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Abstract: The primary objective of the water purification process is to remove harmful chemical
compounds and microorganisms from water sources in order to produce water suitable for human
consumption. Water purification satisfies the demand for drinkable water, which is a requirement
for many industries, including the medical, pharmaceutical, and chemical industries, among others.
Access to purified water is the single most important factor determining a nation’s strength and pros-
perity. As a consequence, researchers all over the world are investigating a wide variety of potential
strategies for improving and preserving the water supply. In this paper, we present the findings of our
research into a possible water strategy for purifying water and improving accessibility to drinkable
water in areas prone to drought. This article presents the concepts of the complex intuitionistic fuzzy
Dombi weighted averaging (CIFDWA) operator, the complex intuitionistic fuzzy Dombi ordered
weighted averaging (CIFDOWA) operator, the complex intuitionistic fuzzy Dombi weighted geomet-
ric (CIFDWG) operator, and the complex intuitionistic fuzzy Dombi ordered weighted geometric
(CIFDOWG) operator in complex intuitionistic fuzzy (CIF) settings. In addition, we investigate sev-
eral important key features of these operators. Moreover, we introduce an improved score function
to overcome the deficiencies of the existing score function under CIF knowledge. Furthermore, we
effectively apply the proposed score function and newly defined operators to select the best technique
for purifying water at a commercial scale. Additionally, we establish a comparative analysis to show
the validity and feasibility of the proposed techniques compared to existing methods.

Keywords: CIFDWA operator; CIFDOWA operator; CIFDWG operator; CIFDOWG operator;
multi-criteria decision-making problem

1. Introduction

Multiple-attribute decision-making (MADM) problems manifest in a diverse array
of scenarios, necessitating the selection of a number of alternatives, actions, or candidates
according to a predefined set of criteria. MADM through aggregation operators is becoming
popular as it is easy to handle real-life problems in almost every field, such as science,
engineering, environmental and social sciences, and many others. Aggregation operators
combine multiple values into a unified value within a specific set, thereby enabling the
final aggregation outcome to encompass all individual values. Before the inception of
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aggregation operators, crisp sets were used to make decisions. However, the fact is that
in real-world situations, membership in a set is not always so crisp, where typical mathe-
matical tools are ineffective, particularly in the social and biological sciences, psychology,
economics, linguistics, and soft sciences. To overcome this problem, Zadeh [1] introduced
the concept of the partial belongingness of a set and named it the fuzzy set (FS) in 1965.
In 1975, Kahne [2] introduced a decision-making approach for situations in which each
alternative must be evaluated based on multiple attributes that possess distinct degrees
of significance. In 1977, Jain [3] presented a method for decision-making that computed
a fuzzy optimal alternative. In 1978, Dubois and Prade [4] discussed some operations on
fuzzy sets. Yager [5] introduced some aggregation operators on fuzzy sets.

Atanassov [6] introduced intuitionistic fuzzy sets (IFS) in 1986, which extend the
concept of fuzzy sets by characterizing both membership and non-membership degrees.
Specifically, the sum of these degrees is constrained to be less than or equal to one. Chen
and Tan [7] proposed score functions for IFS in 1994 to handle MADM problems. In 1996,
Szmidt and Kaeprzyk [8] presented a method for determining solutions in group decision-
making within the IFS framework. Li [9] suggested several linear programming models
and methods for MADM under IFS settings in 2005, while Xu and Yager [10] defined
geometric aggregation operators on IFS in 2006. Xu [11] subsequently developed arithmetic
aggregation operators for IFS in 2007. In 2010, Zhao et al. [12] suggested generalized aggre-
gation operators on IFS and used them to solve the MADM problem. Xu and Wang [13]
presented the induced generalized aggregation operators for IFS and utilized them in group
decision-making problems. Huang [14] designed a decision-making approach by inves-
tigating Hamacher aggregation operators on IFS in 2014. In 2015, Verma [15] presented
Bonferroni mean operators on IFS. In addition, many useful strategies were invented to
address the issue of different MCDM problems in [16–20].

Dombi aggregation operators are one of the most effective methods to solve MADM
problems for researchers. Akram et al. [21] introduced Pythagorean fuzzy Dombi aggrega-
tion operators in 2019. Later on, Q-rung orthopair fuzzy Dombi aggregation operators [22],
bipolar fuzzy Dombi aggregation operators [23], and picture fuzzy Dombi aggregation
operators [24] were defined. Ashraf et al. [25] proposed spherical fuzzy Dombi aggrega-
tion operators in 2020. Liu et al. [26] presented interval-valued fuzzy Dombi aggregation
operators for information security risk assessment in 2020. Moreover, in 2021, Seikh and
Mandal [27] introduced Dombi operators on IFS. Karaaslan and Husseinawi [28] presented
hesitant T-spherical fuzzy Dombi aggregation operators and their applications in MADM
in 2022.

The theories of FS and IFS focus on solving one-dimensional issues. The fascinating
scenario only becomes apparent when two-dimensional difficulties are brought up. Com-
plex fuzzy sets (CFS) are a remarkable, innovative ideology developed by Ramot et al. [29]
in 2002 that handles the challenges involving two-dimensional difficulties. As a conse-
quence, the theory of CFS changes the fundamental idea of fuzzy membership by adding
a second dimension to the statement of membership. Many physical issues, including
complex amplitude and impedance in electrical engineering, wave function in quantum
physics, and complex amplitude, have been successfully resolved by using the concept of
CFS. The present theory bears significant importance in diverse applications, specifically in
advanced control and forecasting of periodic events, in which multiple fuzzy variables are
intricately interconnected in a manner that cannot be suitably identified through conven-
tional fuzzy operations. The current investigations of complex fuzzy sets utilize the degrees
of membership, which are a subset of complex numbers, to cope with the uncertainties
inherent in the data. Nevertheless, this methodology may result in the loss of crucial
information, ultimately compromising the decision-making process. In 2012, Alkouri and
Salleh [30] added a complex degree of non-membership function to the concept of CFS to
create a complex intuitionistic fuzzy set (CIFS) in order to solve this issue. Therefore, a
CIFS is a generalization of many theories, such as FS, IFS, and CFS. A comparative analysis
of CIFS and other sets based on their characteristic features is provided in Table 1. In the
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following table, the symbol 3 indicates the ability to tackle a situation under a certain fuzzy
environment. It is important to note that CIFS modeling is very capable of handling key
factors such as uncertainty, falsity, hesitation, periodicity, and 2-D information of a physical
phenomenon. In contrast, the other environments mentioned in the table do not possess
the complete ability to address all of the listed factors.

Table 1. A Comparative Analysis of CIFS Model against Other Established Models.

Models Uncertainity Falsity Hesitation Periodicity Ability to Represent
2-D Information

Have Characteristics of
Generalization

FS 3 8 8 8 8 8

IFS 3 3 3 8 8 8

CFS 3 8 8 3 3 8

CIFS 3 3 3 3 3 3

Moreover, CF geometric aggregation operators [31] and CF arithmetic aggregation
operators [32] were designed. Garg and Rani [33] proposed arithmetic and geometric
aggregation operators in a CIF environment. Akram et al. [34] discussed Hamacher aggre-
gation operators on CIFS. Mahmood et al. [35] initiated the principle of CIF Aczel-Alsina
aggregation operators in 2022. Furthermore, one can study the recent developments in
these theories in [36–42].

The hydrosphere of Earth and the bodily fluids of all recognized living entities are
primarily composed of water. However, due to increasing industries and technology,
chemicals and other harmful elements contaminate water supplies, increasing the risk
of some types of cancer. Some toxins do more than just endanger human health. They
sometimes affect the flavor of drinking water, imparting a metallic or other unpleasant taste.
Chlorine in drinking water can lead to a variety of major health problems. Eliminating them
through water purification may help reduce the risk of getting diseases caused by exposure
to these materials [43–45]. Water purification is a crucial process aimed at eliminating
undesirable organic and inorganic chemical compounds as well as biological contaminants
from water, with a primary focus on providing potable water. Moreover, water purification
fulfills the necessity for clean and portable water in various industries, including the
medical, pharmaceutical, and chemical sectors. The purification process entails reducing the
concentration of impurities, such as suspended particles, parasites, bacteria, algae, viruses,
and fungi, to a significant extent. Some of the most notable health benefits of drinking pure
water include improved absorption, increased hydration, improved metabolism, reduced
skin and scalp irritation, healthier hair, and toxin elimination. Hence, water purification is
unquestionably worthwhile.

The primary objective of this study is to develop effective techniques for handling
various MCDM problems within a CIFS environment in a straightforward manner. Our
approach stands out from others because it can manage input dependencies, making it
more adaptable to different contexts. Additionally, implementing MADM solutions can be
challenging in practice because current techniques cannot dynamically adjust parameters
to account for the decision-makers’ risk aversion. However, the methods outlined in this
article are more than capable of addressing this issue. It is worth noting that the technique
presented in this article is innovative in its own right, as there is currently no viable solution
to the challenge of addressing water purification issues in a CIF setting.

The objective of this manuscript is to present several aggregation operators for aggre-
gating complex intuitionistic fuzzy sets (CIFSs). These methods are intended to consider
the dependency that exists between pairs of membership degrees. Existing studies on fuzzy
and its extensions use the degree of membership, a subset of real numbers, to deal with
data uncertainties. This results in the loss of valuable information, which can affect the
decisions made. CIFSs are a subtype of these that can handle two-dimensional information
within a single set. This is accomplished by managing uncertainties through the use of
degrees whose ranges are enlarged from the real subset to the complex subset with the unit
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disk. Inspired by this, we have designed novel operators for aggregation in the context of
complex intuitionistic fuzzy Dombi settings.

The multi-purpose Dombi operators have outstanding adaptability for computing
imprecise information, owing to their aggregation features, decision-making abilities, and
operational characteristics. These operators help convert information into a single value.
Dombi operators are highly adaptable to operational conditions and effectively resolve
decision-making problems. It is noteworthy that the strategies proposed in this article
are more generalized than existing techniques because the best preference changes when
information is lost in the framework of existing IF operators. In contrast, CIF Dombi
aggregation operators effectively handle this situation. Furthermore, the newly defined
operators are more flexible as they involve a parametric value. The above discussion
clearly indicates that CIF Dombi aggregation operators, when used with other powerful
mathematical tools, offer a groundbreaking approach to resolving MCDM problems. They
can consider all data within the aggregation process and increase the accuracy and certainty
of optimal results when applied to real-world MCDM issues.

