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Abstract: The cultivation of the Mediterranean mussel, Mytilus galloprovincialis Lamarck, 1819,
has been tested in an innovative Integrated Multitrophic Aquaculture system (IMTA) in the Mar
Grande of Taranto, as part of the EU-funded Remedialife project. This farming method could solve
several problems including the low growth rate in mesotrophic environments while reducing the
environmental impact of fish mariculture. Three productive cycles have been carried out. The first
(2018–2019, traditional experiment) was conducted in three long lines around six cages of the fish
farm in order to evaluate total mussel production under the innovative IMTA system and quality
for human consumption by analyzing the concentration of culturable heterotrophic bacteria, total
and fecal coliforms, Escherichia coli and Salmonella spp. in mussel tissues. In addition, 17 polycyclic
aromatic hydrocarbons (PAHs), including 16 EPA priority compounds and seven polychlorinated
biphenyls (PCBs), which are indicators of PCB contamination in the environment, were analyzed
using gas chromatography in conjunction with a mass spectrometer. The second cycle (2020–2021,
horizontal distance experiment) aimed to test the influence of fish cages on mussel growth by
placing mussels near and far from the fish cages. The third cycle (2021–2022, vertical distance
experiment) aimed to overcome the phenomenon of “heat waves” that can occur in the Mar Grande
of Taranto during summer by testing the growth performance of mussels at two different depths
(1 and 12 m). The following parameters were measured: Shell Length, L (mm); Shell Dry Weight,
SDW (g); Flesh Dry Weight, FDW (g); Condition Index, IC = FDW/SDW. The results showed that
the best growth performance was obtained near the fish cages and at a depth of 12 m. Moreover, the
indicators of microbial contamination and concentrations of chemical compounds analyzed in mussel
tissues cultured under the innovative IMTA system were in compliance with the reference values of
European regulations.

Keywords: mariculture; mussel farm; IMTA system; mesotrophic condition; heat waves

1. Introduction

The Taranto Sea system is one of the most important and human-influenced coastal
marine ecosystems in the Apulia region (southern Italy) [1]. It consists of two communi-
cating basins characterized by different degrees of confinement: the Mar Grande, directly
connected to the Gulf of Taranto (Ionian Sea) and the Mar Piccolo, the lagoon-like inland
basin with limited water circulation and low hydrodynamics [1–3]. Taranto, also called
“Città dei due Mari” (City of the two Seas) due to its location between the two basins, has a
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deep and ancient connection with the sea. Mussel farming has been practiced for centuries,
especially in the Mar Piccolo, and the local product was renowned worldwide for its quality.
Taranto was one of the most important areas in Europe for the production of Mediterranean
mussels, Mytilus galloprovincialis Lamarck, 1819, and mussel farming was one of the main
economic activities of the local population [4]. However, in the last three decades, mussel
production in Taranto has declined greatly, in line with the general European downward
trend [5]. Previous studies from other Mediterranean regions have cited disease or a lack of
mussel seed as the main causes of this decline [6,7], but global warming and low profitabil-
ity may also have played a role [8–11]. In the era of climate change exceptional events such
as “marine heat waves” (i.e., prolonged periods, >5 days, of abnormally high seawater
temperatures) are greatly increasing in both frequency and magnitude [12]. Marine heat
waves are detrimental to marine ecosystems and can lead to mass mortality of organisms
when the individual thermal tolerance limits are exceeded [13]. Therefore, benthic sessile
species are at high risk due to their immobility [11], and mussel mass mortality events that
may be related to high temperatures were recently reported [14–17].

In this context, it is important to know the history of the development of mussel
farming in Italy and Taranto. Traditionally, mussel farming was mainly carried out in
lagoons and ponds. These highly productive environments were used for a long time
because of their easy accessibility. However, when the spatial and biological capacity
was exhausted, the need to move to the open sea became apparent [18]. The first offshore
installations were built in the Gulf of Trieste more than 50 years ago, and the most significant
offshore effort was made by France in the 1070s. However, several studies in the Adriatic
Sea have shown that offshore mussel farms have a minimal negative impact on zoobenthic
communities [19–22], and the oligotrophic nature of the Mediterranean Sea and the high
maintenance costs of offshore farms have limited their expansion. Currently, most mussel
farms off the Italian coast are located in the Adriatic Sea, which is still a rather eutrophic
basin, especially in the northern part near the Po Delta.

Traditional mussel farming in Taranto was artisanal and mussels were suspended with
wooden stakes. In the 1990s, the stakes were replaced with long lines, which improved
mussel production. Mussel farming took place mainly in the inland basin, the Mar Piccolo.
The presence of 34 underwater freshwater springs (known locally as “Citri”) gives the
Mar piccolo its lagoon-like characteristics and provides an ideal growing environment for
mussels [1,4]. However, the Mar Piccolo is about half as deep as the Mar Grande and has
less water exchange [2,3], therefore, it is more likely to experience recurrent algal blooms,
hypoxic crises and marine heat waves, especially in summer [4,16]. During these events,
mussels are temporarily relocated to the Mar Grande [4]. Since 2006, after the extension
of the concessions to further expand the farming area, an increase in production would
have been expected, but instead a decrease has been observed, including in the quality
of the mussels. This was most likely due to the relocation of some sewage discharges
out of the Mar Piccolo to reduce bacterial load, which, in turn, reshaped the trophism of
the system [4,23] as well as the increasing pollution, especially by organic compounds,
mainly due to navy and industrial activities [24]. Furthermore, in recent years (2012, 2015
and 2017), the Taranto area suffered several mass mortalities of mussels due to recurring
summer heat waves [4,16]. In July 2015, for example, the water temperature peaked to
30.4 ◦C and remained high for a month, and mussels living near the surface were the first
to die, followed by those that grew at higher depth [16].

