
Citation: Cai, Y.; Chen, F.; Yang, L.;

Deng, L.; Shi, Z. Degradation of

Polystyrene Nanoplastics in

UV/NaClO and UV/PMS Systems:

Insights into Degradation Efficiency,

Mechanism, and Toxicity Evaluation.

Water 2023, 15, 1920. https://

doi.org/10.3390/w15101920

Academic Editors: M. Silvia

Díaz-Cruz and Cristina Valhondo

Received: 18 April 2023

Revised: 12 May 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Degradation of Polystyrene Nanoplastics in UV/NaClO and
UV/PMS Systems: Insights into Degradation Efficiency,
Mechanism, and Toxicity Evaluation
Yishu Cai 1,2, Fan Chen 1,2, Lingfang Yang 1,2, Lin Deng 1,2,* and Zhou Shi 1,2,*

1 Hunan Engineering Research Center of Water Security Technology and Application, College of Civil
Engineering, Hunan University, Changsha 410082, China

2 b. Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, College of Civil
Engineering, Hunan University, Changsha 410082, China

* Correspondence: lindeng@hnu.edu.cn (L.D.); shiz61@hnu.edu.cn (Z.S.)

Abstract: Nanoplastics have gradually become a concern due to the wide use of plastics. Nanoplas-
tics in aqueous phase can be exposed to users through water supply networks and cannot be
efficiently removed by conventional water treatment processes. This work studied the degradation of
polystyrene nanoplastics (PS-NP) by two commonly used advanced oxidation systems: UV/NaClO
and UV/peroxymonosulfate (PMS). Results showed that almost no turbidity was detected in the PS-
NP solution (5.00 mg/L) after treated by both UV/NaClO and UV/PMS for 360 min, suggesting the
excellent turbidity removal ability. Yet, scanning electron microscope (SEM) and total organic carbon
(TOC) removal tests demonstrated that PS-NP could not be completely degraded by UV/NaClO. The
mineralization rate using UV/NaClO was only 7.00% even when the NaClO concentration increased
to 5.00 mM, and many PS-NP particles could still be observed in SEM images. By contrast, the miner-
alization rate reached 63.90% in the UV/PMS system under the identical experimental conditions,
and no spherical particles appeared in the SEM results. Density functional theory (DFT) calculations
revealed that the different reaction sites and energy barriers of SO4

•− and •Cl on PS-NP resulted
in the differences in mineralization rates and degradation intermediates. The degradation pathway
of PS-NP by UV/NaClO and UV/PMS was proposed accordingly. Additionally, the intermediates
toxicity evaluation by a luminescent bacteria test showed that the inhibition rate in the UV/NaClO
system (2.97%) was not markedly different from that in the control group without any treatment
(1.98%); while that in UV/PMS system increased sharply to 98.19%. This work demonstrated that
UV/PMS was more effective in PS-NP degradation than UV/NaClO, and the chemical risks of
degradation intermediates were non-negligible.

Keywords: nanoplastics; polystyrene degradation; mechanisms; DFT calculation; toxicity assessment

1. Introduction

Plastic debris in the environment is an increasingly serious and growing global concern.
An increasing mass of plastics has been found in natural waters around the world because
of the immoderate discharge of plastic waste [1]. However, only 9% of these wastes were
recycled, and over 79% of them were released into the environment or land-filled. It’s
predicted that 12,000 million tons of plastic wastes will be discharged into the environment
by the year of 2050 [2]. The half-life period of plastics are estimated to be tens or even
hundreds of years [3]. Large pieces of plastics in the environment can be fragmented into
microplastics (1 µm–5 mm) and nanoplastics (1–1000 nm) under mechanical crushing, UV
irradiation, hydrolysis, oxidation, and biological breakdown [4]. Nanoplastics have been
found in sea water, fresh water, soil, food, and organisms [5]. Compared to microplastics,
nanoplastics may cause severe ecological risks due to their large specific surface area,
high colloidal stability, and mobility, facilitating them to adsorb coexisting environmental
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contaminants including heavy metals and organics. Additionally, their smaller size allows
them to easily penetrate into cells. At the same concentration, the number of nanoplastics
with a size of 100 nm was 109 times that of microplastics with a size of 100 µm. Nevertheless,
traditional water treatment processes failed to efficiently remove nanoplastics from aqueous
phase [6]. That is, nanoplastics can reach to all the residents through urban water supply
networks. Consequently, it’s urgent to find a feasible and effective way to eliminate
nanoplastics from water.