The fundamental goal of this study is to provide a solution to the research question of
selecting an appropriate technique for purifying water at a commercial scale using novel
strategies within the CIF Dombi environment. Our study focuses on several key goals in
the theoretical framework, which are as follows:

1. Create a new score function that improves upon the CIF system without the drawbacks
of the old score function. To achieve this objective, we will combine sophisticated
mathematical and statistical methods for a more reliable and precise grading system.

2. Develop a Dombi operation framework that is fundamental for use with CIFSs. It will
be necessary to develop mathematical models that describe the relationships between
the different components of CIFSs to improve both the analysis and forecasting of the
results of using these systems.

3. Explore different ways in which CIFD operators can be combined to make the process
of aggregating CIFS data more efficient.

4. Demonstrate that the newly specified operators meet critical requirements by examin-
ing their behavior. To demonstrate the practicality and usefulness of the proposed
operators, we will utilize mathematical analysis and rigorous proofs.

5. Establish a method for resolving problems relating to MADM by utilizing CIFS aggre-
gation operators. To accomplish this goal, we will establish a methodical procedure
for applying novel operators to the analysis and evaluation of challenging decision-
making problems.

6. Apply the recently suggested strategy to select the best technique to purify water at a
commercial scale. Specifically, this will involve putting the recommended algorithm
to use in different situations.

7. Compare the suggested technique with other approaches that are similar to those that
have already been tried. To accomplish this, we will evaluate the efficiency of the
proposed algorithm in relation to the performance of well-established methods using
data and scenarios drawn from the real world.

This manuscript is structured as follows: Section 2 provides an overview of fundamen-
tal definitions. Section 3 identifies a limitation in the existing score function and proposes
an alternative score function to address this issue within the context of the CIF environ-
ment. Section 4 introduces Dombi aggregation operators for CIFS and examines their basic
properties. Section 5 employs the newly defined operators to select the optimal approach
for large-scale water purification. In Section 6, a comparative analysis is presented to
demonstrate the effectiveness and feasibility of this novel approach relative to established
techniques. Lastly, the paper concludes by summarizing the key findings and implications.

2. Preliminaries

This section comprises some basic definitions that are helpful to understand the work
presented in this article.
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Definition 1. ([6]). An intuitionistic fuzzy set (IFS) A of universal set X is defined as

A = {(x, µA(x), νA(x))|x ∈ X},

where µA, νA : X → [0, 1] represents the membership degree and non-membership degree functions,
respectively, that satisfy the condition 0 ≤ µA(x) + νA(x) ≤ 1. The hesitancy margin of the IFS is
defined as πA(x) = 1− µA(x)− νA(x).

Definition 2. ([29]). A complex fuzzy set (CFS) A defined on a universe of discourse X is
characterized by a membership function µA(x) that allocates each element of X to a closed-unit
circle in a complex plane and is written as r̂A(x)ei2πθ̂A(x), where r̂A(x) denotes the real-valued
function from X to the closed-unit interval and ei2πθ̂A(x) is a periodic function whose periodic law
and principal period are 2π and 0 ≤ θ̂A(x) ≤ 1, respectively.

Definition 3. ([30]). A CIF A of universal set X is defined as A = {(x, µA(x), νA(x))|x ∈ X},
where µA and νA are the complex-valued membership degree and non-membership degree func-
tions, respectively, defined from X to the unit closed circle, defined as µA(x) = r̂A(x)ei2πθ̂A(x),
νA(x) = k̂A(x)ei2πφ̂A(x), along with 0 ≤ r̂A(x), k̂A(x), θ̂A(x), φ̂A(x), r̂A(x) + k̂A(x), θ̂A(x) +
φ̂A(x) ≤ 1.

In the rest of the article, we write membership and non-membership degrees of x ∈ X
as x =

((
r̂, θ̂
)
,
(

k̂, φ̂
))

and we call this representation of the element x as a CIF number

where 0 ≤ r̂, k̂, r̂ + k̂ ≤ 1 and 0 ≤ θ̂, φ̂, θ̂ + φ̂ ≤ 1.

Definition 4. ([30]). Consider two CIFNs: a1 =
((

r̂1, θ̂1
)
,
(

k̂1, φ̂1

))
and a2 =

((
r̂2, θ̂2

)
,
(

k̂2, φ̂2

))
. The basic operations on these numbers are defined in the sub-

sequent ways:

1. a1 ≺ a2, i f r̂1

〈
r̂2, k̂1

〉
k̂2, θ̂1

〈
θ̂2 and φ̂1

〉
φ̂2,

2. a1 = a2, i f r̂1 = r̂2, k̂1 = k̂2, θ̂1 = θ̂2 and φ̂1 = φ̂2,

3. ac
1 =

((
k̂1, φ̂1

)
,
(
r̂1, θ̂1

))
.

Definition 5. ([33]). Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of

CIFNs. In light of the CIF weighted averaging (CIFWA) operator, the aggregated value of these
CIFNs is interpreted as follows:

CIFWA(a1, a2, . . . , am) =


(

1−
m
∏

γ=1
(1− r̂γ)

ξγ , 1−
m
∏

γ=1

(
1− θ̂γ

)ξγ

)
,(

m
∏

γ=1

(
k̂γ

)ξγ
,

m
∏

γ=1

(
φ̂γ

)ξγ

)


where ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m), such that 0 ≤ ξγ ≤ 1

for γ = 1, 2, 3, . . . , m and ∑m
γ=1 ξγ = 1.
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Definition 6. ([33]). Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of

CIFNs. In light of the CIF ordered weighted averaging (CIFOWA) operator, the aggregated value of
these CIFNs is interpreted as follows:

CIFOWA(a1, a2, . . . , am) =


(

1−
m
∏

γ=1

(
1− r̂σ(γ)

)ξγ
, 1−

m
∏

γ=1

(
1− θ̂σ(γ)

)ξγ

)
,(

m
∏

γ=1

(
k̂σ(γ)

)ξγ
,

m
∏

γ=1

(
φ̂σ(γ)

)ξγ

)


where (σ(1), σ(2), . . . , σ(m)) is a permutation of (1, 2, . . . , m), such that aσ(γ−1) ≥ aσ(γ)∀γ =

1, 2, . . . m; ξ = (ξ1, ξ2, . . . , ξm)
T is an associated weight vector of aγ(γ = 1, 2, 3, . . . , m), such

that 0 ≤ ξγ ≤ 1 for γ = 1, 2, 3, . . . , m and ∑m
γ=1 ξγ = 1.

Definition 7. ([33]). Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of

CIFNs. In light of the CIF weighted geometric (CIFWG) operator, the aggregated value of these
CIFNs is interpreted as follows:

CIFWG(a1, a2, . . . , am) =


(

m
∏

γ=1
(r̂γ)

ξγ ,
m
∏

γ=1

(
θ̂γ

)ξγ

)
,(

1−
m
∏

γ=1

(
1− k̂γ

)ξγ
, 1−

m
∏

γ=1

(
1− φ̂γ

)ξγ

)


where ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m), such that 0 ≤ ξγ ≤ 1

for γ = 1, 2, 3, . . . , m and ∑m
γ=1 ξγ = 1.

Definition 8. ([33]). Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of

CIFNs. In light of the CIF ordered weighted geometric (CIFOWG) operator, the aggregated value of
these CIFNs is interpreted as follows:

CIFOWG(a1, a2, . . . , am) =


(

m
∏

γ=1

(
r̂σ(γ)

)ξγ
,

m
∏

γ=1

(
θ̂σ(γ)

)ξγ

)
,(

1−
m
∏

γ=1

(
1− k̂σ(γ)

)ξγ
,

m
∏

γ=1

(
1− φ̂σ(γ)

)ξγ

)


where (σ(1), σ(2), . . . , σ(m)) is a permutation of (1, 2, . . . , m), such that aσ(γ−1) ≥ aσ(γ)∀γ =

1, 2, . . . m; ξ = (ξ1, ξ2, . . . , ξm)
T is an associated weight vector of aγ(γ = 1, 2, 3, . . . , m), such

that 0 ≤ ξγ ≤ 1 for γ = 1, 2, 3, . . . , m and ∑m
γ=1 ξγ = 1.

Some certain types of triangular norms and conorms are discussed in the following way.

Definition 9. ([46]). For a,b ∈ R, the Dombi t-norm and t-conorm are denoted by Dom(a, b) and
Dom′(a, b), respectively, such that Dom(a, b) = 1

1+
{
( 1−a

a )
$
+( 1−b

b )
$
} 1

$
and

Dom′(a, b) = 1

1+
{
( a

1−a )
$
+( b

1−b )
$
} 1

$
, where $ ≥ 1 and (a, b) ∈ [0, 1]× [0, 1]. Here,

Dom(a, b) = 1

1+
{
( 1−a

a )
$
+( 1−b

b )
$
} 1

$
and Dom′(a, b) = 1

1+
{
( a

1−a )
$
+( b

1−b )
$
} 1

$
represent the Dombi

product Dombi sum, respectively.

Definition 10. ([26]). The CIFNs are ranked in the framework of the following score and accu-
racy functions:
For any CIFN a0 =

((
r̂0, θ̂0

)
,
(

k̂0, φ̂0

))
, the score function
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and accuracy function
Ҫ(a0) = r̂0 + θ̂0 − k̂0 − φ̂0

Ҥ(a0) = r̂0 + θ̂0 + k̂0 + φ̂0

where Ҫ(a0) ∈ [−2, 2] and Ҥ(a0) ∈ [0, 2]. Moreover, any two CIFNs a1 and a2 satisfy the
following comparison laws:

1. If Ҫ(a1) > Ҫ(a2), then a1 � a2,
2. If Ҫ(a1) < Ҫ(a2), then a1 ≺ a2,
3. If Ҫ(a1) = Ҫ(a2), then Ҥ(a1) > Ҥ(a2)⇒ a1 � a2 , Ҥ(a1) < Ҥ(a2)⇒ a1 ≺ a2 and

Ҥ(a1) = Ҥ(a2)⇒ a1 ∼ a2.

3. An Improvement of the Existing Score Function of CIFS

In this section, we present an example that indicates deficiencies of the score function
of CIFNs developed in [26] and improve it in the subsequent discussion.