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are
among the priority organic compounds widespread in the marine environment. They have
attracted considerable attention due to their high toxicity, persistence in the environment
and the ability to bioaccumulate in several organisms. Levels of these pollutants were
found in benthic, demersal and pelagic fish. Fish is a suitable indicator for environmental
pollution monitoring because they concentrate pollutants in their tissues directly from
water, but also through their diet, thus enabling the assessment of the transfer of pollutants
through the trophic web [25,26]. These xenobiotics have been also recorded in crustaceans
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and shellfish collected in many Mediterranean areas, especially in polluted coastal en-
vironments impacted by anthropogenic activities [27–32]. In particular, in the Southern
Ionian Sea consistent levels of PAHs and PCBs were detected in edible organisms such as
bivalves, gastropods, echinoderms and fish [33–35]. Mussels can represent a food at risk of
contamination because are filter-feeding organisms with high bioaccumulation and low
biotransformation potential for both organic and inorganic contaminants [36,37].

Since 2011, the Prevention Department of the Taranto Local Health Authority has been
carrying out a monitoring plan to assess the contamination with organic compounds of
M. galloprovincialis farmed in the Mar Piccolo and Mar Grande. The results of this study
showed that results in the levels of PCDD/Fs and DL-PCBs in mussels from Mar Piccolo
during summer were above regulatory levels. This prompted the Apulia region to adopt
the Regional Ordinance n. 188/2016 to prohibit the removal and handling of commercial
mussels in the Mar Piccolo, with the only possibility of transferring juvenile mussels to other
basins such as the Mar Grande. Although the Mar Grande is a mesotrophic area, it is not
suitable for the fast growth of mussels and is used mainly for the purification stage before
marketing. This is causing mussel farmers to switch to more profitable fish farming, which,
however, is more harmful to the environment [38,39], especially when practiced in confined
areas. The negative impact on the environment mainly comes from fish waste (e.g., feces
and uneaten feed), whose long-term accumulation enriches the environment around fish
cages of both inorganic and organic matter [40]. Therefore, it would be desirable to combine
the co-culture of mussels and fish in an Integrated Multitrophic Aquaculture system (IMTA),
where the filter feeders can mitigate the effects of fish monoculture while assimilating fish
waste for their own growth [41,42]. Bivalves are the most commonly used extractive species
in IMTA systems, due to their economic value, especially in northern Europe [43], while
other highly efficient filter feeders are underexploited [44]. Although IMTA systems are
less developed in the Mediterranean Sea, several studies carried out recently report the
integration of mussel farming to IMTA also in Mediterranean areas [45–48]. However, the
exclusive use of bivalves is not considered an appropriate tool to reduce the environmental
impact of fish aquaculture [49].

On account of these considerations, we tested the cultivation of the Mediterranean
mussel, M. galloprovincialis, under an innovative IMTA system combining fish, mussels
and a new group of bio-remediators such as sponges, polychaetes and macroalgae to
improve the overall bio-remediating performance [44]. The aim was to study the growth
performance of mussels in such a mariculture scenario and to evaluate the possibility
of obtaining a healthy product for human consumption, overcoming the mesotrophic
conditions and summer heat waves that affect the growth of M. galloprovincialis, while
reducing the environmental impact of fish farming.

2. Materials and Methods
2.1. Study Area

The study area is located on the southwestern side of the Mar Grande of Taranto
(40◦25′56′′ N;17◦14′19′′ E) (Ionian Sea), which is part of one of the most important coastal
marine ecosystems along the Apulian coast (Figure 1). The Mar Grande of Taranto is a
semi-enclosed basin connected to the Gulf of Taranto through three artificial dams. The
temperature shows seasonal variations typical of the coastal Ionian regions ranging between
14 ◦C in winter and 28 ◦C in summer, while the salinity is about 38 and is almost uniform
over the year. The investigation was performed in the aquaculture plant Maricoltura Mar
Grande, hosting the experimentation of the innovative IMTA system.
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Figure 1. Map of the study area showing the location of the IMTA system and mussel farming sites.

The aquaculture plant is in a semi-confined area of the Mar Grande, covering a surface
of 0.06 Km2 and positioned at about 600 m away from the coast. It consists of 15 cages
(Ø 22 m), working at a depth ranging from 7 to 12 m and producing about 100 tons·year−1

of European seabass Dicentrarchus labrax (Linnaeus, 1758) or sea bream Sparus aurata,
Linnaeus, 1758.

The Mar Grande of Taranto is affected by intense M. galloprovincialis farming, but
mainly for the purification stage before marketing. The species is also naturally abundant
in all the artificial hard bottoms in the area and mussel spats are abundant each year.

2.2. Field Work: Sampling and Processing

One of the goals of the Remedia Life project was to estimate the mitigation of aquacul-
ture waste using bioremediating organisms. The results of the ex ante monitoring carried
out in the study area (Table 1) showed which part of the aquaculture plant was most
impacted in terms of bacterial, inorganic and organic compounds, specific richness of
soft-bottom macrobenthic communities and fouling taxonomic structure [50].
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Table 1. Environmental indices and bacterial contamination values measured in the study area during
the ex ante monitoring [50].

