to be preprocessed, such as filling in missing values and
normalizing the data. There were no missing values in the dataset used in this paper. To
avoid the influence of extreme rainfall values and improve the accuracy of the machine
learning algorithm, the maximum–minimum scaling method [34] was adopted to normalize
daily rainfall data to between 0 and 1. The specific formula is as follows:

Pnorm =
Pi − Pmin

Pmax − Pmin
(1)

http://data.cma.cn
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where Pnorm, Pi, Pmin, and Pmax are the normalized, measured, minimum, and maximum
values of rainfall, respectively.

2.3. Methods Used in the DSP Model
2.3.1. Discrete Wavelet Transform

Wavelet transform is a time–frequency analysis method with multiresolution char-
acteristics. The characteristics of an original sequence in different frequency bands are
obtained by changing the corresponding scale [35]. The main wavelet transform methods
include continuous wavelet transform (CWT) and DWT. DWT is based on simple process-
ing steps, avoids the redundancy problem of CWT, and is more suitable for processing time
series data [16]. Therefore, DWT is chosen for rainfall time series decomposition, and the
corresponding expression is

W(p, q) = 2−(
p
2 )

T

∑
t=0

ψ

(
t− q · 2p

2p

)
· x(t) (2)

where t is the time parameter, T is the signal length, p is the scale parameter, and q is the
offset parameter.

The specific decomposition process is shown in Figure 2. The rainfall time series is
decomposed into m subseries of different frequencies (D1, D2, . . . , Dm, and Am), which
are used as the inputs of the coupled model. The frequency of the subsequences decreases
from D1 to Am in the above order.
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2.3.2. Support Vector Regression Model

SVR is an extended approach based on the support vector machine (SVM) concept.
The benefits of this approach include structural risk minimization and the ability to use
small sample sizes. It is an application of SVM in the field of regression [36]. Its regression
process is as follows.

The basic form of linear regression is

f (x) = ωT · x + b (3)

For a given sample set {(xi, yi), i = 1, 2 . . . N}, xi ∈ Rn is the input quantity, and yi ∈ R
is the output quantity. Consider a mapping form, such that ϕ(x) is the eigenvector of x
after mapping to higher dimensions, yielding the following linear regression function:

f (x) = ωT · ϕ(x) + b (4)

where ω is the coefficient, and b ∈ R is the deviation; ϕ(x) is a nonlinear mapping from low-
dimensional space to high-dimensional space. ω after b is learned, the model is established.

According to the structural risk minimization criterion, the problem is transformed
into an objective function R minimization problem, which can be expressed as

min
(ω,e)

R(ω, e) =
1
2

ωT ·ω + C
n

∑
i=1

ei
2 (5)

s·t·yi = ωT ϕ(xi) + b + ei (6)
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where R(ω, e) is the objective function; the equation after s·t· denotes the constraint that
the objective function R should satisfy when minimized; yi ∈ R is the output quantity;
ei ∈ R is the error variable, to be determined based on model training; and C is the penalty
coefficient, which is greater than 0.

To solve the above minimization problem for the objective function R, the Lagrangian
function L is constructed.

L(ω, b, ei, αi, α̃i) = R(ω, e)−
n
∑

i=1
αi
[
ωT ϕ(xi) + b + ei − yi

]
+

n
∑

i=1
α̃i
[
ωT ϕ(xi) + b + ei − yi

] (7)

where α̃i, αi are the Lagrange multiplier operators, and the definitions of ω, b, e and yi are
the same as those above.

The above equation is substituted into Equation (3), and the following expression
is obtained:

ω =
n

∑
i=1

(α̃i − αi) · xi (8)

where α̃i, αi are the same as those above and can make the sample of α̃i − αi 6= 0 that is the
support vector of SVR.

Finally, by satisfying the Karush–Kuhn–Tucker (KKT) condition in the SVR dual
problem and substituting the resulting formula into Equation (3), the SVR solution can be
obtained as follows:

f (x) =
n

∑
i=1

(α̃i − αi) · xi
Tx + b (9)

where bias term b = yi −
n
∑

i=1
(α̃i − αi)·xi

Tx. The SVR solution when considering the form

of feature mapping is

f (x) =
n

∑
i=1

(α̃i − αi) · k(xi, x) + b (10)

where k(xi, x) is the kernel function. The commonly used kernel functions are the linear
kernel function and the radial basis kernel function.