Example 1. Suppose a1 = ((0.3, 0.6), (0.35, 0.55)) and a2 = ((0.4, 0.5), (0.2, 0.7)) are any two
CIFNs. The application of Definition 10 on CIFNs a1 and a2 gives that Ҫ(a1) = Ҫ(a2) = 0
and Ҥ(a1) = Ҥ(a2) = 1.8. In view of property 3(c) of Definition 10, one can easily observe the
incomparability of CIFNs a1 and a2.

This indicates the deficiency of the score function under consideration. The above
discussion leads us to improve this score function in the following definition.

Definition 11. Let a0 =
((

r̂0, θ̂0
)
,
(

k̂0, φ̂0

))
be a CIFN. The improved score functionҠ(a0) of

CIFN is defined as

Ҡ(a0) =
k̂0 + φ̂0 − r̂0 − θ̂0

2
+

r̂0 + θ̂0 + 2
(

r̂0θ̂0 − k̂0φ̂0

)
r̂0 + θ̂0 + k̂0 + φ̂0

where g(a0) is the range of the score function and 0 ≤ g(a0) ≤ 2.

Moreover, the above-proposed score function satisfies the comparison law for any
two CIFNs a1 and a2, that is, Ҡ(a1) > Ҡ(a2)⇒ a1 � a2, Ҡ(a1) < Ҡ(a2)⇒ a1 ≺ a2, and
Ҡ(a1) = Ҡ(a2)⇒ a1 ∼ a2.

To illustrate the accuracy of the proposed score function for CIFN, consider the follow-
ing example.

Example 2. Suppose a1 = ((0.3, 0.6), (0.35, 0.55)) and a2 = ((0.4, 0.5), (0.2, 0.7)) are two
CIFNs. The application of Definition 11 on the two CIFNs a1 and a2 gives that Ҡ(a1) = 0.486 and
Ҡ(a2) = 0.567. Thus, in view of property 2 of Definition 11, we have a1 ≺ a2. This fact suggests
that a2 is better than a1.

The above discussion shows that the proposed score function is more suitable and
gives more accurate results for decision analysis.

4. Dombi Operations on Complex Intuitionistic Fuzzy Numbers

In this section, we develop the Dombi operations in the framework of the
CIF environment.

Definition 12. Let a1 =
((

r̂1, θ̂1
)
,
(

k̂1, φ̂1

))
and a2 =

((
r̂2, θ̂2

)
,
(

k̂2, φ̂2

))
be any two CIFNs.

Some of the basic operations on a1 and a2 for $ ≥ 1 and ψ > 0 are defined as
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1. a1
⊕

a2 =



1− 1

1+
{(

r̂1
1−r̂1

)$
+
(

r̂2
1−r̂2

)$} 1
$

, 1− 1

1+
{(

θ̂1
1−θ̂1

)$

+
(

θ̂2
1−θ̂2

)$
} 1

$

,

 1

1+
{(

1−k̂1
k̂1

)$

+
(

1−k̂2
k̂2

)$
} 1

$
, 1

1+
{(

1−φ̂1
φ̂1

)$
+
(

1−φ̂2
φ̂2

)$} 1
$




,

2. a1
⊗

a2 =



 1

1+
{(

1−r̂1
r̂1

)$
+
(

1−r̂2
r̂2

)$} 1
$

, 1

1+
{(

1−θ̂1
θ̂1

)$

+
(

1−θ̂2
θ̂2

)$
} 1

$

,

1− 1

1+
{(

k̂1
1−k̂1

)$

+
(

k̂2
1−k̂2

)$
} 1

$
, 1− 1

1+
{(

φ̂1
1−φ̂1

)$
+
(

φ̂2
1−φ̂2

)$} 1
$




,

3. ψa1 =


1− 1

1+
{

ψ
(

r̂1
1−r̂1

)$} 1
$

, 1− 1

1+
{

ψ
(

θ̂1
1−θ̂1

)$
} 1

$

,

 1

1+
{

ψ
(

1−k̂1
k̂1

)$
} 1

$
, 1

1+
{

ψ
(

1−φ̂1
φ̂1

)$} 1
$


,

4. aψ
1 =


 1

1+
{

ψ
(

1−r̂1
r̂1

)$} 1
$

, 1

1+
{

ψ
(

1−θ̂1
θ̂1

)$
} 1

$

,

1− 1

1+
{

ψ
(

k̂1
1−k̂1

)$
} 1

$
, 1− 1

1+
{

ψ
(

φ̂1
1−φ̂1

)$} 1
$


.

In the following definition, we propose a Dombi arithmetic aggregation operator for
CIFS, namely, a CIF Dombi weighted averaging (CIFDWA) operator.

Definition 13. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3 . . . m) represent the number of CIFNs.

The CIFDWA operator is a mapping CIFDWA : am → a defined by

CIFDWA(a1, a2, . . . , am) =
⊕m

γ=1
(ξγaγ),

where ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m), such that 0 ≤ ξγ ≤ 1

for γ = 1, 2, 3, . . . , m and ∑m
γ=1 ξγ = 1.

Theorem 1. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represents the number of CIFNs.

Then, the aggregated value of these CIFNs in the framework of the CIFDWA operator is also a
CIFN and is determined in the following way:

CIFDWA(a1, a2, . . . , am) =
⊕m

γ=1
(ξγaγ),

=



1− 1

1+
{

∑m
γ=1 ξγ

(
r̂γ

1−r̂γ

)$} 1
$

, 1− 1

1+
{

∑m
γ=1 ξγ

(
θ̂γ

1−θ̂γ

)$} 1
$

,

 1

1+
{

∑m
γ=1 ξγ

(
1−k̂γ

k̂γ

)$} 1
$

, 1

1+
{

∑m
γ=1 ξγ

(
1−φ̂γ

φ̂γ

)$} 1
$




where $ > 0, ξ = (ξ1, ξ2, . . . , ξm)

T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m), such that
0 ≤ ξγ ≤ 1 for γ = 1, 2, 3, . . . , m and ∑m

γ=1 ξγ = 1.

Proof. This theorem is demonstrated through the use of the mathematical
induction technique.
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When γ = 1, then clearly ξ 1 = 1.

CIFDWA(a1) =

1− 1
1+ r̂1

1−r̂1

, 1− 1

1+ θ̂1
1−θ̂1

,

 1

1+ 1−k̂1
k̂1

, 1
1+ 1−φ̂1

φ̂1


=
((

1− 1−r̂1
1−r̂1+r̂1

, 1− 1−θ̂1
1−θ̂1+θ̂1

)
,
(

k̂1
k̂1+1−k̂1

, φ̂1
φ̂1+1−φ̂1

))
=
((

r̂1, θ̂1
)
,
(

k̂1, φ̂1

))
This means that

CIFDWA(a1) = a1

Therefore, the equation holds for γ = 1.
Moreover, the application of Definition 13 for γ = 2 gives the following outcome:

CIFDWA(a1, a2) = ξ1a1
⊕

ξ2a2

=



1− 1

1+
{

ξ1

(
r̂1

1−r̂1

)$
+ξ2

(
r̂2

1−r̂2

)$} 1
$

, 1− 1

1+
{

ξ1

(
θ̂1

1−θ̂1

)$

+ξ2

(
θ̂2

1−θ̂2

)$} 1
$

,

 1

1+
{

ξ1

(
1−k̂1

k̂1

)$

+ξ2

(
1−k̂2

k̂2

)$} 1
$

, 1

1+
{

ξ1

(
1−φ̂1

φ̂1

)$

+ξ2

(
1−φ̂2

φ̂2

)$} 1
$




This means that

CIFDWA(a1, a2)

=



1− 1

1+
{

∑2
γ=1 ξγ

(
r̂γ

1−r̂γ

)$} 1
$

, 1− 1

1+
{

∑2
γ=1 ξγ

(
θ̂γ

1−θ̂γ

)$} 1
$

,

 1

1+
{

∑2
γ=1 ξγ

(
1−k̂γ

k̂γ

)$} 1
$

, 1

1+
{

∑2
γ=1 ξγ

(
1−φ̂γ

φ̂γ

)$} 1
$




Hence, the result is valid for γ = 2.

Assuming that the statement is true for γ = s, we have:

CIFDWA(a1, a2, . . . , as) = (ξ1a1)
⊕

(ξ2a2)
⊕

. . .
⊕

(ξsas) =
⊕s

γ=1
(ξγaγ)

=



1− 1

1+
{

∑s+1
γ=1 ξγ

(
r̂γ

1−r̂γ

)$} 1
$

, 1− 1

1+
{

∑s
γ=1 ξγ

(
θ̂γ

1−θ̂γ

)$} 1
$

,

 1

1+
{

∑s
γ=1 ξγ

(
1−k̂γ

k̂γ

)$} 1
$

, 1

1+
{

∑s
γ=1 ξγ

(
1−φ̂γ

φ̂γ

)$} 1
$







Water 2023, 15, 1907 10 of 27

Moreover, for γ = s + 1, we have

CIFDWA(a1, a2, . . . , as, as+1) = (ξ1a1)
⊕
(ξ2a2)

⊕
. . .
⊕
(ξsas)

⊕
(ξs+1as+1)

=
⊕m

γ=1(ξγaγ)
⊕
(ξs+1as+1)

=



 1

1+
{

∑s
γ=1 ξγ

(
1−r̂σ(γ)

r̂σ(γ)

)$} 1
$

, 1

1+

{
∑s

γ=1 ξγ

(
1−θ̂σ(γ)

θ̂σ(γ)

)$} 1
$

,

1− 1

1+

{
∑s

γ=1 ξγ

(
k̂σ(γ)

1−k̂σ(γ)

)$} 1
$

, 1− 1

1+

{
∑s

γ=1 ξγ

(
φ̂σ(γ)

1−φ̂σ(γ)

)$
} 1

$





⊗



 1

1+
{

ξs+1

(
1−r̂σ(s+1)

r̂σ(s+1)

)$} 1
$

, 1

1+

{
ξs+1

(
1−θ̂σ(s+1)

θ̂σ(s+1)

)$} 1
$

,

1− 1

1+

{
ξs+1

(
k̂σ(s+1)

1−k̂σ(s+1)

)$} 1
$

, 1− 1

1+

{
ξs+1

(
φ̂σ(s+1)

1−φ̂σ(s+1)

)$
} 1

$




This means that

CIFDWA(a1, a2, · · · , as+1)

=



1− 1

1+
{

∑s+1
γ=1 ξγ

(
r̂γ

1−r̂γ

)$} 1
$

, 1− 1

1+
{

∑s+1
γ=1 ξγ

(
θ̂γ

1−θ̂γ

)$} 1
$

,

 1

1+
{

∑s+1
γ=1 ξγ

(
1−k̂γ

k̂γ

)$} 1
$

, 1

1+
{

∑s+1
γ=1 ξγ

(
1−φ̂γ

φ̂γ

)$} 1
$




Consequently, we conclude that the statement is true for all positive integral values of γ. �

The following example describes the above-stated fact.