Site AMBI
(Status)

M-AMBI
(Status)

Microtox STI
(%Bioluminescence

Inhibition)

Escherichia coli
(MPN/g)

Salmonella spp.
(+/−)

IMTA-
converted 4.81 (Poor) 0.41

(Moderate)
0.33 ± 0.01

(Hormensis) 40.0 ± 9.4 Absent

Control 2.78 (Good) 0.95
(High)

0.13 ± 0.01
(Hormensis) 40.0 ± 9.4 Absent

Notes: Reported abbreviations: AMBI, AZTI’s Marine Biotic Index; M-AMBI, Multivariate-AZTI’s Marine Biotic
Index; STI, Sediment Interstitial Water; MPN/g, Most Probable Number/1 g of sediment.

The most impacted part of the aquaculture plant was converted to the IMTA system
(Table 1) by adding macroinvertebrates and seaweed as bio-remediating organisms on
three long lines around fish cages (Figure 1). The long lines were supported by buoys to
prevent the structure from sinking as the biomass grew. Each space (3 m long) between two
successive buoys formed the culture “chamber” that housed the extractive species modules:
the macroinvertebrate modules were suspended vertically, while the macroalgal modules
were arranged horizontally (see [44] for a complete description of the IMTA scheme).

Three productive cycles were conducted. In the first cycle (2018–2019), referred to as
the “traditional experiment”, a total of 307 mussel nets (4 m long) were attached to the
three long lines around the fish cages. Juveniles from the 2018 mussel seed collection were
placed in the nets in November 2018 (T0-1) and suspended on long lines at 1 m depth. The
traditional farming method was followed for mussel growth until the end of the production
cycle (July 2019, T7-1).

A second cycle, called the “horizontal distance experiment”, was planned for the years
2020–2021 to determine whether the growth rate would be affected by the presence of
fish cages (greater food availability), and to determine whether the mussels would reach
the required size for marketing. In this case, the experiment was conducted on a small
scale, considering only 16 mussel nets at two different sites. In November 2020 (T0-2),
16 nets (1 m long) were placed at site V, near the aquaculture plant (Figure 1). The growth
performance of these mussels was compared to that of mussels from the same initial stock
placed in 16 nets at site P, approximately 300 m from the aquaculture plant (Figure 1).

A third cycle (2021–2022), called the “vertical distance experiment”, was then planned
to test the hypothesis of higher growth performance in relation to the water depth, com-
bined with obtaining the required size for sale. As in the second cycle, the experiment was
tested on a small scale but only at site V, near the aquaculture plant. In November 2021
(T0-3), 16 nets (1 m long) were placed at 1 m depth (Surface), as in the traditional farming
method, whilst 16 were maintained at 12 m (Deep). An overview of the three experiments
is reported in Table 2.

Table 2. Overview table of the mussel growth experiments.

Production
Cycle Experiment Number of

Mussel Nets
Study
Period Site Distance from

the Cages Depth

2018/2019 Traditional 307 T0–T7 (1) V 1 m 1 m
2020/2021 Horizontal distance 16 T0–T6 (2) V/P 1 m/300 m 1 m
2021/2022 Vertical distance 16 T0–T7 (3) V 1 m 1 m/12 m

2.3. Microbiological Analyses

Samples for microbiological analysis were collected in July 2019 at the end of the
first cycle of production. M. galloprovincialis samples (three replicates each consisting of
40 specimens) were received in the microbiology laboratory within 4 h of collection (stored
at about 4 ◦C) and then subjected to microbiological analyses. In particular, mussels were
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washed, scrubbed free of dirt and shucked with a sterile knife [51]. Meats and liquors
of each replicate were homogenized for 90 s in a sterile blender (Waring Commercial,
Stamford, CT, USA) then filtered through sterile gauze and diluted with sterile seawater
(filtered through 0.2 µm filters, Millipore, Burlington, MA, USA) to obtain a 1:10 (w/v)
dilution immediately added to the appropriate medium.

For enumeration of culturable heterotrophic bacteria, mussel homogenate and serial
dilutions of each replicate were plated in triplicates onto Bacto Marine Agar 2216 (Difco,
Detroit, MI, USA) (seeding with 0.1 mL). The plates were incubated at 22 ◦C over 7 days. At
the end of the incubation period, all colonies were counted through a 10×magnifying glass.
Total culturable bacteria at 37 ◦C (including human potential pathogens) in the samples
were determined by plating 0.1 mL of each sample and serial dilutions in triplicates on
Bacto Plate Count Agar (Difco, Detroit, MI, USA). After incubation for 48 h at 37 ◦C, the
growing CFU were counted.