Advanced oxidation processes (AOP) generating strongly oxidative species have been
introduced as an effective approach to degrade refractory organic contaminants from
aqueous solutions. UV and chlorine are extensively applied for disinfection in drinking
water treatment process [7]. The combined use of UV and chlorine (UV/chlorine) has
been proposed as a powerful disinfection technology [8]. It can produce reactive species
of •OH and •Cl [9], displaying a strong oxidation ability [10]. Peroxymonosulfate (PMS)
based AOPs that can yield free radicals of SO4

• and •OH has attracted increasing attention
for the elimination of organic compounds by virtues of a strong oxidization ability and
wide pH tolerance [11]. Homogeneous catalysts including transition metals of Co2+, Fe2+,
Mn2+, and Cu2+ are efficient PMS activators [12]. Yet, the post-separation from treated
water and accumulation of waste sludge greatly hindered its practical application. Recent
studies have shown that photocatalysis assisted PMS activation could be simple and energy-
saving without external chemicals requirement [13] and have a high removal efficiency
for trace organic contaminants in water [14]. Although progress in the UV/chlorine and
UV/PMS processes has successfully been made in treating organics-polluted water, using
the two techniques to remove nanoplastics has rarely been reported to date. Especially,
the underlying mechanisms involved in nanoplastics degradation by UV/chlorine and
UV/PMS remains ambiguous.

As can be seen in Table 1 [15], few studies have been done to remove nanoplastic from
water, and there are still many limitations. Effective methods for degrading nanoplastic in
drinking water treatment need to be discovered. No literature related to the treatment of
nanoplastics by UV/chlorine and UV/PMS was found herein; UV/NaClO and UV/PMS
were employed to degrade nanoplastics from aqueous solutions. Polystyrene nanoplastics
(PS-NP) was selected as the representative nanoplastics, as polystyrene is one of the most
extensively used plastic products with an annual production rate of multiple million
tons [16]. The main objectives of this study are: (i) to investigate the removal ability of
PS-NP by UV/NaClO and UV/PMS in terms of different affecting factors in an aquatic
environment, i.e., oxidant concentration, PS-NP concentration, solution pH, coexisting
anions, and NOM concentration; (ii) to unveil the mechanisms of PS-NP degradation by
UV/NaClO and UV/PMS using density functional theory (DFT) calculations; and (iii) to
examine the toxicity of degradation intermediates.

Table 1. Removal strategies of nanoplastics from water.

Removal
Strategies Type of Material Time Removal

Efficiency (%) Limitations Reference

Filtration 0.22 µm syringe filter
3 µm Whatman filter 10 min 32 ± 12

92 ± 3

Larger nanoplastics can retain in the
fractions and are not suitable for

larger particles.
[17]

Ultrafiltration 0.45 µm Express PLUS
PES filters 27 min 74.0

The particle may escape from the
treatment and the time duration is

also poor.
[18]

Flocculation 150 rpm impeller
rotational speed 50 min 77 ± 15

Design parameters have to improve
with studies and the order of

reaction should be high.
[19]

Centrifugation 10,000 rpm speed with
various steps 15 min 98.41 This process takes a longer duration

to remove the plastics. [20]

Photocatalytic
reaction UV rays 27 min 17.1 ± 0.55

Phototransformation of
nanoplastics could be different and
photoreactive activity can be high in

the water.

[21]
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2. Materials and Methods
2.1. Materials and Reagents

In this work, the size of nanoplastics is defined as 1–100 nm [22]. Polystyrene with
a 50–100 nm diameter, NaCl, Na2SO4, and Na2CO3 were purchased from Aladdin, Inc.
(Wallingford, CT, USA) Suwannee River NOM (Cat. 2R101N) was supplied by International
Humic Substances Society (Denver, CO, USA). Sodium hypochlorite solution (NaClO,
~10% chlorine) was purchased from Sinopharm Chemical Reagent Co. (Shanghai, China).
Potassium peroxymonosulfate was obtained from Sigma-Aldrich (St. Louis, MO, USA).
All solutions were prepared using ultrapure water (18.2 MΩ cm) from a Milli-Q water
purification system (Millipore, Burlington, MA, USA).