Example 3. Consider the CIFNs a1 = ((0.56, 0.45), (0.44, 0.4)), a2 = ((0.35, 0.45), (0.4, 0.5)),
a3 = ((0.45, 0.6), (0.45, 0.15)), a4 = ((0.45, 0.15), (0.2, 0.5)) and the associated weight vector
ξ = (0.2, 0.3, 0.4, 0.1)T . Then, for $ = 3, we have

{
4
∑

γ=1
ξγ

(
r̂γ

1−r̂γ

)3
} 1

3

= 0.9016,

{
4
∑

γ=1
ξγ

(
θ̂γ

1−θ̂γ

)3
} 1

3

= 1.1755,

{
4
∑

γ=1
ξγ

(
1−k̂γ

k̂γ

)3
} 1

3

= 2.0452,

{
4
∑

γ=1
ξγ

(
1−φ̂γ

φ̂γ

)3
} 1

3

= 4.1957.
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This implies that

CIFDWA(a1, a2, a3, a4) =
⊕4

γ=1(ξγaγ)

= ((0.4741, 0.5403), (0.3284, 0.1925))

Thus, we conclude that the outcome of the above discussion is also a CIFN.

Theorem 2. Idempotency property) If aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m)

are CIFNs such that aγ = a0∀γ, where a0 =
((

r̂0, θ̂0
)
,
(

k̂0, φ̂0

))
is a CIFN. Then

CIFDWA(a1, a2, . . . , am) = a0.

Proof. Since aγ = a0∀γ. Then, by Definition 4, r̂γ = r̂0, θ̂γ = θ̂0, k̂γ = k̂0 and φ̂γ = φ̂0 ∀γ.
By substituting the above relations in Theorem 1, we obtain

CIFDOWG(a1, a2, . . . , am)

=



1− 1

1+
(

1−r̂0
r̂0

)
{∑m

γ=1 ξγ}
1
$

, 1− 1

1+
(

θ̂0
θ̂0

)
{∑m

γ=1 ξγ}
1
$

, 1

1+
(

1−k̂0
k̂0

)
{∑m

γ=1 ξγ}
1
$

, 1

1+
(

1−φ̂0
φ̂0

)
{∑m

γ=1 ξγ}
1
$





=

1− 1
1+
(

r̂0
1−r̂0

) , 1− 1

1+
(

θ̂0
1−θ̂0

)
,

 1

1+
(

1−k̂0
k̂0

) , 1

1+
(

1−φ̂0
φ̂0

)


=
((

r̂0, θ̂0
)
,
(

k̂0, φ̂0

))
This shows that

CIFDWA(a1, a2, . . . , am) = a0

�

Theorem 3. (Boundedness property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) be CIFNs.

Let a− = min
γ
{aγ} =

((
r̂−, θ̂−

)
,
(

k̂−, φ̂−
))

and a+ = max
γ
{aγ} =

((
r̂+, θ̂+

)
,
(

k̂+, φ̂+
))

where r̂− = min
γ
{r̂γ}, θ̂− = min

γ

{
θ̂γ

}
, k̂− = max

γ

{
k̂γ

}
, φ̂− = max

γ

{
φ̂γ

}
, r̂+ = max

γ
{r̂γ},

θ̂+ = max
γ

{
θ̂γ

}
, k̂+ = min

γ

{
k̂γ

}
, φ̂+ = min

γ

{
φ̂γ

}
. Then, a− CIFDWA(a1, a2, . . . , am) ≤ a+.
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Proof. In view of the given conditions, we have

1− 1

1+
{

∑m
γ=1 ξγ

(
r̂−

1−r̂−
)$} 1

$
≤ 1− 1

1+
{

∑m
γ=1 ξγ

(
r̂γ

1−r̂γ

)$} 1
$

≤ 1− 1

1+
{

∑m
γ=1 ξγ

(
r̂+

1−r̂+

)$} 1
$

,

1− 1

1+
{

∑m
γ=1 ξγ

(
θ̂−

1−θ̂−

)$} 1
$
≤ 1− 1

1+
{

∑m
γ=1 ξγ

(
θ̂γ

1−θ̂γ

)$} 1
$

≤ 1− 1

1+
{

∑m
γ=1 ξγ

(
θ̂+

1−θ̂+

)$} 1
$

,

1

1+
{

∑m
γ=1 ξγ

(
1−k̂−

k̂−

)$} 1
$
≥ 1

1+
{

∑m
γ=1 ξγ

(
1−k̂γ

k̂γ

)$} 1
$
≥ 1

1+
{

∑m
γ=1 ξγ

(
1−k̂+

k̂+

)$} 1
$

,

1

1+
{

∑m
γ=1 ξγ

(
1−φ̂−

φ̂−
)$
} 1

$
≥ 1

1+
{

∑m
γ=1 ξγ

(
1−φ̂γ

φ̂γ

)$} 1
$
≥ 1

1+
{

∑m
γ=1 ξγ

(
1−φ̂+

φ̂+

)$
} 1

$
.

In light of Definition 4 and the above relations, we get
a− ≤ CIFDWA(a1, a2, . . . , am) ≤ a+. �

Theorem 4. (Monotonicity property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
and a′γ =

((
r̂′γ, θ̂′γ

)
,
(

k̂′γ, φ̂′γ

))
for γ = 1, 2, 3, . . . , m be two collections of CIFNs. If r̂γ ≤ r̂′γ, k̂γ ≥ k̂′γ, θ̂γ ≤ θ̂′γ and φ̂γ ≥ φ̂′γ ∀γ.
Then CIFDWA(a1, a2, . . . , am) ≤ CIFDWA

(
a′1, a′2, . . . , a′m

)
.

Proof. The proof is a straightforward implementation of Definition 4. �

In the following definition, we propose a Dombi arithmetic aggregation operator for
CIFS, namely, a CIF Dombi ordered weighted averaging (CIFDOWA) operator.

Definition 14. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of

CIFNs. The CIFDOWA operator is a mapping CIFDOWA : am → a defined by

CIFDOWA(a1, a2, . . . , am) =
⊕m

γ=1

(
ξγaσ(γ)

)
,

where ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m), such that 0 ≤ ξγ ≤ 1

for γ = 1, 2, 3, . . . , m and ∑m
γ=1 ξγ = 1; (σ(1), σ(2), . . . , σ(m)) is a permutation of (1, 2, . . . , m)

such that aσ(γ−1) ≥ aσ(γ)∀γ = 1, 2, . . . m.

Theorem 5. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of CIFNs.

Then, the aggregated value of these CIFNs in the framework of the CIFDOWA operator is also a
CIFN and is determined in the following way:

CIFDOWA(a1, a2, . . . , am) =
⊕m

γ=1

(
ξγaσ(γ)

)
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=



1− 1

1+
{

∑m
γ=1 ξγ

(
r̂σ(ςγ)

1−r̂σ(ςγ)

)$} 1
$

, 1− 1

1+

{
∑m

γ=1 ξγ

(
θ̂σ(ςγ)

1−θ̂σ(ςγ)

)$} 1
$

,

 1

1+

{
∑m

γ=1 ξγ

(
1−k̂σ(ςγ)

k̂σ(ςγ)

)$} 1
$

, 1

1+

{
∑m

γ=1 ξγ

(
1−φ̂σ(ςγ)

φ̂σ(ςγ)

)$
} 1

$




where (σ(1), σ(2), . . . , σ(m)) is a permutation of (1, 2, . . . , m) such that aσ(γ−1) ≥ aσ(γ)∀γ =

1, 2, . . . , m; $ > 0, ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m) and

0 ≤ ξγ ≤ 1 for γ = 1, 2, 3, . . . , m such that ∑m
γ=1 ξγ = 1.

Proof. The proof of this theorem is similar to that of Theorem 1. �

The following example illustrates the aforementioned fact.

Example 4. Consider the CIFNs a1 = ((0.4, 0.3), (0.5, 0.55)), a2 = ((0.47, 0.5), (0.49, 0.25)),
a3 = ((0.63, 0.7), (0.1, 0.25)), a4 = ((0.3, 0.5), (0.15, 0.3)), a5 = ((0.55, 0.63), (0.3, 0.2))
and the associated weight vector ξ = (0.25, 0.15, 0.13, 0.27, 0.2)T . To aggregate these values
by CIFDOWA operator, we first permute these numbers using Definition 11 to acquire the
subsequent data.

Ҡ(a1) = 0.398, Ҡ(a2) = 0.584, Ҡ(a3) = 0.797, Ҡ(a4) = 0.633, Ҡ(a5) = 0.703

By applying Definition 14, the permuted values of the CIFNs are calculated as follows: aσ(1)
= ((0.63, 0.7), (0.1, 0.25)), aσ(2) = ((0.55, 0.63), (0.3, 0.2)), aσ(3) = ((0.4, 0.3), (0.5, 0.55)),
aσ(4) = ((0.47, 0.5), (0.49, 0.25)) and aσ(5) = ((0.4, 0.3), (0.5, 0.55)). Then, for $ = 3,
we have {

5
∑

γ=1
ξγ

( r̂σ(γ)

1−r̂σ(γ)

)3
} 1

3

= 1.209,

{
5
∑

γ=1
ξγ

(
θ̂σ(γ)

1−θ̂σ(γ)

)3
} 1

3

= 1.630,

{
5
∑

γ=1
ξγ

(
1−k̂σ(γ)

k̂σ(γ)

)3
} 1

3

= 5.928,

{
5
∑

γ=1
ξγ

(
1−φ̂σ(γ)

φ̂σ(γ)

)3
} 1

3

= 2.940.

This implies that

CIFDOWA(a1, a2, a3, a4, a5) =
⊕5

γ=1

(
ξγaσ(γ)

)
= ((0.547, 0.620), (0.144, 0.254)

Consequently, we conclude that the result of the preceding discussion is also a CIFN.

Theorem 6. (Idempotency property) If aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) are CIFNs

such that aγ = a0∀γ, where a0 =
((

r̂0, θ̂0
)
,
(

k̂0, φ̂0

))
is a CIFN. Then

CIFDOWA(a1, a2, . . . , am) = a0.