The enumeration of Escherichia coli in bivalve samples was performed by using the
Most Probable Number (MPN) method in accordance with the EU reference methods [51,52].
Briefly, 75–100 g of flesh and intervalvular liquid were added to 2 parts of Peptone water
(Oxoid, Basingstoke, UK) and homogenized by a Stomacher for 2.5 min. The homogenate
was added to Peptone water to reach a final 1:10 dilution. Aliquots from this diluted
homogenate were transferred to tubes with Mineral Modified Glutamate Medium (MMGB)
(Oxoid, Basingstoke, UK) [53] by employing the method using the standard five-tube
method of 10-fold dilution. The tubes were incubated aerobically at 37 ± 1 ◦C for 24 ± 2 h.
Positive MMGB tubes changed color from purple to yellow and subcultures from these
tubes were plated on chromogenic Tryptone Bile X-Glucuronide Agar (TBX) plates (Oxoid,
Basingstoke, UK) incubated aerobically at 44 ◦C for 20 h. At the end of incubation, the
grown blue-green colonies were recognized as presumptive E. coli [54]. The concentration
of E. coli/100 g was estimated by counting the number of positive tubes giving the growth
of blue-green colonies on TBX agar by using the MPN table reported in [52].

Coliform bacteria (total and fecal coliforms) concentrations were determined by using
the Most Probable Number (MPN) method and the three-tube MPN series in accordance
with the EU reference methods [55] by using Lauryl sulfate tryptose broth (Oxoid, Bas-
ingstoke, UK) in the presumptive test (incubation at 37 ◦C for 24–48 h). All presumptive
positive (gas production) tubes were transferred to tubes containing brilliant green lactose
bile broth and incubated for 24–48 h at 37 ◦C (confirmatory test). The number of test tubes
giving positive results (gas production) was recorded and a table for determination of Most
Probable Numbers was used.

Salmonella spp. were determined in accordance with [56]. Briefly, 25 g of each sample
were homogenized in 225 mL of buffered peptone water (BPW) (Oxoid, Basingstoke, UK)
and incubated for 18 ± 2 h at 37 ± 1 ◦C. Thereafter, an aliquot of the pre-enrichment
was inoculated into two selective broths, Rappaport–Vassiliadis medium with soya (RVS
broth) (Oxoid, Basingstoke, UK) and Muller-Kauffmann tetrathionate/novobiocin broth
(MKTTn broth) (Oxoid, Basingstoke, UK), incubated at 41.5 ± 1 ◦C for 24 h ± 3 h and
37 ± 1 ◦C for 24 ± 3 h, respectively. Then, after incubation, sub-cultured from RVS and
MKTTn broths were plated onto the surface of one Xylose-Lysine-Desoxycholate (XLD)
(Oxoid, Basingstoke, UK) agar plates and incubated at 37 ◦C for 24 h. Suspected grown
colonies were confirmed biochemically (triple sugar iron [TSI] agar, urea agar, l-lysine
decarboxylation medium and indole reaction) and by serological tests.

2.4. Chemical Analyses

As for the microbiological analysis, chemical analysis was relative to the first pro-
ductive cycle. The whole mussel tissues (30 specimens for each of the 3 replicates) were
homogenized (T 25 basic ULTRA-TURRAX (IKA®—Werke GmbH & Co. KG, Staufen, Ger-
many) and freeze-dried (LIO 5P Cinquepascal S.r.L., Milan, Italy). Before lyophilization, an
aliquot of the sample was used for dry weight calculation by oven drying at 105 ◦C until con-
stant weight. For polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls
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(PCBs) determinations, 2 g of freeze-dried mussels were extracted by a microwave system
(MARS-X C EM Corporation, Matthews, NC) with an appropriate solvent mix solution
(cyclohexane/acetone,1:1 v/v) and purified by Gel Permeation Chromatography Clean-up
system (AZURA, Knauer, Berlin, Germany). Analyses were performed by gas chromatog-
raphy coupled with a mass spectrometer (Agilent 7890A gas chromatograph—Agilent
975C inert mass spectrometer, Agilent Technologies, inc. Santa Clara, CA, USA). A total
of 17 PAHs included 16 Priority EPA compounds (naphthalene, acenaphthylene, acenaph-
thene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chry-
sene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, benzo[g,h,i]perylene,
indeno[1,2,3-c,d]pyrene and dibenz[a,h]anthracene) more benzo[J]fluoranthene and seven
PCBs congeners (IUPAC No. 28, 52, 101, 118, 138, 153 and 180), considered as indicators of
environmental PCB contamination, were analyzed according to USEPA Method 8270E [57].
Major information on analytical procedures was reported in [58]. PAHs and PCBs stan-
dards, deuterated internal and surrogate standards, were purchased from Merck© as well
as all chromatographic grade solvents (Merck s.p.a., Milan, Italy). The recoveries, deter-
mined by spiking the appropriate number of standard mixtures to mussel, were 60–110
and 70–120% for PAHs and PCBs, respectively. The method detection limit (MDL), based
on a signal-to-noise ratio of 3:1, ranged from 0.6 to 2 µg/kg and 0.2 to 0.4 on a dry weight
basis for PAHs and PCBs, respectively.

2.5. Growth Parameter Analysis

At the end of the traditional experiment (July 2019), an estimate of total mussel produc-
tion was calculated. During the horizontal and vertical distance experiments, measurements
of growth performance were taken. In the horizontal distance experiment, 4 mussel ropes
were randomly sampled each time (T1-2, January 2021; T2-2, February 2021; T4-2, April
2021; T6-2, June 2021) for each site (V, P) and 5 individuals were considered for each mussel
rope. The following parameters were measured: Shell Length, L (cm); Shell Dry Weight,
SDW (g); Flesh Dry Weight, FDW (g); Condition Index, IC = FDW/SDW [59]. The same
sampling design was followed during the vertical distance experiment (T2-3, February
2022; T4-3, April 2022; T6-3, June 2022; T7-3, July 2022) for each depth (Surface, Deep).