2.3.3. Prophet Model

The Prophet model is an open-source decomposable time series prediction model that
was developed by Facebook [37]. It is based on time series decomposition and machine
learning fitting, which are used to predict the future trends of time series. The model
consists of four main components:

y(t) = g(t) + s(t) + h(t) + ε(t) (11)

where t is the current time; y(t) is the current value; g(t) is the trend term, which represents
a nonperiodic variation of the time series; s(t) is the period term, which reflects the cyclical
or seasonal variation in the time series; h(t) is the holiday-event term, which can be
interpreted as an additional influence term; and ε(t) is the error term, which obeys a
normal distribution.

The trend term g(t) can be based on either a logistic regression function or a segmented
linear function. The segmented linear modeling equation is as follows:

g(t) =
(

k + a(t)Tδ
)

t +
(

m + a(t)Tγ
)

(12)

where k denotes the growth rate of the model; δ is the change in k; m is the offset; t is the
time stamp; and a (t) is the indicator function. Additionally, a(t)T is the transpose vector
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of a (t), and γ is the offset of the smoothing process, which serves to make the function
segment continuous. The logistic regression model is

g(t) =
c

1 + exp(−k(t−m))
(13)

where c denotes the bearing capacity of the model, and the definitions of k, t, and m are the
same as those above.

The periodic term s(t), which models the periodicity of the time series using a Fourier
series, is as follows:

s(t) =
N

∑
n=1

[
an cos

(
2πnt

p

)
+ bn sin

(
2πnt

p

)]
(14)

where p represents the period in the time series, its parameters can be expressed as
β = [a1, b1, · · ·, aN , bN ]

T , and β ∼ Normal
(
0, σ2), in the Prophet model, σ can be set

through the seasonality_prior_scale parameter to control the influence of the seasonal
factor s(t) on the model.

The holiday-event model h(t) is

h(t) = Z(t)k =
L

∑
i=1

ki · 1{t∈Di} (15)

where Z(t) = (1{t∈D1}, , , 1{t∈Di}
), k = (k1, , , kL)

T ; L denotes the number of holiday events;
Di represents the time range of the holiday event; Z(t) is set to 1 when time t is within
the range of a holiday event and equals 0 otherwise; ki indicates the influence of different
holiday events on the time series prediction; and k obeys normal distribution.

2.4. Hyperparameter Optimization

The prediction effect of the coupled model mainly depends on the selection of the
model parameters, and the main parameters of each model are shown in Table 2. To obtain
the optimal prediction effect, the three model parameters are optimized, and the detailed
methods are as follows.

Table 2. Hyperparameters of the DWT, SVR, and Prophet models.

Model Parameters Parameters Description Default Value Optimization Method

DWT Wavelet name Wavelet basis function - From
previous researchLevel Wavelet decomposition level -

SVR Kernel Kernel function rbf Grid search
C Penalty coefficient 1
γ Kernel function coefficient auto

Prophet Growth Function in the trend model linear Grid search
Changepoint_prior_scale Trend flexibility 0.05

Year_seasonality Year flexibility 10
Seasonality_prior_scale Seasonality flexibility 10

Seasonality mode Model learning style additive

2.4.1. DWT

The main parameters of DWT include the wavelet function and decomposition level.
Among the standard wavelet functions, Daubechies (db) family wavelets are commonly
used in hydrometeorology [38,39]. Nalley et al. [40] used db5-db10 wavelets for DWT-based
analyses of rainfall time series. Altunkaynak et al. [41] performed a 3-level decomposition
of rainfall time series and used the result as the input to the prediction model. Referring to
the existing studies, we select db7 and 3-level decomposition for DWT data processing.
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2.4.2. SVR

We use a grid search method for parameter search optimization in the SVR model.
Then, a 10-fold cross-validation technique is applied to the training set to prevent overfitting.