Proof. The proof of this theorem is similar to that of Theorem 2. �

Theorem 7. (Boundedness property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m)

be CIFNs. Let a− = min
γ
{aγ} =

((
r̂−, θ̂−

)
,
(

k̂−, φ̂−
))

and a+ = max
γ
{aγ}
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=
((

r̂+, θ̂+
)
,
(

k̂+, φ̂+
))

where r̂− = min
γ
{r̂γ}, θ̂− = min

γ

{
θ̂γ

}
, k̂− = max

γ

{
k̂γ

}
,

φ̂− = max
γ

{
φ̂γ

}
, r̂+ = max

γ
{r̂γ}, θ̂+ = max

γ

{
θ̂γ

}
, k̂+ = min

γ

{
k̂γ

}
, φ̂+ = min

γ

{
φ̂γ

}
. Then,

a− ≤ CIFDOWA(a1, a2, . . . , am) ≤ a+.

Proof. The proof of this theorem is similar to that of Theorem 3. �

Theorem 8. (Monotonicity property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
and

a′γ =
((

r̂′γ, θ̂′γ

)
,
(

k̂′γ, φ̂′γ

))
for γ = 1, 2, 3, . . . , m be two collections of CIFNs. If

r̂σ(γ) ≤ r̂′
σ(γ), k̂σ(γ) ≥ k̂′

σ(γ), θ̂σ(γ) ≤ θ̂′
σ(γ) and φ̂σ(γ) ≥ φ̂′

σ(γ) ∀γ. Then
CIFDOWA(a1, a2, . . . , am) ≤ CIFDOWA

(
a′1, a′2, . . . , a′m

)
.

Proof. The proof is a simple application of Definition 4. �

In the subsequent definition, we propose the CIF Dombi weighted geometric
(CIFDWG) operator.

Definition 15. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of

CIFNs. The CIFDWG operator is a mapping CIFDWG : am → a defined by

CIFDWG(a1, a2, . . . , am) = ⊗m
γ=1(aγ)

ξγ

where ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m) and 0 ≤ ξγ ≤ 1 for

γ = 1, 2, 3, . . . , m such that ∑m
γ=1 ξγ = 1.

Theorem 9. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3 . . . m) represent the number of CIFNs.

Then, the aggregate value of these CIFNs within the context of the CIFDWG operator is also a CIFN
and is calculated as follows:

CIFDWG(a1, a2, . . . , am) = ⊗m
γ=1(aγ)

ξγ

=



 1

1+
{

∑m
γ=1 ξγ

(
r̂γ

1−r̂γ

)$} 1
$

, 1− 1

1+
{

∑m
γ=1 ξγ

(
θ̂γ

1−θ̂γ

)$} 1
$

,

 1

1+
{

∑m
γ=1 ξγ

(
1−k̂γ

k̂γ

)$} 1
$

, 1

1+
{

∑m
γ=1 ξγ

(
1−φ̂γ

φ̂γ

)$} 1
$




where $ > 0, ξ = (ξ1, ξ1, . . . , ξm)

T is a weighted vector of aγ(γ = 1, 2, 3 . . . m), such that
0 ≤ ξγ ≤ 1 for γ = 1, 2, 3, . . . , m and ∑m

γ=1 ξγ = 1.

Proof. Proof of this theorem is analogous to Theorem 1. �

The following example describes the above-stated fact.
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Example 5. Consider the CIFNs a1 = ((0.3, 0.5), (0.4, 0.4)), a2 = ((0.7, 0.5), (0.2, 0.5)),
a3 = ((0.45, 0.53), (0.55, 0.25)) and the associated weight vector ξ = (0.12, 0.55, 0.31)T . Then,
for $ = 5, we have

{
3
∑

γ=1
ξγ

(
1−r̂γ

r̂γ

)5
} 1

5

= 1.557,

{
3
∑

γ=1
ξγ

(
1−θ̂γ

θ̂γ

)5
} 1

5

= 0.966,

{
3
∑

γ=1
ξγ

(
k̂γ

1−k̂γ

)5
} 1

5

= 0.971,

{
3
∑

γ=1
ξγ

(
φ̂γ

1−φ̂γ

)5
} 1

5

= 0.893.

This implies that

CIFDWG(a1, a2, a3) = ⊗3
γ=1(aγ)

ξγ = ((0.391, 0.509), (0.493, 0.472))

Thus, we conclude that the outcome of the above discussion is also a CIFN.

Theorem 10. (Idempotency property) If aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3 . . . m)

are CIFNs such that aγ = a0∀γ, where a0 =
((

r̂0, θ̂0
)
,
(

k̂0, φ̂0

))
is a CIFN. Then

CIFDWG(a1, a2, . . . , am) = a0.

Proof. Proof of this theorem is analogous to Theorem 2. �

Theorem 11. (Boundedness property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3 . . . m)

be CIFNs. Let a− = min
γ
{aγ} =

((
r̂−, θ̂−

)
,
(

k̂−, φ̂−
))

and a+ = max
γ
{aγ}

=
((

r̂+, θ̂+
)
,
(

k̂+, φ̂+
))

where r̂− = min
γ
{r̂γ}, θ̂− = min

γ

{
θ̂γ

}
, k̂− = max

γ

{
k̂γ

}
,

φ̂− = max
γ

{
φ̂γ

}
, r̂+ = max

γ
{r̂γ}, θ̂+ = max

γ

{
θ̂γ

}
, k̂+ = min

γ

{
k̂γ

}
, φ̂+ = min

γ

{
φ̂γ

}
. Then,

a− ≤ CIFDWG(a1, a2, . . . , am) ≤ a+.

Proof. Proof of this theorem is analogous to Theorem 3. �

Theorem 12. (Monotonicity property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
and a′γ =

((
r̂′γ, θ̂′γ

)
,
(

k̂′γ, φ̂′γ

))
for γ = 1, 2, 3, . . . , m be two collections of CIFNs. If

r̂γ ≤ r̂′γ, k̂γ ≥ k̂′γ, θ̂γ ≤ θ̂′γ and φ̂γ ≥ φ̂′γ ∀γ . Then CIFDWG(a1, a2, . . . , am) ≤
CIFDWG

(
a′1, a′2, . . . , a′m

)
.

Proof. The proof is a straightforward implementation of Definition 4. �

In the following definition, we propose a Dombi geometric aggregation operator for
CIFS, namely, a CIF Dombi ordered weighted geometric (CIFDOWG) operator.

Definition 16. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3 . . . m) represent the number of CIFNs.

The CIFDOWG operator is a mapping CIFDOWG : am → a defined by

CIFDOWG(a1, a2, . . . , am) =
⊗m

γ=1

(
aσ(γ)

)ξγ

where ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m), such that 0 ≤ ξγ ≤ 1

for γ = 1, 2, 3, . . . , m and ∑m
γ=1 ξγ = 1; (σ(1), σ(2), . . . , σ(m)) is a permutation of (1, 2, . . . , m)

such that aσ(γ−1) ≥ aσ(γ)∀γ = 1, 2, . . . m.
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Theorem 13. Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m) represent the number of CIFNs.

Then, the aggregate value of these CIFNs within the framework of the CIFDOWG operator is also a
CIFN and is calculated as follows:

CIFDOWG(a1, a2, . . . , am) =
m⊗

γ=1

(
aσ(γ)

)ξγ

=



 1

1+
{

∑s
γ=1 ξγ

(
1−r̂σ(γ)

r̂σ(γ)

)$} 1
$

, 1

1+

{
∑s

γ=1 ξγ

(
1−θ̂σ(γ)

θ̂σ(γ)

)$} 1
$

,

1− 1

1+

{
∑s

γ=1 ξγ

(
k̂σ(γ)

1−k̂σ(γ)

)$} 1
$

, 1− 1

1+

{
∑s

γ=1 ξγ

(
φ̂σ(γ)

1−φ̂σ(γ)

)$
} 1

$




where (σ(1), σ(2), . . . , σ(m)) is a permutation of (1, 2, . . . , m) such that aσ(γ−1) ≥ aσ(γ)∀γ =

1, 2, . . . m; $ > 0, ξ = (ξ1, ξ2, . . . , ξm)
T is a weighted vector of aγ(γ = 1, 2, 3, . . . , m) and

0 ≤ ξγ ≤ 1 for γ = 1, 2, 3, . . . , m such that ∑m
γ=1 ξγ = 1.

Proof. This theorem is proven through mathematical induction.
When γ = 1, then clearly ξ 1 = 1 and aσ(1) = a1.

CIFDOWG(a1) =

( 1
1+ 1−r̂1

r̂1

, 1

1+ 1−θ̂1
θ̂

)
,

1− 1

1+ k̂1
1−k̂1

, 1− 1
1+ φ̂1

1−φ̂1


=
((

r̂1
r̂1+1−r̂1

, θ̂1
θ̂1+1−θ̂1

)
,
(

1− 1−k̂1
1−k̂1+k̂1

, 1− 1−φ̂1
1−φ̂1+φ̂1

))
=
((

r̂1, θ̂1
)
,
(

k̂1, φ̂1

))
This means that

CIFDOWG(a1) = a1

Therefore, the equation holds for γ = 1.
Moreover, the application of Definition 16 for γ = 2 gives the following outcome:

CIFDOWG(a1, a2) =
(

aσ(1)

)ξ1 ⊕
(aσ(2))

ξ2

=



 1

1+
{

ξ1

(
1−r̂σ(1)

r̂σ(1)

)$

+ξ2

(
1−r̂σ(2)

r̂σ(2)

)$} 1
$

, 1

1+

{
ξ1

(
1−θ̂σ(1)

θ̂σ(1)

)$

+ξ2

(
1−θ̂σ(2)

θ̂σ(2)

)$} 1
$

,


1− 1

1+

{
ξ1

(
k̂σ(1)

1−k̂σ(1)

)$

+ξ2

(
k̂σ(2)

1−k̂σ(2)

)$} 1
$

,

1− 1

1+

{
ξ1

(
φ̂σ(1)

1−φ̂σ(1)

)$

+ξ2

(
φ̂σ(2)

1−φ̂σ(2)

)$
} 1

$
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This means that

CIFDOWG(a1, a2)

=



 1

1+
{

∑2
γ=1 ξγ

(
1−r̂σ(γ)

r̂σ(γ)

)$} 1
$

, 1

1+

{
∑2

γ=1 ξγ

(
1−θ̂σ(γ)

θ̂σ(γ)

)$} 1
$

,

1− 1

1+

{
∑2

γ=1 ξγ

(
k̂σ(γ)

1−k̂σ(γ)

)$} 1
$

, 1− 1

1+

{
∑2

γ=1 ξγ

(
φ̂σ(γ)

1−φ̂σ(γ)

)$
} 1

$




Hence, the result is valid for γ = 2.

