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Abstract: As an emerging non-contact method of flow monitoring, radar technology compensates
for the shortcomings of traditional methods in terms of the efficiency, timeliness, and difficulty in
monitoring high floods, and can provide accurate measurement results, making it one of the most
promising flow monitoring methods in the future. This paper describes in detail the workflow from
radar data acquisition to flow calculation; compares and analyzes the current state-of-the-art signal
sampling and its limitations, Doppler spectrum estimation, signal processing and flow inversion;
points out the challenges that these technologies may face in the future; and provides corresponding
solutions in order to improve the real-time and accuracy of hydrometric as well as promote the
development of non-contact flow monitoring technology.
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1. Introduction
1.1. Motivation

As the most fundamental hydrological feature of rivers, flow is essential information
for the management of water resources, the research of hydrology, as well as the construc-
tion of water conservancy projects [1–3]. However, in recent years, the frequent changes in
the relation between rain fall and run off along with climatic and environmental parame-
ters have made floods seem to be more abundant and destructive in many regions of the
globe [4–6]. As a result, improving the monitoring of river flow in real time and considering
the accuracy is not only a key issue concerning various countries in the world, but is also
an effective way to prevent the occurrence of floods, thereby reducing the casualties and
property losses [7–9].

At present, flow monitoring methods can be roughly divided into two categories: the
contact method and the non-contact method. The contact methods include current meters,
floats, and Acoustic Doppler Current Profilers (ADCPs), etc. Current meters and floats
have emerged as the most used flow velocity measurement methods due to their high
applicability. However, they require labor participation, which not only presents safety risks
but also poses issues with laborious, low efficiency and measurement difficulties during
high floods [10–12]. Compared with the first two methods, although the automation and
measurement accuracy of ADCPs have been improved remarkably, they are still expensive
and cannot be used in real time monitoring or under the conditions of high turbulence,
aviation, and bed movements [13–15]. In addition, the contact methods are particularly
susceptible to being damaged by the sand content, aquatic species, and floating objects,
which may result in significant measurement errors and high maintenance costs [16–18].
Consequently, it is necessary for us to explore and develop a more economical, safer, and
highly efficient non-contact method.

In recent years, the non-contact flow monitoring methods, which mainly include
remote sensing, radar, and vision-based methods, have received sufficient attention from
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researchers and made great progress. Remote sensing methods focus on satellite-based
platforms to calculate the reach-based river flow rate, which is of great significance in
macroscopic water monitoring [19–22]. However, its spatial and temporal resolution make it
difficult to satisfy the real-time and continuous requirements for monitoring the velocity and
flow rate. As for the vision-based method, it has certain advantages in terms of real-time and
continuous measurement. However, its calculation performance of flow velocity is directly
determined by the image quality, which is easily influenced and deteriorated by the change
of light and meteorological conditions, such as rain, fog, shadows, and nighttime [23–25].
The radar-based measurement method, on the contrary, can detect targets in both day
and night, and is not blocked by meteorological conditions such as fog, clouds, and rain,
which embodies all-weather and all-day monitoring features [26,27]. Chen et al. [28] and
the United States Geological Survey (USGS) [29] compared the applicability of the radar
current meter, ADCPs, and rotor current meter for measuring river flow. They all concluded
that radar technology was the most appropriate flow measurement method in recent years,
which could significantly reduce the measurement time while maintaining high accuracy.

So far, the radar current meter can be divided into two types: the fixed-point radar
and the side-scan radar. The fixed-point radar is usually fixed at a certain position of
the measured section and can only obtain the flow velocity of a single point or a small
area on the river surface, which is widely used in hydrometric and emergency rescue
monitoring of small and medium-sized rivers [30–32]. Compared with the fixed-point
radar, the side-scan radar is typically set up on the bank, which has a wider monitoring
distance, and can monitor the average flow velocity within a segmented range and identify
the direction of the signal in space. However, the side-scan radar is still in the research
and verification stage, and few applications are promoted [33–35]. The early studies of
radar flow monitoring were mostly focused on experiments [36–38]; for example, Teague
et al. have successfully verified the possibility of using a radar current meter instead of
traditional methods for surface velocity monitoring and flow calculation [39]. Under the
urgent requirements of intelligent and automated flow measurement as well as timely and
reliable hydrological information, extensive research has been conducted on radar system
design [40–44], signal processing [45–49], and flow inversion algorithms [50–55]. However,
there are still issues with the existing radar flow measurement technology in some aspects,
which limits its future advancement. Therefore, the purpose of this paper is to summarize
the current technology of radar flow monitoring, identify its main limitations, describe the
challenges that the technology may face in the future, and propose corresponding solutions
in order to promote the progress of radar technology in flow monitoring, advance the
development of efficient, accurate, and real-time non-contact flow measuring technology,
and improve the ability to predict and provide early warnings of flood disasters under
extreme conditions.