(i) The radial basis function (rbf) is chosen as the kernel function of the SVR model.
First, the ranges of values and search steps are set for the main parameters C and
γ, and all parameter combinations within the given ranges are obtained

(
γx, Cy

)
,

(x = 1, 2, . . . , M; y = 1, 2, . . . , N).
(ii) All parameter combinations are applied to rainfall predictions, and the best parameter

combination is selected based on effect evaluation
(
γj, Ck

)
.

(iii) To ensure the stability of the search result, the adjacent interval of the optimal parame-
ter combination is selected as the new search range γ ∈

(
γj−1, γj+1

)
, C ∈ (Ck−1, Ck+1).

Then, the search step size is reduced by a factor of 2 (or another multiple), and the
optimal parameter combination is again obtained. If the result is unstable, the pro-
cess is continued until a stable result, i.e., the optimal combination of parameters,
is obtained.

In this paper, C ∈
[
2−10, 210], γ ∈

[
2−10, 210], and the step size is 2.

2.4.3. Prophet Model

A grid search method is used to search for the optimal parameters of the Prophet
model, and the basic process is the same as that used for the SVR model. The following
initial range settings are used for the parameters of the Prophet model.

(i) Both linear and logistic “Growth” parameters, and additive and multiplicative “Sea-
sonality mode” parameters are considered.

(ii) The monthly period term is summed with the “Add_seasonality” function in the
Prophet model, with “period” = 30.5. Then, the initial range of “Year_seasonality”
and “Seasonality_prior_scale” is set to [1, 100] with a step size of 5.

(iii) The “Changepoint_prior_scale” parameter has a range of [0.01, 20], and the corre-
sponding step size is 0.5.

2.5. Evaluation Metrics

The mean absolute error (MAE), root mean square error (RMSE), and coefficient of
determination (R2) are chosen as evaluation indicators, and the formulae are shown below:

MAE =
1
N

N

∑
k=1

∣∣y′k − yk
∣∣ (16)

RMSE =

√√√√ 1
N

N

∑
k=1

(
y′k − yk

)2 (17)

R2 = 1− ∑N
k=1
(
y′k − yk

)2

∑N
k=1(ỹ− yk)

2 (18)

where y′k is the ith predicted value, and yk is the ith true value. Additionally, ỹ is the average
of the true values, and N is the number of true values.

2.6. Open-Source Libraries

This study completely depends on open-source libraries written in the Python pro-
gramming language. Numpy was mainly used for numerical calculations. Pandas was
mainly used for data processing and analysis, including data reading and writing, numeri-
cal calculations, and data visualization. The DWT used in this study was the pywt package.
The SVR model used was the sklearn.svm package. The Prophet model used was fbprophet.
The figures were depicted using Matplotlib.
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3. Results

We divided the dataset into a test set and a validation set at a ratio of 8:2. Subsequently,
a case study was conducted using the DSP model. Three baseline models were introduced
for comparison. The prediction results of the DSP model on the single-station, the compar-
ative analysis of different prediction models, and the prediction results of the DSP model
on multiple-station can be found in Sections 3.1–3.3, respectively.

3.1. The DSP Model Provides Accurate Predictions of Rainfall

To verify the prediction accuracy of the DSP model proposed in this paper, we used
data from station 57348 for rainfall prediction experiments. This station is located in
Chongqing, China, with a subtropical, humid climate and abundant rainfall. The average
annual rainfall at the station totals 881.9 mm over an average of 131 days. The distribution
characteristics of the rainfall time series and the DWT decomposition results are shown in
Figure 3. The final prediction results were obtained using the DSP model.

Water 2023, 15, x FOR PEER REVIEW 9 of 19 
 

 

( )
( )

2
2 1

2

1

1
N

k kk
N

kk

y y
R

y y
=

=

′ −
= −

−

 

 (18)

where 𝑦௞ᇱ  is the ith predicted value, and 𝑦௞ is the ith true value. Additionally, ỹ is the 
average of the true values, and N is the number of true values. 