2.2. Experimental Procedure

All batch-type experiments were carried out in a 50.00 mL quartz tube at room temper-
ature (25 ◦C). A 6 W low-pressure mercury UV lamp (GPH 150T5L/4, Heraeus Noblelight)
emitting 254 nm light was fixed in the center of the reactor and surrounded by four quartz
tubes. Generally, a quantitative amount of NaClO or PMS was added to 50.00 mL PS-NP
solution, and then the UV lamp was turned on to start the degradation reaction. Within a
certain time interval, a certain amount of water sample was withdrawn to test the turbidity
and then returned to the tube. All experiments were conducted at least 3 times, and the
relative standard deviation of different batches was usually less than 5.00%.

The photonic intensity per volume of water (I0) and the effective light path length (L) were
determined as 2.3 × 10−6 Einstein L−1 s−1 and 6.2 cm, respectively, corresponding to a photon
fluence rate of 1.43× 10−8 Einstein cm−2 s−2 and a UV intensity of 6.72 mW cm−2 [23].

2.3. Analytical Methods

The concentration of PS-NP was determined by a turbidimeter (WGZ-200) from
Shanghai INESA Physico-Optical Instrument Co., Ltd. (Shanghai, China). Solution pH
was recorded by a pH meter (Thermofisher model: 8103BN, Waltham, MA, USA). The
degradation products were determined using a positive electrospray ionization (ESI) HPLC
(1290)-triple quadrupole MS (6460, Agilent, Santa Clara, CA, USA). Surface morphology
was recorded by a scanning electron microscope (ZEISS Sigma 300, Jena, Germany). Total
organic carbon (TOC) of the solution was measured by a TOC analyzer (Shimadzu, Kyoto,
Japan). The toxicity was measured by a microplate multimode reader (Glomax Multi,
Madison, WI, USA).

2.4. Theoretical Computation Methods

Theoretical calculations were performed using Gaussian 16 D.01 software [24]. It was
reported that the B3LYP-D3BJ method in Gaussian software was suitable for calculating
organic systems [25]. Thus, the B3LYP-D3BJ method with a 6-31 g(d,p) basis set was
applied for geometrical optimization and vibrational frequencies calculations. The B3LYP-
D3BJ method with a 6-31 g(d,p) basis set was applied for energy calculations based on
the optimized structures to get more precise results. Intrinsic reaction coordinate (IRC)
calculations were performed to confirm that each transition state connected with the
reactants and the products.

According to transition state theory, approximate reaction rate constants for elementary
reactions could be estimated based on the Eyring-Polanyi equation as follows [26]:

KTST = (KBT/h) exp(−∆G 6=/RT)

where kB is the Boltzmann constant, T (K) is the reaction temperature, h is Planck’s constant,
R is the molar gas constant, and ∆G 6= (unit: kcal/mol) is the corrected solvation activation
free energy. This shows that ∆G and KTST are inversely proportional. The higher the free
energy barrier (∆G) value, the more difficult this reaction will occur.
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3. Results and Discussion
3.1. Turbidity Removal of PS-NP

Initially, PS-NP removal by UV/PMS, UV/NaClO, UV, PMS, and NaClO were per-
formed as depicted in Figure 1. Turbidity variation of the PS-NP solution was recorded
to represent the removal of PS-NP in different oxidation systems. As seen, the turbidity
barely changed when PMS and NaClO presented alone, suggesting that PMS or NaClO
could not efficiently remove PS-NP. In contrast, the turbidity removal rate in systems of
UV/PMS and UV/NaClO were 94.30% and 78.20% in 360 min of reaction time under the
identical experimental conditions. This could be attributed to the formed highly reactive
species of SO4

•− (2.5–3.1 V) [27], •Cl (2.4 V) [28], and •OH (1.8–2.7 V) [29], which could
efficiently decompose nanoparticles.
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Figure 1. Turbidity variation of PS-NP degradation by systems of UV/PMS, UV/Cl, UV, PMS,
and NaClO.

The factors affecting the turbidity removal of PS-NP in the UV/NaClO and UV/PMS
systems were further studied in Figure 2. Figure 2a,b shows the influence of NaClO and
PMS concentrations (1.25, 2.50, and 5.00 mM). In the UV/NaClO system, as expected, in
360 min of reaction time, the turbidity removal rate increased gradually from 63.41% to
94.52% with the increase of NaClO dosage from 1.25 to 5.00 mM. It slowed down after
180 min, which could be related to the complete consumption of chlorine. By contrast, in
the UV/PMS system, 5.00 mM of PMS achieved a complete turbidity removal in 180 min
(Figure 2b). This clearly suggested the superior performance of UV/PMS than UV/NaClO
in PS-NP removal. As can be seen in Figure 2b, when the concentration of PMS increased,
the reaction reached equilibrium faster. When the PMS concentration decreased to 1.25 mM,
the reaction proceeded very slowly, and PS-NP could not be completely degraded within
6 h. When changing the concentration of PS-NP in Figure 2c,d, there was a similar trend in
the UV/NaClO and UV/PMS systems. PS-NP was degraded faster at low concentrations,
and slower at high concentrations. When the concentration of PS-NP reached 50 mg/L,
neither UV/PMS nor UV/NaClO could achieve a high turbidity removal rate (72.85% for
UV/PMS and 65.92% for UV/NaClO).