Shapiro–Wilk test (Horizontal distance experiment, L: W = 0.91, p = 0.08; SDW:
W = 0.97, p = 0.78; FDW: W = 0.96, p = 0.64; CI: W = 0.92, p = 0.09; Vertical distance
experiment, L: W = 0.95, p = 0.44; SDW: W = 0.95, p = 0.34; FDW: W = 0.95, p = 0.43; CI:
W = 0.94, p = 0.23) and Levene’s test were performed to verify normal distribution of
data and homogeneity of variances, respectively. When the hypothesis of homogeneity
of variances was not met, the Welch t-test was applied. Student’s t-test (n = 20, df = 38,
t-value = 2.02) was performed to test for differences in mussel growth performance between
the P and V sites during the horizontal distance experiment and between the “Surface”
and “Depth” groups during the vertical distance test by analyzing the increase in Shell
Length (L), Shell Dry Weight (SDW) and Flesh Dry Weight (FDW) between T6-2/T7-3
and T0-2/T0-3, while only the final stage (T6-2/T7-3) was considered for the Condition
Index (IC). Significance was set at a critical level of 95% (p < 0.05). All statistical tests were
performed using STATISTICA 10.0 software package.

3. Results
3.1. Growth Performance

The total macroinvertebrate biomass for the three productive cycles (Table 2) was
about 800 kg for polychaetes, 258 kg of sponges and about 1300 kg of macroalgae. For the
traditional experiment, the mussel production at the end of the cycle was about 3.5 tons
including the weight of the shells. However, no measurements of growth performance
were made during the first cycle of production, so no information on the condition index
can be provided. After these apparently good results, we started with the second cycle
in November 2020 to test the hypothesis of higher growth performance near fish cages.
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Figure 2 shows the time trend of the mussel growth parameters during the horizontal
distance experiment.
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Figure 2. Time trends of mussel growth parameters Shell Length (A), Shell Dry Weight (B), Flesh Dry
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The mussels cultured at site P (far) were found to have smaller values of L, SDW, FDW
and IC than those at site V (near) at all sampling times after T1-2 (Figure 2). Moreover, the
increase in L, SDW and FDW between T6-2 and T0-2 was significantly higher (Table 3) in
mussels grown at site V than in those at site P. The same was true for the IC at T6-2 (Table 3).
However, mussels from both sites did not reach the required IC value for sale as they died
due to the high temperatures recorded in the Mar Grande in July 2021 (Figure 3).

Table 3. Results of Student t-test on Condition Index (CI) in June 2021 and July 2022 (T6-2, T7-3)
and increase in Shell Length (L), Shell Dry Weight (SDW) and Flesh Dry Weight (FDW) between
T6-2/T7-3 and T0-2/T0-3 in mussels, grown near (Site V) and far (Site P) from the fish cages during
the horizontal distance experiment and at site V at 1 m (Surface) and 12 m (Depth) depth during the
vertical distance experiment.

Horizontal Distance Vertical Distance

Growth
Parameter Site V Site P df t p Surface Depth df t p

L increase (cm) 2.19 ± 0.48 1.27 ± 0.39 37 6.64 <0.001 2.06 ± 0.52 2.44 ± 0.34 32 2.77 0.009
SDW increase (g) 3.51 ± 0.94 2.09 ± 0.68 35 5.47 <0.001 4.03 ± 1.53 4.59 ± 1.10 34 1.33 0.190
FDW increase (g) 0.42 ± 0.12 0.19 ± 0.06 27 7.85 <0.001 0.45 ± 0.24 0.74 ± 0.17 34 4.31 <0.001

CI 0.11 ± 0.02 0.09 ± 0.02 38 4.13 <0.001 0.11 ± 0.03 0.15 ± 0.03 38 5.08 <0.001

Note: Significant p-values are given in italics.
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The experiment to test the possibility of obtaining a good condition index for mussels
was repeated in the third cycle only at site V near the fish cages, and mussel growth was
compared in relation to water depth (1 m vs. 12 m). During the colder months (T2-3),
mussels cultured at surface showed higher values than deep-grown mussels in all the
parameters under consideration (Figure 4). After April 2022 (T4-3), when only SDW and
FDW values remained higher in surface-grown mussels, a reverse trend was observed in
all parameters being higher in deep-grown mussels (Figure 4). Moreover, during warmer
months (T6-3, T7-3), a slight reduction in all parameters was observed in surface-grown
mussels preventing them from reaching the required IC for market (Figure 4). By contrast,
at T7-3 deep-grown mussels reached the required IC for sale, which was also found to be
significantly higher than that of surface-grown mussels (Table 3). Furthermore, mussels
placed at higher depth had significantly higher values; also, L and FDW increase the
mussels placed at more surface depth, while the increase in SDW showed no significant
differences (Table 3).

3.2. Microbiology

The quality of the product was determined on mussels produced during the first
cycle of production by analyzing microbiological parameters as well as PAHs and PCBs
concentrations. Data on heavy metals are available in [60].

M. galloprovincialis samples contained a mean bacterial concentration of 17 ± 1.2 × 103

CFU g−1 at 22 ◦C and 2.3 ± 0.2 × 103 CFU g−1 at 37 ◦C. The values of the measured
microbial pollution indicators are shown in Table 4. Total coliforms and fecal coliforms
reached the value of 430 MPN/100 g. The concentration of Escherichia coli was very low
and Salmonella spp. was absent.