Assuming that the statement is true for γ = s, we have:

CIFDOWG(a1, a2, . . . , as) = (aσ(1))
ξ1
⊗

(aσ(2))
ξ2
⊗

. . .
⊗

(aσ(s))
ξs =

⊗s

γ=1

(
aσ(γ)

)ξγ

=



1− 1

1+

{
∑s

γ=1 ξγ

(
k̂σ(γ)

1−k̂σ(γ)

)$} 1
$

, 1− 1

1+

{
∑s

γ=1 ξγ

(
φ̂σ(γ)

1−φ̂σ(γ)

)$
} 1

$


 1

1+
{

∑s
γ=1 ξγ

(
1−r̂σ(γ)

r̂σ(γ)

)$} 1
$

, 1

1+

{
∑s

γ=1 ξγ

(
1−θ̂σ(γ)

θ̂σ(γ)

)$} 1
$

,


Moreover, for γ = s + 1, we have

CIFDOWG(a1, a2, . . . , as) = (aσ(1))
ξ1
⊗

(aσ(2))
ξ2 ⊗ . . .

⊗
(aσ(s+1))

ξs+1

=
⊗s

γ=1

(
aσ(γ)

)ξγ ⊗
(aσ(s+1))

ξs+1

=



 1

1+
{

∑s
γ=1 ξγ

(
1−k̂γ

k̂γ

)$} 1
$

, 1

1+
{

∑s
γ=1 ξγ

(
1−φ̂γ

φ̂γ

)$} 1
$

1− 1

1+
{

∑s
γ=1 ξγ

(
r̂γ

1−r̂γ

)$} 1
$

, 1− 1

1+
{

∑s
γ=1 ξγ

(
θ̂γ

1−θ̂γ

)$} 1
$

,



⊗



 1

1+
{

ξs+1

(
1−k̂s+1

k̂s+1

)$} 1
$

, 1

1+
{

ξs+1

(
1−φ̂s+1

φ̂s+1

)$} 1
$

1− 1

1+
{

ξs+1

( r̂s+1
1−r̂s+1

)$
} 1

$
, 1− 1

1+
{

ξs+1

(
θ̂s+1

1−θ̂s+1

)$} 1
$

,
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This means that

CIFDOWG(a1, a2, · · · , as+1)

=



 1

1+
{

∑s+1
γ=1 ξγ

(
1−r̂σ(γ)

r̂σ(γ)

)$} 1
$

, 1

1+

{
∑s+1

γ=1 ξγ

(
1−θ̂σ(γ)

θ̂σ(γ)

)$} 1
$

,

1− 1

1+

{
∑s+1

γ=1 ξγ

(
k̂σ(γ)

1−k̂σ(γ)

)$} 1
$

, 1− 1

1+

{
∑s+1

γ=1 ξγ

(
φ̂σ(γ)

1−φ̂σ(γ)

)$
} 1

$




This leads us to the conclusion that for every positive integral value of γ, the assertion is
correct.
�

The following examns the aforementioned fact.

Example 6. Consider the CIFNs a1 = ((0.25, 0.3), (0.6, 0.4)), a2 = ((0.3, 0.67), (0.5, 0.3)),
a3 = ((0.4, 0.5), (0.5, 0.4)), a4 = ((0.6, 0.4), (0.4, 0.3)) and the associated weight vector
ξ = (0.15, 0.25, 0.35, 0.25)T . To aggregate these values by CIFDOWG operator, we first per-
mute these numbers using Definition 11 to acquire the subsequent data.

Ҡ(a1) = 0.367 Ҡ(a2) = 0.521, Ҡ(a3) = 0.500, Ҡ(a4) = 0.579

By applying Definition 16, the permuted values of the CIFNs are calculated as follows:
aσ(1) = ((0.6, 0.4), (0.4, 0.3)), aσ(2) = ((0.3, 0.67), (0.5, 0.3)), aσ(3) = ((0.4, 0.5), (0.5, 0.4))
and aσ(4) = ((0.25, 0.3), (0.6, 0.4)). Then, for $ = 4, we have

{
4
∑

γ=1
ξγ

( 1−r̂σ(γ)

r̂σ(γ)

)4
} 1

4

= 2.330,

{
4
∑

γ=1
ξγ

(
1−θ̂σ(γ)

θ̂σ(γ)

)4
} 1

4

= 1.709,

{
4
∑

γ=1
ξγ

(
k̂σ(γ)

1−k̂σ(γ)

)4
} 1

4

= 1.173,

{
4
∑

γ=1
ξγ

(
φ̂σ(γ)

1−φ̂σ(γ)

)4
} 1

4

= 0.603.

This implies that

CIFDOWG(a1, a2, a3, a4) =
⊗4

γ=1

(
aσ(γ)

)ξγ

= ((0.300, 0.369), (0.540, 0.376)

This leads us to the conclusion that the outcome of the preceding discussion is also a CIFN.

Theorem 14. (Idempotency property) If aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3, . . . , m)

are CIFNs such that aγ = a0∀γ, where a0 =
((

r̂0, θ̂0
)
,
(

k̂0, φ̂0

))
is a CIFN. Then

CIFDOWG(a1, a2, . . . , am) = a0.
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Proof. Since aγ = a0∀γ. Then, by Definition 4, r̂γ = r̂0, θ̂γ = θ̂0, k̂γ = k̂0 and φ̂γ = φ̂0 ∀γ.
By substituting the above relations in Theorem 13, we obtain

CIFDOWG(a1, a2, . . . , am)

=



 1

1+
(

1−r̂0
r̂0

)
{∑m

γ=1 ξγ}
1
$

, 1

1+
(

1−θ̂0
θ̂0

)
{∑m

γ=1 ξγ}
1
$

,1− 1

1+
(

k̂0
1−k̂0

)
{∑m

γ=1 ξγ}
1
$

, 1− 1

1+
(

φ̂0
1−φ̂0

)
{∑m

γ=1 ξγ}
1
$





=

 1
1+
(

1−r̂0
r̂0

) , 1

1+
(

1−θ̂0
θ̂0

)
,

1− 1

1+
(

k̂0
1−k̂0

) , 1− 1

1+
(

φ̂0
1−φ̂0

)


=
((

r̂0, θ̂0
)
,
(

k̂0, φ̂0

))
This shows that

CIFDOWG(a1, a2, . . . , am) = a0.

�

Theorem 15. (Boundedness property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
(γ = 1, 2, 3 . . . m) be CIFNs.

Let a− = min
γ
{aγ} =

((
r̂−, θ̂−

)
,
(

k̂−, φ̂−
))

and a+ = max
γ
{aγ} =

((
r̂+, θ̂+

)
,
(

k̂+, φ̂+
))

where r̂− = min
γ
{r̂γ}, θ̂− = min

γ

{
θ̂γ

}
, k̂− = max

γ

{
k̂γ

}
, φ̂− = max

γ

{
φ̂γ

}
, r̂+ = max

γ
{r̂γ},

θ̂+ = max
γ

{
θ̂γ

}
, k̂+ = min

γ

{
k̂γ

}
, φ̂+ = min

γ

{
φ̂γ

}
. Then, a− ≤ CIFDOWG(a1, a2, . . . , am)

≤ a+.

Proof. In view of the given conditions, we have

1

1 +
{

∑m
γ=1 ξγ

(
1−r̂−

r̂−

)$} 1
$

≤ 1

1 +
{

∑m
γ=1 ξγ

( 1−r̂σ(γ)

r̂σ(γ)

)$
} 1

$

≤ 1

1 +
{

∑m
γ=1 ξγ

(
1−r̂+

r̂+

)$} 1
$

,

1

1 +
{

∑m
γ=1 ξγ

(
1−θ̂−

θ̂−

)$} 1
$

≤,
1

1 +
{

∑m
γ=1 ξγ

(
1−θ̂σ(γ)

θ̂σ(γ)

)$} 1
$

≤ 1

1 +
{

∑m
γ=1 ξγ

(
1−θ̂+

θ̂+

)$} 1
$

,

1− 1

1+
{

∑m
γ=1 ξγ

(
k̂−

1−k̂−

)$} 1
$
≥ 1− 1

1+

{
∑m

γ=1 ξγ

(
k̂σ(γ)

1−k̂σ(γ)

)$} 1
$

≥ 1− 1

1+
{

∑m
γ=1 ξγ

(
k̂+

1−k̂+

)$} 1
$

,

1− 1

1+
{

∑m
γ=1 ξγ

(
φ̂−

1−φ̂−
)$
} 1

$
≥ 1− 1

1+

{
∑m

γ=1 ξγ

(
φ̂σ(γ)

1−φ̂σ(γ)

)$
} 1

$

≥ 1− 1

1+
{

∑m
γ=1 ξγ

(
φ̂+

1−φ̂+

)$
} 1

$
.
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In light of Definition 4 and the above relations, we get

a− ≤ CIFDOWG(a1, a2, . . . , am) ≤ a+.

�

Theorem 16. (Monotonicity property) Let aγ =
((

r̂γ, θ̂γ

)
,
(

k̂γ, φ̂γ

))
and

a′γ =
((

r̂′γ, θ̂′γ

)
,
(

k̂′γ, φ̂′γ

))
for γ = 1, 2, 3, . . . , m be two collections of CIFNs. If

r̂σ(γ) ≤ r̂′
σ(γ), k̂σ(γ) ≥ k̂′

σ(γ), θ̂σ(γ) ≤ θ̂′
σ(γ) and φ̂σ(γ) ≥ φ̂′

σ(γ) ∀γ. Then
CIFDOWG(a1, a2, . . . , am) ≤ CIFDOWG

(
a′1, a′2, . . . , a′m

)
.