The solution pH is an important factor affecting the performance of AOPs as it can
influence the speciation of pollutants and oxidants. In this work, the influence of initial
solution pH on PS-NP removal was studied at pH values of 3, 5, 7, 9, and 11 as depicted
in Figure 2e,f. In both systems, pH showed a very limited influence on turbidity removal
of PS-NP. In the pH range of 3–11, the removal maintained within 75.80% to 79.00% for
UV/NaClO and 91.42% to 96.49% for UV/PMS in 360 min of reaction time.
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Figure 2. Effect of (a) NaClO and (b) PMS concentration on turbidity removal by UV/NaClO and
UV/PMS; effect of PS-NP concentration on turbidity removal by (c) UV/NaClO and (d) UV/PMS;
effect of initial solution pH on turbidity removal by (e) UV/NaClO and (f) UV/PMS; effect of NOM
concentration on turbidity removal by (g) UV/NaClO and (h) UV/PMS; (i) effect of Cl−, SO4

2−, and
CO3

2− on turbidity removal by UV/NaClO and UV/PMS.

Figure 2g,h shows the effect of NOM on the removal of PS-NP. Low concentration of
NOM (0, 0.80, and 4.00 mg-C L−1) had little effect on the performance of the UV/NaClO
system. Only when the NOM concentration was increased up to 8.00 mg L−1, the turbidity
removal decreased from 78.20% to 72.43%. This can be attributed to that NOM and PS-NP
were competitive [30], and part of the chlorine and generated radicals were consumed by
the reductive NOM. While in the UV/PMS system, the turbidity variation curves showed
that the removal rate in the initial 180 min was slower when the concentration of NOM was
set at 4 and 8 mg-C·L−1. The phenomenon indicated that at the beginning, NOM competed
with PS-NP to consume some of the free radicals. After 180 min, NOM was degraded
completely, and the turbidity removal rate became as fast as the control sample due to the
excessive dosage of PMS. Figure 2i shows the impact of three widely coexisting ions (Cl−,
SO4

2−, and CO3
2−) on the turbidity removal in PS-NP solution. The turbidity removal

remained relatively stable when 0.50–5.00 mM of Cl−, SO4
2−, or CO3

2− appeared. The
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result suggested the superior performance of UV/NaClO and UV/PMS when encountering
the additional common interfering anions and NOM in practical application.

3.2. Mineralization of PS-NP in Different Oxidation Systems

As the turbidity of water samples would decrease when large nanoparticles were
decomposed into smaller particles, the real degradation rate of PS-NP needs to be further
explored. Accordingly, the mineralization rate of water samples was determined via TOC
removal tests as well. Figure 3 displays the TOC variations of PS-NP in oxidation systems
of UV/PMS, UV/NaClO, UV, PMS, and NaClO. Consistent with the turbidity removal
results in Figure 1, the TOC of PS-NP solution remained unchanged with the treatment of
UV, PMS, and NaClO. However, after treatment by UV/PMS for 360 min, the TOC removal
efficiency reached 63.90%, which was lower than the turbidity removal rate (94.30%) under
the identical experimental conditions. In other words, although the turbidity decreased as
PS-NP were degraded into smaller particles, PS-NP was not fully mineralized. Surprisingly,
it’s worth noting that a huge gap could be observed between turbidity removal (78.20%)
and TOC removal (7.00%) in the UV/NaClO system.
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Figure 4 illustrates influences of oxidant concentrations, PS-NP concentrations, initial
solution pH, coexisting anions, and NOM on the mineralization of PS-NP by the UV/NaClO
and UV/PMS systems. As seen in Figure 4a, the improvement of NaClO concentration
from 1.25 to 5.00 mM in solution did not lead to a significant increase in the mineralization
rate of PS-NP by the UV/NaClO system. In contrast, the UV/PMS system achieved a
higher mineralization rate: 80.56% in the presence of 5.00 mM PMS. A similar trend was
also observed in Figure 4b–e. Comparison of Figures 3 and 4 suggested that UV/NaClO
failed to mineralize PS-NP. PS-NP existing as smaller particles in water after UV/NaClO
treatment would be more difficult to remove, thus posing greater risks.