Table 4. E. coli (MPN/100 g) and Salmonella spp. (presence/absence) results in mussel samples.

Samples Total Coliforms Fecal Coliforms Escherichia coli Salmonella spp.

MPN/100 g MPN/100 g MPN/100 g Presence/Absence

Mytilus
galloprovincialis 430 430 18 Absence
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3.3. PAHs and PCBs Concentration

PAHs and PCBs compounds in mussels reached, respectively, a total concentration
of 46 ± 6.5 (Mean value ± SD) and 11 ± 1.4 µg/kg wet weight (ww). In Figure 5, the
distributions of all PAHs and PCBs are reported. In particular, B[a]P and the sum of
B[a]A, Cry, B[b]F and B[a] (∑4PAHs), considered markers for the occurrence and effect of
carcinogenic PAHs in food, showed concentrations of 2.9 ± 0.3 and 17.4 ±1.7 µg/kg ww,
respectively, while the sum of PCB 28, 52, 101, 138, 153 and 180 (∑6 PCB), representative of
non-dioxin-like PCBs contamination in food, was 9.6 ±1.2 µg/kg ww.

Water 2023, 15, x FOR PEER REVIEW 10 of 17 
 

 

CI 0.11 ± 0.02 0.09 ± 0.02 38 4.13 <0.001 0.11 ± 0.03 0.15 ± 0.03 38 5.08 <0.001 
Note: Significant p-values are given in italics. 

3.2. Microbiology 
The quality of the product was determined on mussels produced during the first 

cycle of production by analyzing microbiological parameters as well as PAHs and PCBs 
concentrations. Data on heavy metals are available in [60]. 

M. galloprovincialis samples contained a mean bacterial concentration of 17 ± 1.2 × 103 
CFU g−1 at 22 °C and 2.3 ± 0.2 × 103 CFU g−1 at 37 °C. The values of the measured microbial 
pollution indicators are shown in Table 4. Total coliforms and fecal coliforms reached the 
value of 430 MPN/100 g. The concentration of Escherichia coli was very low and Salmonella 
spp. was absent. 

Table 4. E. coli (MPN/100 g) and Salmonella spp. (presence/absence) results in mussel samples. 

Samples Total Coliforms Fecal Coliforms Escherichia coli Salmonella spp. 
 MPN/100 g MPN/100 g MPN/100 g Presence/Absence  

Mytilus galloprovincialis 430 430 18 Absence 

3.3. PAHs and PCBs Concentration 
PAHs and PCBs compounds in mussels reached, respectively, a total concentration 

of 46 ± 6.5 (Mean value ± SD) and 11 ± 1.4 µg/kg wet weight (ww). In Figure 5, the 
distributions of all PAHs and PCBs are reported. In particular, B[a]P and the sum of B[a]A, 
Cry, B[b]F and B[a] (∑4PAHs), considered markers for the occurrence and effect of 
carcinogenic PAHs in food, showed concentrations of 2.9 ± 0.3 and 17.4 ±1.7 µg/kg ww, 
respectively, while the sum of PCB 28, 52, 101, 138, 153 and 180 (∑6 PCB), representative 
of non-dioxin-like PCBs contamination in food, was 9.6 ±1.2 µg/kg ww. 

 
Figure 5. PAH and PCB compounds in mussels. PAHs (polycyclic aromatic hydrocarbons); PCBs 
(polychlorobiphenyls compounds); Nap = naphthalene, Acy = acenaphthylene, Ace = acenaphthene, 
Fluo = fluorene, Phen = phenanthrene, Ant = anthracene, Flt = fluoranthene, Pyr = pyrene, B[a]A = 
benzo[a]anthracene, Cry = chrysene, B[b]F = benzo[b]fluoranthene, B[k]F = benzo[k]fluoranthene, 
B[j]F = benzo[j]fluoranthene, B[a]P = benzo[a]pyrene, D[a,h]A = dibenz[a,h]anthracene, IP = 
indeno[1,2,3-c,d]pyrene and B[g,h,i]P = benzo[g,h,i]perylene. Results are expressed on a wet weight 
(ww) basis considering a wet/dry ratio of 5.0. 

Figure 5. PAH and PCB compounds in mussels. PAHs (polycyclic aromatic hydrocar-
bons); PCBs (polychlorobiphenyls compounds); Nap = naphthalene, Acy = acenaphthylene,
Ace = acenaphthene, Fluo = fluorene, Phen = phenanthrene, Ant = anthracene, Flt = fluoranthene,
Pyr = pyrene, B[a]A = benzo[a]anthracene, Cry = chrysene, B[b]F = benzo[b]fluoranthene,
B[k]F = benzo[k]fluoranthene, B[j]F = benzo[j]fluoranthene, B[a]P = benzo[a]pyrene,
D[a,h]A = dibenz[a,h]anthracene, IP = indeno[1,2,3-c,d]pyrene and B[g,h,i]P = benzo[g,h,i]perylene.
Results are expressed on a wet weight (ww) basis considering a wet/dry ratio of 5.0.
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4. Discussion and Conclusions

In the present study, we report the results on the growth and quality of the Mediter-
ranean mussel, M. galloprovincialis, cultured together with fish and a new group of bio-
remediators such as sponges, polychaetes and macroalgae under an innovative multitrophic
aquaculture system (IMTA).