2.6. Open-Source Libraries 
This study completely depends on open-source libraries written in the Python pro-

gramming language. Numpy was mainly used for numerical calculations. Pandas was 
mainly used for data processing and analysis, including data reading and writing, numer-
ical calculations, and data visualization. The DWT used in this study was the pywt pack-
age. The SVR model used was the sklearn.svm package. The Prophet model used was 
fbprophet. The figures were depicted using Matplotlib. 

3. Results 
We divided the dataset into a test set and a validation set at a ratio of 8:2. Subse-

quently, a case study was conducted using the DSP model. Three baseline models were 
introduced for comparison. The prediction results of the DSP model on the single-station, 
the comparative analysis of different prediction models, and the prediction results of the 
DSP model on multiple-station can be found in Sections 3.1–3.3, respectively. 

3.1. The DSP Model Provides Accurate Predictions of Rainfall 
To verify the prediction accuracy of the DSP model proposed in this paper, we used 

data from station 57348 for rainfall prediction experiments. This station is located in 
Chongqing, China, with a subtropical, humid climate and abundant rainfall. The average 
annual rainfall at the station totals 881.9 mm over an average of 131 days. The distribution 
characteristics of the rainfall time series and the DWT decomposition results are shown in 
Figure 3. The final prediction results were obtained using the DSP model. 

 
Figure 3. Rainfall time series and its DWT decomposition results at station 57,348. 

The SVR model was used to predict three high-frequency components (D1, D2, and 
D3), and the subsequence with the highest frequency D1 was used as an example for pa-
rameter selection (Table 3) and prediction (results in Figure 4). Figure 4 shows that the 
SVR model displays an excellent fitting ability for the high-frequency subsequence and 
yields satisfactory prediction results. The corresponding RMSE = 4.3709, MAE = 2.5513, 
and R2 = 0.6757. 

  

Figure 3. Rainfall time series and its DWT decomposition results at station 57,348.

The SVR model was used to predict three high-frequency components (D1, D2, and
D3), and the subsequence with the highest frequency D1 was used as an example for
parameter selection (Table 3) and prediction (results in Figure 4). Figure 4 shows that the
SVR model displays an excellent fitting ability for the high-frequency subsequence and
yields satisfactory prediction results. The corresponding RMSE = 4.3709, MAE = 2.5513,
and R2 = 0.6757.

Table 3. Parameter setting of the SVR model for the D1 sequence.

Parameter Parameter Values

kernel function rbf
C (penalty variable) 1024

γ (kernel function parameter) 0.03125

The Prophet model was applied to predict the low-frequency component A3, and the
prediction results are shown in Figure 5. The resulting RMSE, MAE, and R2 were 3.8163,
2.0920, and 0.4334, respectively. The model can simulate the basic trend of A3, and the
prediction results are within the acceptable range. The main parameters of the Prophet
model are shown in Table 4.
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Figure 5. Scatter plot of the predicted and true values of the A3 sequence.

Table 4. Parameter setting of the Prophet model for the A3 sequence.

Parameter Parameter Values

Growth Linear
Changepoint_prior_scale 1

Year_seasonality 9
Seasonality_prior_scale 60

Seasonality mode Additive

The prediction results of all components are summed to obtain the final prediction
time series. Figure 6 shows the scatter plots of the real and predicted rainfall values based
on the validation set, and Figure 7 compares the true and predicted values. The RMSE,
MAE, and R2 of the DSP model are 6.1704, 3.2901, and 0.7518, respectively, indicating that
among the studied models, the DSP model provides the best prediction of the basic trend
of daily rainfall at station 57348. The predicted rainfall is generally similar to the actual
rainfall, with satisfactory prediction accuracy.
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3.2. The Prediction Accuracy of the DSP Model Is Higher Than That of the Baseline Models