Proof. The proof is a straightforward implementation of Definition 4. �

5. Application of Proposed CIF Dombi Aggregation Operators in MADM Problem

In this section, we present a technique to solve a MADM problem with CIF informa-
tion by applying CIF Dombi aggregation operators. Let

{
A1,A2,A3, . . . ,Ap

}
be the set of

distinct alternatives;
{
C1, C2, C3, . . . , Cq

}
be the set of attributes; and ξ =

(
ξ1, ξ2, ξ3, . . . , ξq

)
be the associated weight vector of the attributes, where ξγ > 0 for all γ = 1, 2, 3, . . . q such

that ∑
q
γ=1 ξγ = 1. Suppose D = (ϕςγ)p×q =

((
r̂ςγ, θ̂ςγ

)
,
(

k̂ςγ, φ̂ςγ

))
p×q

is the CIF deci-

sion matrix, where r̂ςγ, θ̂ςγ and k̂ςγ, φ̂ςγ are the membership and non-membership grades
assigned by an expert under which an alternative Aς satisfies the criteria Cγ. Moreover,
r̂ςγ, k̂ςγ, θ̂ςγ, φ̂ςγ ∈ [0, 1] such that 0 ≤ r̂ςγ + k̂ςγ, θ̂ςγ + φ̂ςγ ≤ 1. The algorithm to solve the
MADM problem is designed in the following way:

Step 1.
The decision-maker’s preferences, summed up in the CIF decision matrix, are repre-

sented as

D =



((
r̂11, θ̂11

)
,
(

k̂11, φ̂11

)) ((
r̂12, θ̂12

)
,
(

k̂12, φ̂12

))((
r̂21, θ̂21

)
,
(

k̂21, φ̂21

)) ((
r̂22, θ̂22

)
,
(

k̂22, φ̂22

)) · · ·
· · ·

((
r̂1q, θ̂1q

)
,
(

k̂1q, φ̂1q

))((
r̂2q, θ̂2q

)
,
(

k̂2q, φ̂2q

))
...

...
. . .

...((
r̂p1, θ̂p1

)
,
(

k̂p1, φ̂p1

)) ((
r̂p2, θ̂p2

)
,
(

k̂p2, φ̂p2

))
· · ·

((
r̂pq, θ̂pq

)
,
(

k̂pq, φ̂pq

))


Step 2.
Calculate the aggregated values ϕςfor all ς = 1, 2, 3, . . . , p of the alternatives Aς by

applying CIFDWA operator as follows:

ϕς =
((

r̂ς, θ̂ς

)
,
(

k̂ς, φ̂ς

))
= CIFDWA

(
ϕς1, ϕς2, . . . , ϕςq

)
=
⊕

(ξγ ϕςγ)

By applying Theorem 1 to the aforementioned relationship, we get that

ϕς =



1− 1

1+
{

∑
q
γ=1 ξγ

(
r̂ςγ

1−r̂ςγ

)$} 1
$

, 1− 1

1+
{

∑
q
γ=1 ξγ

(
θ̂ςγ

1−θ̂ςγ

)$} 1
$

,

 1

1+
{

∑
q
γ=1 ξγ

(
1−k̂ςγ

k̂ςγ

)$} 1
$

, 1

1+
{

∑
q
γ=1 ξγ

(
1−φ̂ςγ

φ̂ςγ

)$} 1
$
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Similarly, the aggregated values ϕς in the framework of the CIFDOWA operators are
calculated in the following way:

ϕς =
((

r̂ς, θ̂ς

)
,
(

k̂ς, φ̂ς

))
= CIFDOWA

(
ϕς1, ϕς2, . . . , ϕςq

)
=
⊕(

ξγ ϕσ(ςγ)

)
By applying Theorem 5 to the aforementioned relationship, we get that

ϕς =



1− 1

1+
{

∑
q
γ=1 ξγ

(
r̂σ(ςγ)

1−r̂σ(ςγ)

)$} 1
$

, 1− 1

1+

{
∑

q
γ=1 ξγ

(
θ̂σ(ςγ)

1−θ̂σ(ςγ)

)$} 1
$

,

 1

1+

{
∑

q
γ=1 ξγ

(
1−k̂σ(ςγ)

k̂σ(ςγ)

)$} 1
$

, 1

1+

{
∑

q
γ=1 ξγ

(
1−φ̂σ(ςγ)

φ̂σ(ςγ)

)$
} 1

$




Likewise, the aggregated values ϕς in the framework of the CIFDWG operators are
calculated in the following way:

ϕς =
((

r̂ς, θ̂ς

)
,
(

k̂ς, φ̂ς

))
= CIFDWG

(
ϕς1, ϕς2, . . . , ϕςq

)
= ⊗(ϕςγ)

ξγ

By applying Theorem 9 to the aforementioned relationship, we get that

ϕς =



 1

1+
{

∑
q
γ=1 ξγ

(
1−r̂σ(ςγ)

r̂σ(ςγ)

)$} 1
$

, 1

1+

{
∑

q
γ=1 ξγ

(
1−θ̂σ(ςγ)

θ̂σ(ςγ)

)$} 1
$

,

1− 1

1+

{
∑

q
γ=1 ξγ

(
k̂σ(ςγ)

1−k̂σ(ςγ)

)$} 1
$

, 1− 1

1+

{
∑

q
γ=1 ξγ

(
φ̂σ(ςγ)

1−φ̂σ(ςγ)

)$
} 1

$




Moreover, the aggregated values ϕς in the framework of the CIFDOWG operators are
calculated in the following way:

ϕς =
((

r̂ς, θ̂ς

)
,
(

k̂ς, φ̂ς

))
= CIFDOWG

(
ϕς1, ϕς2, . . . , ϕςq

)
=
⊕(

ϕσ(ςγ)

)ξγ

By applying Theorem 13 to the aforementioned relationship, we get that

ϕς =



 1

1+
{

∑
q
γ=1 ξγ

(
1−r̂σ(ςγ)

r̂σ(ςγ)

)$} 1
$

, 1

1+

{
∑

q
γ=1 ξγ

(
1−θ̂σ(ςγ)

θ̂σ(ςγ)

)$} 1
$

,

1− 1

1+

{
∑

q
γ=1 ξγ

(
k̂σ(ςγ)

1−k̂σ(ςγ)

)$} 1
$

, 1− 1

1+

{
∑

q
γ=1 ξγ

(
φ̂σ(ςγ)

1−φ̂σ(ςγ)

)$
} 1

$




Step 3.
Compute the score values for each ϕς for all ς = 1, 2, 3, . . . , p by using Definition 11.
Step 4.
Select the best alternative among all.
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Implementation

Water is the most essential thing for the living body to survive. However, now that
industries are increasing, the availability of pure water is a major problem. Contaminated
water causes different diseases, some of which lead to death. So, it is the most important
task for the government to supply pure water to domestic areas. Here, we discuss some
methods to purify water at a commercial scale and some factors affecting these methods.
We present a step-by-step procedure to select the best alternative within the framework of
CIF Dombi aggregation operators.

Let {A1,A2,A3,A4,A5} be the set of alternatives to purifying water at a
commercial scale;

1. A1: Boiling;
2. A2: Reverse osmosis;
3. A3: Distillation;
4. A4: Filtration;
5. A5: Deionization.

Let {C1, C2, C3, C4} be the four factors affecting these methods:

1. C1: Environmental Factor;
2. C2: Economic Factor;
3. C3: Technical Factor;
4. C4: Socio-political Factor.

To make a CIFN, these factors are further categorized into two characteristics given below:

• Environmental factors consist of land requirements and waste disposal management.
• Economic factors consist of financial resources and investment costs.
• Technical factors consist of risk factors and feasibility.
• Socio-political factors further consist of social and political acceptance.

Table 2 summarizes the decision-maker’s expert opinion on each alternative for each
attribute in the form of a CIFN.

Table 2. CIF decision matrix.

C1 C2 C3 C4

A1 ((0.55,0.45),(0.42,0.40)) ((0.33,0.45),(0.42,0.50)) ((0.45,0.60),(0.45,0.15)) ((0.45,0.15),(0.20,0.50))
A2 ((0.46,0.50),(0.48,0.45)) ((0.85,0.56),(0.15,0.15)) ((0.75,0.65),(0.20,0.15)) ((0.50,0.60),(0.45,0.20))
A3 ((0.59,0.45),(0.38,0.40)) ((0.20,0.45),(0.75,0.55)) ((0.50,0.60),(0.50,0.25)) ((0.40,0.45),(0.50,0.40))
A4 ((0.72,0.55),(0.22,0.40)) ((0.33,0.30),(0.42,0.40)) ((0.40,0.40),(0.50,0.60)) ((0.50,0.65),(0.40,0.10))
A5 ((0.48,0.40),(0.47,0.60)) ((0.46,0.45),(0.45,0.50)) ((0.49,0.60),(0.45,0.15)) ((0.75,0.45),(0.10,0.40))

The weight vector assigned by the decision-maker is ξ = (0.2, 0.3, 0.4, 0.1)T , where
∑4

γ=1 ξγ = 1.
Now we solve the decision matrix to choose the best alternative by applying the

CIFDWA, CIFDOWA, CIFDWG, and CIFDOWG operators in the following discussion.
The above MADM problem in the framework of the CIFDWA operator is solved

as follows:

Step 1. The application of the CIFDWA operator on the values listed in Table 2 for a specific
value of $ = 4 yields Table 3
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Table 3. Aggregated values of alternatives under the CIFDWA operator.

Alternatives ϕς

A1 ((0.477,0.550),(0.302,0.181))
A2 ((0.811,0.613),(0.182,0.161))
A3 ((0.515,0.552),(0.459,0.293))
A4 ((0.634,0.534),(0.293,0.165))
A5 ((0.632,0.550),(0.165,0.182))

Step 2. By applying Definition 11, determine the score values for all CIFNs acquired in
step 1.
Ҡ(A1) = 0.6832, Ҡ(A2) = 0.7949, Ҡ(A3) = 0.5938, Ҡ(A4) = 0.7203 and
Ҡ(A5) = 0.7709.

Step 3. Since Ҡ(A2) > Ҡ(A5) > Ҡ(A4) > Ҡ(A1) > Ҡ(A3), therefore, the ranking order
of alternatives is A2 � A5 � A4 � A1 � A3.

Step 4. A2 is the best alternative.

Similarly, the above MADM problem in the framework of the CIFDWG operator is
solved as follows:

Step 1. The application of the CIFDWG operator on the values listed in Table 2 for a specific
value of $ = 4 gives us Table 4

Table 4. Aggregated values of alternatives under the CIFDWG operator.