In the traditional experiment, we obtained a higher biomass of mussels than the other
bio-remediating organisms [44] and observed the first signs of environmental restoration,
as both the hard-bottom [61] and the soft-bottom communities [62] under the fish cages
showed a recovery in species number and diversity.

Following these encouraging results, in the horizontal distance experiment, we com-
pared the growth of mussels near and far from the fish cages (sites V and P, respectively).
The data obtained show that the mussel growth was influenced by the distance from the
fish cages, yet mussels from both sites did not reach the condition index value (i.e., 0.15)
required for marketing [59]. This was due to a severe heat wave in July, which caused
mass mortality of up to 70–80% of mussels farmed throughout the Taranto basin. However,
mussels grown near the floating cages (site V) showed significantly higher values for all
growth parameters than those grown at a distance of 300 m (site P). It is, therefore, likely
that mussels from the experimental site benefited from the organic load from the fish cages.
In addition, according to the mussel farmers, mussels in the vicinity of the fish cages are
not apparently eaten by sea bream.

M. galloprovincialis is quite a generalist suspension feeder. Although it prefers to feed
on phytoplankton, it is capable of ingesting such a wide variety of particle types and sizes
that fish waste can provide an additional food source. Indeed, laboratory and field studies
using stable isotopes and fatty acids as biomarkers have confirmed that Mediterranean
mussels are able to ingest and assimilate organic waste from fish farms [63–65], suggesting
that aquaculture activities play an important role in nutrient cycling. However, dilution
of particulate fish waste increases with distance from fish cages [66], so the best growth
performance of extractive species in IMTA systems is achieved when mussels are cultured
near fish farms. This implies that production increases are generally greatest at relatively
small spatial scales [43], although the growth rate varies greatly depending on the hydro-
dynamic characteristics of the area under consideration. In addition, nutrient dispersal
near fish farms is influenced by hydrodynamics, subsurface geographic features and fish
cage structure [67]. It appears that mussels are better able to take up particulate fish waste
when farmed in areas with low current velocity [68,69]. In addition, stable isotopes used to
study the dispersal area of fish farm wastes have shown that sediments surrounding cages
can be organically enriched up to about 1000 m from the cages [65,70,71].

Improved growth performance of mussels near fish cages has been observed in several
previous works [43,45–48,72]. It was not possible to compare the condition index values
obtained in the present study with those obtained in other IMTA systems of other Mediter-
ranean regions [46–48], as in the latter the wet weight was used to determine the condition
index, making the values subject to higher variability. However, mussels grown in the
aforementioned IMTAs showed higher CI values than mussels grown under monoculture
or natural conditions in the respective reference areas.

Finally, the results of the third experiment (vertical distance) were quite interesting as
the achievement of the condition index required for marketing (i.e., 0.15) [59] was observed
only in mussels grown at 12 m depth and not in those grown at the surface, as the traditional
farming method requires. Mussels grown at a depth of 12 m may have benefited to a greater
extent from the organic load of fish cages, which tend to settle or they may have found
temporary shelter to surface temperatures. Further studies with stable isotopes and fatty
acid content are planned to explain the determining factors for the different growth at the
surface and at depth. However, mussels cultured near fish cages showed condition index
values among the highest measured in the Taranto area in the last twenty years [4,16].

It is known that bivalves can concentrate fecal-associated pathogenic bacteria from
the surrounding water in their bodies, so their consumption poses a risk to human
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health [73–76]. Each year, the consumption of contaminated seafood, including shell-
fish, is implicated in outbreaks of food poisoning caused by pathogenic microorganisms. In
this scenario, evaluation of the microbiological quality of shellfish cultured in the IMTA
system was critical in determining whether the recovered shellfish were suitable for human
consumption. Fecal coliform bacteria, including Escherichia coli, are useful indicators of
fecal contamination for assessing the bacterial quality of a mussel farming area and the
mussels within it [77–79]. To protect public health, several countries, including Korea, the
United States (US), the EU and New Zealand, have established regulatory criteria and
monitoring programs using fecal indicators for bivalves and their growing areas [80–84].