Further, SEM images were recorded to examine the morphology and particle size
change of PS-NP with or without the treatment by UV/NaClO and UV/PMS. As shown in
Figure 5a, PS-NP exhibits a regular spherical shape, and the average diameter of PS-NP
is 79.20 nm. Obviously, although the average particle size of PS-NP declined greatly to
~26.20 nm after treatment with UV/NaClO, many nanoparticles could still be observed in
Figure 5b. By contrast, nearly no spherical particle in solution showed up in the UV/PMS
system. This observation matched well with the results of turbidity and TOC removal,
directly indicating that PS-NP could not be fully degraded by UV/NaClO.
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UV/NaClO and UV/PMS systems; (c) effect of initial solution pH on the mineralization of PS-NP
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3.3. Degradation Mechanisms and Pathway of PS-NP by UV/PMS and UV/NaClO

To understand degradation mechanisms of PS-NP in the UV/PMS and UV/NaClO
systems, quantum chemical computations were conducted. As we know, the main dif-
ference between the two oxidative systems is that SO4

•− is generated by UV/PMS and
•Cl is produced by UV/NaClO. Thus, considering the symmetry structure of PS-NP,
∆G values for SO4

•−and •Cl reacting at possible sites (marked as 1©, 2©, and 3© in Figure 6)
were calculated. As for •Cl, the ∆G values reacting at site 1© and 2© were determined as
11.6 and 5.7 kcal mol−1. The reaction between •Cl and site 3© did not occur. With regard
to SO4

•−, the energy at site 1©, 2©, and 3©were 10.3, 7.4, and 15.2 kcal mol−1, respectively.
As depicted in Figure 6, the reactions at site 1© and 2© were hydrogen atom abstraction
(HAA) reaction, causing the formation of HCl molecules. In the meantime, radicals would
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transfer to the PS-NP chains, and the unstable PS-NP radicals would further react with
other organic compounds, leading to the chain break. The reaction at site 3©was radical
adduct formation (RAF) reaction. SO4

•− could add into the site, resulting in the benzene
ring opening.
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•−.

Based on the DFT calculations, the long chains of PS-NP could be destroyed by •Cl and
•OH generated in the UV/NaClO system, which degraded PS-NP particles into smaller
ones and caused the turbidity decrease. However, as the reaction at 3© site could not
happen, the stable aromatic structure would not be further decomposed, which caused
the unchanged mineralization rate. By contrast, UV/PMS could open the benzene ring of
PS-NP, resulting in a much higher mineralization rate. Generally, the ∆G values for these
radical reactions were relatively low, which clarified the satisfactory degradation rate of
PS-NP in advanced oxidation processes.

In addition, the degradation intermediates of PS-NP in the UV/NaClO and UV/PMS
systems were determined using HPLC analysis as summarized in Table 2 and Figure S1.
The corresponding degradation pathways were proposed in Figure 7. According to Figure
S1, fourteen intermediates were detected. Affected by the electron cloud on the benzene
ring, the carbon connected to the benzene ring was in a half electron losing state. So
free radicals could attack the carbon connected to the benzene ring on the carbon chain
first (at site 2©) and destroy a small amount of C–C bonds in the main chain to produce
shorter chains polymers of P1 (m/z = 224) [31]. The tertiary carbon sites would be at-
tacked by •OH to yield P2 (m/z = 224), P4 (m/z = 148), terminal carbonyl groups, and
eventually to acetophenone (P3, m/z = 106), phenol (P5, m/z = 94), and P8 (m/z =120)
etc. [31]. For the UV/NaClO system, •Cl could react with P5 to form P6 (m/z = 112) and
P7 (m/z = 78). However, the reaction at site 2© resulted in the generation of
P9 (m/z = 106), then P10 (m/z = 92) and P11 (m/z = 122). The toluene could be oxidized by
SO4

•− via electron transfer from the electron-rich methyl groups, forming a carbon radical
cation and producing benzoic acid (P11) [32]. The benzoic acid would be attacked by
SO4

•− to take place a ring cleavage reaction to produce P12 (m/z = 57), P13 (m/z = 58), and
P14 (m/z = 46) [33]. And •OH produced in the catalytic system could also cleave aromatic
rings via Criegee-type reactions [34].
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Table 2. Mass spectrometry data for the identification of intermediates.