Alternatives ϕς

A1 ((0.387,0.238), (0.429,0.449))
A2 ((0.545,0.562), (0.398,0.354))
A3 ((0.252,0.479), (0.691,0.481))
A4 ((0.379,0.354), (0.457,0.547))
A5 ((0.483,0.457), (0.448,0.518))

Step 2. By applying Definition 11, determine the score values for all CIFNs acquired in
step 1.
Ҡ(A1) = 0.4086, Ҡ(A2) = 0.5959, Ҡ(A3) = 0.3822, Ҡ(A4) = 0.4241 and
Ҡ(A5) = 0.4943.

Step 3. Since Ҡ(A2) > Ҡ(A5) > Ҡ(A4) > Ҡ(A1) > Ҡ(A3), therefore, the ranking order
of alternatives is A2 � A5 � A4 � A1 � A3.

Step 4. A2 is the best alternative.

Moreover, the above MADM problem in the framework of the CIFDOWA operator is
solved as follows:

Step 1. The permuted CIF decision matrix is given is Table 5.

Table 5. Permuted CIF decision matrix.

C1 C2 C3 C4

A1 ((0.45,0.60), (0.45,0.15)) ((0.55,0.45), (0.42,0.40)) ((0.45,0.15), (0.20,0.50)) ((0.33,0.45), (0.42,0.50))
A2 ((0.85,0.56), (0.15,0.15)) ((0.75,0.65), (0.20,0.15)) ((0.50,0.60), (0.45,0.20)) ((0.46,0.50), (0.48,0.45))
A3 ((0.50,0.60), (0.50,0.25)) ((0.59,0.45), (0.38,0.40)) ((0.40,0.45), (0.5,0.40)) ((0.20,0.45), (0.75,0.55))
A4 ((0.50,0.65), (0.40,0.10)) ((0.72,0.55), (0.22,0.40)) ((0.33,0.30), (0.42,0.40)) ((0.40,0.40), (0.50,0.60))
A5 ((0.75,0.45), (0.10,0.40)) ((0.49,0.60), (0.45,0.15)) ((0.46,0.45), (0.45,0.50)) ((0.48,0.40), (0.47,0.60))

Step 2. The application of the CIFDOWA operator on the values listed in Table 5 for a
specific value of $ = 4 yields Table 6.
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Table 6. Aggregated values of alternatives under the CIFDOWA operator.

Alternatives ϕς

A1 ((0.496,0.511),(0.238,0.208))
A2 ((0.796,0.612),(0.196,0.167))
A3 ((0.528,0.520),(0.438,0.322))
A4 ((0.657,0.570),(0.273,0.142))
A5 ((0.669,0.537),(0.142,0.192))

Step 3. By applying Definition 11, determine the score values for all CIFNs acquired in
step 2.
Ҡ(A1) = 0.6933, Ҡ(A2) = 0.7857, Ҡ(A3) = 0.5833, Ҡ(A4) = 0.7502 and
Ҡ(A5) = 0.7783.

Step 4. Since Ҡ(A2) > Ҡ(A5) > Ҡ(A4) > Ҡ(A1) > Ҡ(A3), therefore, the ranking order
of alternatives is A2 � A5 � A4 � A1 � A3.

Step 5. A2 is the best alternative.

Furthermore, the above MADM problem in the framework of the CIFDOWG operator
is solved as follows:

Step 1. The permuted CIF decision matrix is given is Table 5.

Step 2. The application of the CIFDOWG operator on the values listed in Table 5 for a
specific value of $ = 4 yields Table 7.

Table 7. Aggregated values of alternatives under the CIFDOWG operator.

Alternatives ϕς

A1 ((0.428,0.182), (0.401,0.464))
A2 ((0.533,0.579), (0.415,0.318))
A3 ((0.303,0.462), (0.632,0.437))
A4 ((0.377,0.347), (0.415,0.473))
A5 ((0.486,0.460), (0.439,0.497))

Step 3. By applying Definition 11, determine the score values for all CIFNs acquired in
step 2.
Ҡ(A1) = 0.3944, Ҡ(A2) = 0.6047, Ҡ(A3) = 0.4206, Ҡ(A4) = 0.4499 and
Ҡ(A5) = 0.5034.

Step 4. Since Ҡ(A2) > Ҡ(A5) > Ҡ(A4) > Ҡ(A3) > Ҡ(A1), therefore, the ranking order
of alternatives is A2 � A5 � A4 � A3 � A1.

Step 5. A2 is the best alternative.

All the information obtained from the above procedure in the light of newly defined
CIF Dombi aggregation operators is summarized in Table 8.

Table 8. Score values and ranking of alternatives under newly defined techniques.

Operators A1 A2 A3 A4 A5 Ranking

CIFDWA 0.6832 0.7949 0.5938 0.7203 0.7709 A2 � A5 � A4 � A1 � A3
CIFDWG 0.4086 0.5959 0.3822 0.4241 0.4943 A2 � A5 � A4 � A1 � A3

CIFDOWA 0.6933 0.7857 0.5833 0.7502 0.7783 A2 � A5 � A4 � A1 � A3
CIFDOWG 0.3944 0.6047 0.4206 0.4499 0.5034 A2 � A5 � A4 � A3 � A1

6. Comparative Analysis

In the following section, we solve the above MADM problem through various existing
operators in IF and CIF environments, namely, IFDWA, IFDWG, IFDOWA, IFDOWG,
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CIFWA, CIFWG, CIFOWA, and CIFOWG operators. The computed results by applying
these operators are summarized in Table 9 and are ranked in Table 10.

Table 9. Aggregated values obtained from different existing operators.

IFDWA [27] IFDWG [27] CIFWA [33] CIFWG [33]

A1 (0.477,0.302) (0.387,0.429) ((0.439,0.494),(0.401,0.295)) ((0.427,0.452),(0.414,0.359))
A1 (0.811,0.182) (0.545,0.398) ((0.732,0.592),(0.237,0.192)) ((0.678,0.585),(0.280,0.226))
A1 (0.515,0.459) (0.252,0.691) ((0.437,0.516),(0.535,0.365)) ((0.384,0.505),(0.576,0.398))
A1 (0.634,0.293) (0.379,0.457) ((0.477,0.438),(0.394,0.410)) ((0.434,0.411),(0.418,0.469))
A1 (0.632,0.165) (0.483,0.448) ((0.515,0.507),(0.391,0.313)) ((0.450,0.493),(0.427,0.398))

IFDOWA [27] IFDOWG [27] CIFOWA [33] CIFOWG [33]

A1 (0.496,0.238) (0.428,0.401) ((0.472,0.386),(0.316,0.368)) ((0.463,0.307),(0.347,0.413))
A1 (0.796,0.196) (0.533,0.415) ((0.678,0.599),(0.285,0.188)) ((0.623,0.595),(0.332,0.206))
A1 (0.528,0.438) (0.303,0.632) ((0.469,0.484),(0.480,0.376)) ((0.439,0.477),(0.502,0.390))
A1 (0.657,0.273) (0.377,0.415) ((0.519,0.474),(0.349,0.316)) ((0.462,0.432),(0.371,0.375))
A1 (0.669,0.142) (0.486,0.439) ((0.547,0.496),(0.335,0.339)) ((0.519,0.485),(0.395,0.405))

Table 10. Score values and ranking of alternatives under existing and newly proposed strategies.

Operators A1 A2 A3 A4 A5 Ranking

IFDWA [27] 0.5248 0.5022 0.5007 0.5134 0.5595 A5 � A1 � A4 � A2 � A3
IFDWG [27] 0.4953 0.5044 0.4867 0.4923 0.5013 A2 � A5 � A1 � A4 � A3

IFDOWA [27] 0.5467 0.5024 0.5016 0.5145 0.5614 A5 � A1 � A4 � A2 � A3
IFDOWG [27] 0.5028 0.5032 0.4886 0.4950 0.5019 A2 � A1 � A5 � A4 � A3
CIFWA [33] 0.5753 0.7503 0.5204 0.5319 0.5939 A2 � A5 � A1 � A4 � A3
CIFWG [33] 0.5328 0.7123 0.4818 0.4885 0.5331 A2 � A5 � A1 � A4 � A3

CIFOWA [33] 0.5549 0.7306 0.5297 0.5986 0.6067 A2 � A5 � A4 � A3 � A1
CIFOWG [33] 0.4967 0.6979 0.5097 0.5449 0.5562 A2 � A5 � A4 � A3 � A1

CIFDWA 0.6832 0.7949 0.5938 0.7203 0.7709 A2 � A5 � A4 � A1 � A3
CIFDWG 0.4086 0.5959 0.3822 0.4241 0.4943 A2 � A5 � A4 � A1 � A3

CIFDOWA 0.6933 0.7857 0.5833 0.7502 0.7783 A2 � A5 � A4 � A1 � A3
CIFDOWG 0.3944 0.6047 0.4206 0.4499 0.5034 A2 � A5 � A4 � A3 � A1

From the above discussion, it is quite evident that the proposed strategies in this
article are more generalized than the other existing techniques because the best preference
changes due to the loss of information in the framework of existing IF operators, whereas,
the CIF Dombi aggregation operators tackle this situation effectively. Moreover, the newly
defined operators are more flexible as they involve a parametric value. It is also important
to note that the operators proposed by Sheik and Mandal [27] are special cases of these
operators by making the second dimension constant.

7. Conclusions

In this research, the concepts of CIFDWA, CIFDOWA, CIFDWG, and CIFDOWG opera-
tors in a CIF environment have been introduced. A new score function has been determined
to rank and choose the best alternative. Moreover, a real-life MADM problem has been
formulated in the light of newly defined aggregation operators. Finally, a comparative
analysis has been established to show the validity and feasibility of the proposed techniques
with existing methods. The first primary objective of future work will be the development
of a comprehensive decision-analysis aid based on Dombi operators to maximize its practi-
cal relevance and usability. Although the method presented in this article has numerous
benefits, it still has certain limitations, particularly in MADM scenarios where the sum of
membership and non-membership exceeds one or involves neutral membership. Moreover,
one of our primary research objectives is to devise novel approaches for improving the
structure of fuzzy settings.
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Moreover, the suggested strategies of this article will effectively be applied to counter
the energy crises in developing countries and risk management in construction projects.
In addition, Dombi operators can be applied to the orthotriple fuzzy rough sets [16,17],
cubic intuitionistic fuzzy sets [18,19], complex Pythagorean fuzzy sets, and complex bipolar
fuzzy sets [47] in future studies to solve many important MCDM problems economically.
These initiatives will make it possible to solve a number of crucial MADM issues effectively
and affordably.
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