According to the present results, mussels grown under traditional surface conditions
were safe from a microbiological point of view. All monitored parameters were very low. In
particular, the concentration of Escherichia coli was 18 MPN/100 g. This value is lower than
the limit for Class A areas according to EU Regulation No. 854/2004 [85], which classifies
production areas into A, B, C or restricted areas depending on the E. coli content in the soft
tissues and shellfish water of the harvested mussels. For a Class A area, an upper limit of
230 E. coli/100 g of sample material, is measured as fresh weight and such mussels can be
used directly for human consumption. Our results suggest that M. galloprovincialis farmed
in the innovative IMTA system could also be marketed directly under the EU Regulation
No. 2285/2015 [86], which specifies that 20% of samples may contain E. coli between
230 and 700/100 g of the sample material, while the remaining 80% of samples must be
below 230/100 g of sample material. In addition, in the present study, Salmonella spp.
were not detected in any of the samples analyzed (Table 4), as required by EU Regulation
No. 2073/2005 [80], which stipulates the absence of Salmonella spp. in 25 g of meat and
intervalval liquid. The microbiological analyses were also confirmed by chemical analyses,
which showed that the levels of PAHs and PCBs were below the European maximum
levels for food (EU Regulation No. 835/2011) [87], as these compounds in the tested
bivalves did not exceed the maximum levels for B[a]P, ∑4 PAHs and ∑6 PCBs, which
were set at 5, 30 and 75 µg/kg weight, respectively, for bivalves. In the samples with
the composition of PAH and PCBs, all analyzed compounds were detectable. Among
the light PAHs (2–3 aromatic rings), phenanthrene was the most abundant compound,
while chrysene, fluoranthene and pyrene were the predominant heavy PAHs (4–6 aromatic
rings), accounting for 35–42% of the total PAHs. The value of the ratio between light
and heavy PAHs was less than one, indicating that the PAHs originated from pyrogenic
sources. This distribution pattern is consistent with other studies on M. galloprovincialis
from the Mediterranean Sea [31]. Among PCB profiles, PCB-153 (hexachlorobiphenyl) was
the predominant contaminant (about 50%), followed by PCB-138 (hexachlorobiphenyl),
while the least chlorinated congeners such as PCB-28 (trichlorobiphenyl) and PCB-52
(tetrachlorobiphenyl) were found in lower proportions. Highly chlorinated compounds
are often the most abundant PCBs detected in biota and marine sediments because their
molecular structure makes them lipophilic, stable and persistent [29]. These results were
comparable to PCB distribution in other marine organisms [30,88–91]. Compared to the
PAH values reported for M. galloprovincialis from other Mediterranean regions, the total
PAH values obtained in this study were similar to those found in mussels from different
areas of the Adriatic Sea [92,93] and the Mar Grande e Mar Piccolo (First Bay) of Taranto [34],
but higher than those reported from the northern Apulian coast [34]. Moreover, the levels
of PAH in our results were higher than those detected by other authors [31] in the coastal
waters of the Adriatic and Ionian Seas during active mussel monitoring.

Regarding PCBs, the results of the present study show that the concentrations of the
seven target compounds were lower than those found in mussels from the western and
southern Mediterranean coasts [30,94], the Tyrrhenian Sea [29], the Venice Lagoon [95] and
the Mar Piccolo of Taranto [33]. These concentrations were higher than those found by
colleagues [93] in mussels from the central Adriatic Sea, but always below the established
European maximum levels. Finally, a previous report [60] presented data on heavy metals



Water 2023, 15, 1922 13 of 17

that showed no accumulation of hazardous compounds in mussel tissues, indicating that
the mussels produced in the IMTA system are suitable for human consumption.

In summary, mussel farming remains one of the most sustainable methods of animal
origin food production in relation to a number of global/regional anthropogenic indicators
such as eutrophication, acidification, climate change, land use, energy demand and biotic
depletion [96–98], resulting in net carbon sequestration [38,99–102], opening a potential new
market where mussel farmers can issue ‘green’ certificates for the amount of CO2 captured.
Moreover, mussel farming can be combined with other species farming in IMTA systems,
which is also considered a highly sustainable aquaculture practice [41]. The present study
demonstrated that mussel growth was improved by the proximity of fish cages in the
implemented IMTA system. Moreover, the condition index and survival increased at
a depth of 12 m, providing shelter from potentially harmful heat waves. Moreover, the
mussels grown under the innovative IMTA system showed values of indicators of microbial
contamination and PHA and PCB concentrations that were in line with the reference values
of European regulations. Considering that the Regional Ordinance n. 188/2016 prohibits
commercial mussel farming in the Mar Piccolo of Taranto, the results of the present work
offer the mussel farmers of Taranto the opportunity to increase mussel production in the
Mar Grande by cultivating mussels under IMTA systems with a perspective of economic,
environmental and social sustainability.
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26. Okay, O.S.; Karacık, B.; Başak, S.; Henkelmann, B.; Bernhöft, S.; Schramm, K.-W. PCB and PCDD/F in sediments and mussels of
the Istanbul strait (Turkey). Chemosphere 2009, 76, 159–166. [CrossRef] [PubMed]

27. Perugini, M.; Visciano, P.; Giammarino, A.; Manera, M.; Di Nardo, W.; Amorena, M. Polycyclic aromatic hydrocarbons in marine
organisms from the Adriatic Sea, Italy. Chemosphere 2007, 66, 1904–1910. [CrossRef]

28. Storelli, M.M.; Barone, G.; Perrone, V.G.; Storelli, A. Risk characterization for polycyclic aromatic hydrocarbons and toxic metals
associated with fish consumption. J. Food Compos. Anal. 2013, 31, 115–119. [CrossRef]

29. Naso, B.; Perrone, D.; Ferrante, M.C.; Bilancione, M.; Lucisano, A. Persistent organic pollutants in edible marine species from the
Gulf of Naples, Southern Italy. Sci. Total Environ. 2005, 343, 83–95. [CrossRef]

30. Deudero, S.; Box, A.; March, D.; Valencia, J.M.; Grau, A.M.; Tintore, J.; Calvo, M.; Caixach, J. Organic compounds temporal trends
at some invertebrate species from the Balearics, Western Mediterranean. Chemosphere 2007, 68, 1650–1659. [CrossRef]

31. Bajt, O.; Ramšak, A.; Milun, V.; Andral, B.; Romanelli, G.; Scarpato, A.; Mitrić, M.; Kupusović, T.; Kljajić, Z.; Angelidis, M.
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