To validate the superiority of the DSP model, four experiments were conducted
involving daily rainfall prediction at station 57348 using three baseline models and the
DSP model. The three baseline models were the SVR, Prophet, and coupled SVR-Prophet
models based on the seasonal decomposition method (SSP), proposed by Guo Li et al. [42].
The characteristics of these models are compared as shown in Table 5. The predicted and
actual values of the four models based on the validation set are shown in Figure 8. The
SVR and Prophet models have difficulty in predicting the true situation. The SVR model
is influenced by extreme values and overpredicts rainfall. The Prophet model is weak
in capturing extreme value changes and the prediction results fluctuate flatly. Notably,
both the DSP model and the SSP model exhibit good performance. They can predict the
variation of rainfall series better and the prediction results are close to the true values. The
main difference is that the rainfall peak predicted by the SSP model is much lower than the
observed value, and the corresponding prediction error is large. The DSP model displays
better performance in fitting the detailed features of the rainfall series. The prediction
accuracy of the four models was compared (Table 6), and the DSP model obtained the best
evaluation results, followed by the SSP model. Compared with those of the SSP model, the
RMSE and MAE of the DSP model were reduced by 46.3% and 55.9%, respectively, and the
R2 was improved by 67.4%. The results above verify the superiority of the DSP model.
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Table 5. Comparison of the characteristics of the DSP, SSP, SVR, and Prophet models.

Model Advantages Disadvantages

SVR It displays good generalization ability and
is suitable for nonlinear prediction It has limitations for general data

Prophet It can effectively fit the trend and period
variations of time series Poor fitting ability for complex models

DSP
It can extract linear and nonlinear features
and fit each component using dominance

models, respectively

The parameter selection of DWT affects
the prediction accuracy and requires

additional optimization

SSP
It can extract linear and nonlinear features
and fit each component using dominance

models, respectively

The residual term is difficult to fit and
requires high model performance
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Table 6. Comparison of the prediction accuracy of the DSP, SSP, SVR, and Prophet models for rainfall
at station 57348.

Metric DSP SSP SVR Prophet

RMSE 6.1704 9.1679 14.1779 12.1362
MAE 3.2901 4.3931 9.5772 4.9510

R2 0.7518 0.4492 −0.3061 0.0348

To further investigate the reasons for the difference in prediction effectiveness be-
tween the DSP model and the SSP model, comparative experiments are designed. The
main difference between these two models is that when decomposing time series, the
former uses discrete wavelet transform, while the latter uses seasonal decomposition to
decompose time series. According to the principles of the decomposition methods, most of
the detailed features of rainfall time series are associated with the high-frequency compo-
nents in DWT and the residual terms in the Seasonal_decompose approach. Therefore, the
rainfall data from station 57348 are used as an example, and the SVR model is applied to
predict the D1 subsequence with the highest frequency in DWT and the residual term of
Seasonal_decompose at the same time. Then, we compare the distribution characteristics
and prediction results for components in detail, as shown in Figure 9. The prediction results
of D1 fit the trend of the actual values, and good prediction performance is observed; in
contrast, the prediction results based on the residual terms are poor, and variations in the
components are not well predicted. D1 yields the smallest prediction error, with RMSE,
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MAE, and R2 values of 4.3486, 2.5343, and 0.6754, respectively. These findings indicate why
the DSP model is superior to the SSP model in terms of peak rainfall prediction.
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3.3. The DSP Model Displays Outstanding Stability

To evaluate the generalization ability of the DSP model, we conducted prediction
experiments with data from stations in different climate zones. Additionally, we compared
the prediction results of the DSP model with those of three baseline models. Figure 10
compares the predicted and true rainfall values at each station. The DSP model fits the
general trend of data at different stations, and the prediction results are in good agreement
with the actual values. The station-scale prediction accuracy metrics for the four models are
given in Table 7. The ranges of RMSE and MAE of the DSP model are 1.24364 to 7.3116 and
0.5197 to 6.1431, respectively, and most R2 values range from 0.6217 to 0.7518. We select
R2 as the evaluation index to further evaluate the performance of each model in different
cases of rainfall prediction (see Figure 11). We found that most of the R2 values of the
DSP model fluctuated slightly while remaining high at different stations. The R2 values
of the SSP model were not stable and fluctuated considerably. Additionally, the R2 values
of the Prophet and SVR models were consistently low. Therefore, compared with other
baseline models, the DSP model displays the stronger generalization ability and yields
stable prediction results.
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Table 7. Comparison of the prediction accuracy evaluation indexes for the different models at five
stations in different climate regions.