Compound List Molecular Formula Chemical Structure ESI(+)MS m/z

P1 C16OH16
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3.4. Toxicity Assessment of Degradation Intermediates

Currently, the main hazards of nanoplastics in water are thought to be chronic toxicity
and long-term effects after absorption by human beings [35]. Thus, the toxicity of degra-
dation intermediates formed in UV/NaClO and UV/PMS systems were assessed for the
purpose of practical application. As shown in Figure 8, the acute toxicity of PS-NP solution
after treated by UV/NaClO and UV/PMS were determined by a luminescent bacteria test.
Luminescent bacteria can be inhibited by toxic compounds, and higher toxicity usually
results in a higher inhibition rate. To avoid the inhibition of cellular activity by excess oxi-
dants, the withdrawn water samples were quenched after degradation tests. The inhibition
rate of PS-NP solution without any treatment was determined as 1.98%, suggesting a very
limited acute toxic of PS-NP to luminescent bacteria. After treating by UV/NaClO and
UV/PMS, the inhibition rates changed to 2.97% and 98.19%, respectively. This indicated
that the toxicity of intermediates formed in the UV/PMS system could be more toxic than
the parent PS-NP, even though the mineralization rate was high enough to fully oxidize
PS-NP into small molecules.
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Ecological structure activity relationship (ECOSAR) program was also carried out to
analyze the toxicity of several common intermediates in two oxidative systems. As listed
in Table 3, the LC50 values of P11 (benzoic acid) for fish, daphnia, and green algae were
determined as 1300.78, 730.08, and 518.37 mg/L, respectively. According to the standard
stipulated by the Globally Harmonized System of Classification and Labelling of Chemicals



Water 2023, 15, 1920 11 of 13

(GHS) (Table 4), benzoic acid cannot be classified as harmful. Yet, the LC50 and EC50
values of some of the degradation intermediates including benzene, toluene, and phenol
were lower than 10.00 mg/L, and these chemicals can be classified as toxic. The result
indicated that although UV/PMS successfully degraded PS-NP, the intermediates’ toxicity
was non-negligible in practical application.

Table 3. Predicted bio-toxicity of degradation intermediates of PS-NP by ECOSAR.

Common Product Fish
(LC50, 96 h)

Daphnia
(LC50, 48 h)

Green Algae
(EC50, 96 h)

Butyrophenone 31.37 18.92 18.11
Benzene 5.3 10.3 29
Toluene 31.7 3.8 9.4
Phenol 8.9 3.1 150

Benzoic acid 1300.78 730.08 518.37
Acetophenone 162 106.80 70.24

Table 4. Toxicity classification according to the Globally Harmonized System of Classification and
Labelling of Chemicals (GHS) ([36]).

Toxicity Range (mg/L) Class

LC50/EC50 ≤ 1 Very toxic
1 < LC50/EC50 ≤ 10 Toxic

10 < LC50/EC50 ≤ 100 Harmful
LC50/EC50 > 100 Not harmful

4. Conclusions

This work studied the degradation of PS-NP by commonly used UV/NaClO and
UV/PMS systems. Results showed that UV/PMS was more efficient for PS-NP degrada-
tion from aqueous solution than UV/NaClO. However, the treated solution should be
given attention as the inhibition rate of luminescent bacteria caused by the degradation
intermediates from the UV/PMS system was as high as 98%. The following conclusions
can be drawn.

(1) The UV/NaClO and UV/PMS systems achieved 78.20% and 94.30% turbidity removal
in 360 min of reaction time. However, the corresponding mineralization rates were 7.00%
and 63.90%, indicating that UV/NaClO could not completely mineralize nanoplastics
into inorganic substances, but only decompose it into smaller organic molecules.

(2) DFT calculation coupled with HPLC analysis proposed the degradation pathways of
PS-NP in two oxidative systems. The different reaction sites and energy barriers of
SO4

•− and •Cl on PS-NP resulted in the differences between the mineralization rate
and degradation intermediates.

(3) Toxicity assessment of degradation intermediates showed that the inhibition rate of
luminescent bacteria originated by the UV/NaClO and UV/PMS systems were 2.97%
and 98.19%. This suggested that the acute toxicity of PS-NP degradation intermediates
using UV/PMS should be given attention.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
w15101920/s1, Figure S1: Mass spectrum of PS-NP and its degradation intermediates.
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