Station Metric DSP SSP SVR Prophet

59855
RMSE 7.3116 13.5961 19.9489 13.0716
MAE 3.3035 7.4914 15.2908 4.4126

R2 0.6632 −0.1647 −1.5074 −0.0766

56018
RMSE 1.2364 2.0519 2.9356 1.9336
MAE 0.5197 0.9194 2.7219 0.9101

R2 0.6330 −0.0107 −1.0688 0.1024

58345
RMSE 8.8391 13.2151 17.0824 13.7878
MAE 6.1431 8.0558 12.7209 7.1224

R2 0.6217 0.1543 −0.4131 0.0794

54823
RMSE 4.8553 4.9367 9.7700 5.7756
MAE 2.3643 2.8757 8.3983 2.4138

R2 0.3214 0.2985 −1.7476 0.0398

57348
RMSE 6.1704 9.1679 14.1779 12.1362
MAE 3.2901 4.3931 9.5772 4.9510

R2 0.7518 0.4492 −0.3061 0.0348
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4. Discussion
4.1. The DSP Model Achieves Accurate Forecasts of Rainfall Time Series

Since rainfall time series contain both periodic and nonstationary complex variations,
hybrid methods are beneficial for overcoming the limitations of rainfall prediction [43].
Therefore, we propose a coupled DSP model for rainfall time series prediction and obtain
satisfactory results (Figures 6 and 7). Figure 8 shows that the DSP model exhibits the best
prediction performance. The model accurately predicted the basic trends of the rainfall
series and peak rainfall, and the predicted values generally matched the actual values. The
Prophet model effectively fit the overall trend of the rainfall series, and the prediction curve
was relatively flat, but the results of peak rainfall prediction were poor. The SVR model
can capture the variation characteristics of rainfall series, but it is influenced by the peak
rainfall, and the predicted values in some periods with little rainfall are much higher than
the true values.

In previous studies, Malik et al. [44] used the SVR model to predict the effective
drought index. Adaryani et al. [4] forecasted short-term rainfall with particle swarm
optimization (PSO) and SVR. Hossain et al. [45] found that the Prophet model performed
with better accuracy. The performance of these single models is recognized, but they cannot
fit all features of hydrometeorological series. For example, the Prophet model can effectively
fit the trend and period variations of time series, but the lack of consideration of residual
autocorrelation leads to its poor fitting ability for complex models [42]. The SVR model
displays good generalization ability and is suitable for nonlinear prediction; however, it
has limitations for general data. By contrast, the DSP model successfully decomposes the
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periodic and nonstationary features in the rainfall time series using DWT and preserves
them in different subseries. Moreover, the advantages of SVR and the Prophet model are
combined in the DSP model to fit and predict subseries containing various features. Overall,
the DSP model effectively fits the periodic and nonstationary factors in rainfall time series
and achieves accurate predictions of rainfall time series.

4.2. The DSP Model Effectively Captures the Detailed Features of Rainfall Time Series

Achieving reliable predictions of rainfall time series is challenging, especially in the
context of peak rainfall prediction [46]. Figure 8 illustrates the good prediction accuracy of
the DSP model and the SSP model as well as the superior peak rainfall prediction capability
of the DSP model. Based on the application of different data decomposition methods,
Figure 9 compares the distribution characteristics and prediction effects of the components
of the two models. The components obtained in DWT are generally associated with a single
frequency and yield better prediction results than those in other cases. Notably, DWT is
used to decompose time series while filtering some frequencies, making each component
smoother. The excellent scale decomposition ability of DWT reduces the difficulty of
fitting each component used in machine learning. After the extraction of trend and period
terms, the residual terms in the Seasonal_decompose method are characterized by strong
randomness and instability, thus limiting the performance of subsequent prediction models.
Therefore, the DSP model based on DWT for data decomposition can best capture the
detailed features of rainfall sequences and achieve accurate predictions of peak rainfall.

4.3. Generalization of DSP Models

Because the distribution characteristics of rainfall time series are influenced by the
climate type, variations in the rainfall amplitude and frequency are impactful. Therefore,
the rainfall time series from different climate types have different variation characteristics,
affecting the results of prediction models. Multistation experiments involving the DSP
model demonstrated its stable prediction ability (Figure 9). Table 5 and Figure 10 show
that the DSP model yields high prediction accuracy at most stations. Only at station 54823
is there a significant decrease in accuracy, with an R2 of 0.3214. Although the prediction
accuracy at this station is low, the trend of the prediction results is similar to the actual
trend, and the predictions provide reference significance to some extent. At different
stations, the DSP model produced reliable predictions, and the prediction accuracy was
higher than that of the compared models. The above results fully verify that the DSP model
provides outstanding prediction accuracy and stability in applications involving rainfall
time series prediction. For other fields (e.g., the energy field, transportation field, and
others), the complex time series of interest have the same characteristics as rainfall time
series and contain both periodic and nonlinear variations. Theoretically, the DSP model can
potentially achieve good performance in these fields and is worthy of further evaluation
and application.

4.4. Disadvantages and Direction

The selection of the wavelet basis function and decomposition scale influences the
fitting results during machine learning and the prediction performance of the DSP model.
However, in this study, the wavelet basis function and decomposition level used in DWT
are based on the previous study. Since we have yet to optimize the parameters of DWT, we
cannot guarantee optimal decomposition. As shown in Figure 11, the prediction accuracy
of the DSP model decreased for station 54823. This station is located in an area with a
temperate monsoon climate, and the rainfall frequency is 20.7%, much lower than that
at other stations. Thus, the DWT parameters used in this paper may not be suitable for
station 54823 based on its unique rainfall data characteristics, leading to the failure of
the DWT to achieve effective feature extraction and decomposition and thus affecting
the prediction accuracy of the DSP model. Moreover, the prediction accuracy of the A1
component in Figure 5 is low, and there is a possibility that some high-frequency signals in
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the A1 component are not filtered, which affects the periodic fitting of the Prophet model.
In subsequent work, the selection of DWT wavelet basis functions and decomposition
levels for rainfall time series can be optimized with different features to adequately extract
and decompose the different frequencies and characteristics of time series. The application
of DWT decomposition after parameter optimization can further enhance machine learning
and improve the accuracy and stability of rainfall time series prediction.

5. Conclusions

Accurate rainfall prediction is important to people’s production and life. The ability of
the DWT-based coupled models to improve the accuracy of rainfall time series prediction
is worthy of further study. In this paper, the DSP model is introduced for rainfall time
series prediction. First, the DWT method is used to decompose the rainfall time series into
high-frequency and low-frequency components. Then, the SVR model is used to predict the
high-frequency components, and the Prophet model is used to predict the low-frequency
components. Finally, the prediction results for each component are summed to obtain the
final rainfall predictions.

The results of case studies show that the DSP model can accurately predict rainfall
time series, with RMSE, MAE, and R2 values of 6.17, 3.29, and 0.75, respectively. The DSP
model significantly improves the prediction accuracy, and the results are compared with
those of the three baseline methods. Notably, the performances of the methods rank as
follows: DSP > SSP > Prophet > SVR. Compared with the SSP model, the RMSE and MAE
of the DSP model are reduced by 46.3% and 55.9%, respectively, and R2 is improved by
67.4%, verifying that the DSP model is an excellent prediction model. Moreover, the DSP
model displays excellent prediction capability for peak rainfall events. The detailed feature
prediction results of the DSP model display well, with RMSE = 4.35, MAE = 2.53, and
R2 = 0.68. The DSP model also exhibits good generalization capability. The model achieves
reliable predictions of rainfall time series with different features. The calculated RMSEs
ranged from 1.24 to 7.31, the MAEs ranged from 0.52 to 6.14, and most R2 values ranged
from 0.62 to 0.75. The DSP model can be applied in other fields in which time series are also
periodic and nonstationary (e.g., the transportation and energy fields). Thus, the prediction
performance of the DSP model deserves further study in additional applications.
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