1.2. Principle of Velocity Estimation

Christian Andreas Doppler, an Austrian scientist, observed in 1842 that the frequency
of the echo signal was different from the signal initially released by the source when relative
motion occurred between the target and the observer. When the target is close to the source,
the wave is compressed, the frequency becomes higher, and the wavelength gets shorter.
On the other hand, when the target moves away from the source, the frequency becomes
lower, and the wavelength gets longer. The value of the increase or decrease in frequency
was called the Doppler frequency shift [56].

Basically, the river surface is illuminated by a radar, and the Doppler frequency shift
is determined by receiving and processing the electromagnetic waves backscattered by
the rough water surface, as shown in Figure 1. The phenomenon of Bragg scattering,
discovered by Crombie in 1955, was frequently cited as the cause of the reflection of
electromagnetic waves from river waves, which stated that river waves traveling radially
toward or away from the radar would result in the strongest backscatter when their
wavelength was exactly half that of the radar, and this resonance was unaffected by wind
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speed or water surface conditions [57,58]. However, this theory works only under the
specific condition that there must be a highly precise situation-dependent relationship
between the electromagnetic wave and a periodic surface structure. After further research,
scholars have found that backscattering is a superposition of Bragg scattering and other
phenomena, rather than being solely Bragg scattering [59]. Fresnel reflections, multipath,
and multibounce scattering were all used to explain non-Bragg backscattering [60,61].
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Figure 1. Principle sketch of the measurement setup from side (left) and top view (right), the
observation area (marked in yellow) depends on the height of radar and the beam width in elevation
θel and azimuth θaz.

When the radar transmits signals and then successfully receives the targets’ echoes
from the river surface, the calculation for the surface velocity is as follows: Electromagnetic
waves from the source are emitted at a frequency of f0, with a speed of u. When the target
moving with a velocity of v0 (+v0 means that target moves away from the source, −v0 is
the opposite), the frequency of the electromagnetic wave that it received is f1:

f1 =
u∓ v0

v0
f0 (1)

Then, when the electromagnetic wave returns from the target, the frequency f ′ received
by the source is:

f ′ =
v0

u± v0
f1 =

u∓ v0

u± v0
f0 (2)

The Doppler frequency fd is the frequency difference between the transmitted signal
and the echo signal, which can be written as:

fd = f0 − f ′ ≈ 2v0

u
f0 (3)

when the angle between the radar and the water surface is θ, the flow velocity of the river is

Vriver =
v0

cos θ
=

u
2 f0 cos θ

fd (4)

1.3. Outline

This paper describes the method for estimating river flow by using radar tech-
nology, outlines the current achievements, and critically assesses the limitations and
future challenges.
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The principle of radar technology for river flow monitoring is briefly explained, and a
short retrospective of the developments of radar applications in hydrometric is reviewed in
Section 1. The typical processing steps required from raw radar data acquisition to river
flow derivation are described, and their respective challenges are elaborated in Section 2.
The state-of-the-art from signal sampling to flow calculation are summarized, and their
key limitations are identified in Section 3. In the discussion section, views on the future
challenges of radar flow monitoring technology are presented and potential solutions to
address these challenges are suggested.

2. The Challenges of Processing River Flow from Raw Radar Data

The overview of the workflow is shown in Figure 2, starting with raw signal data and
ending with river flow. The first step is signal sampling, with the aim of converting the
beat frequency signal into a processable digital signal, and filtering it to ensure accuracy.
The second step is to perform a Doppler spectral analysis of the signal. Different spectrum
estimation methods apply differently and may also result in different calculations, so it is
particularly important to choose an appropriate method. The third step is signal processing.
Usually, the echo signal may contain a variety of noise and clutter, and it is crucial to
identify and calculate the flow velocity effectively. The final step is the flow calculation; as
the radar obtains the surface velocity of the river, the key to this step is how to calculate the
flow rate based on the surface velocity. This section outlines each stage while highlighting
the overall difficulties present. The state-of-the-art signal sampling will be followed by
more information on the solutions that can be used to address these problems.

2.1. Signal Sampling

Data acquisition starts with digital sampling, which is responsible for providing high-
precision data for signal processing and flow calculations. The purpose of digital sampling
is to perform digital down conversion and convert the received intermediate-frequency (IF)
signal into a digital signal [62]. Usually, the original signal is mixed with various kinds of
clutter, so that sampling the signal directly may cause aliasing phenomenon [63]. Therefore,
signal sampling is necessary to preserve the quality and integrity of the raw data received.

2.2. Doppler Spectrum Estimation

As shown in Equation (4), the river velocity needs to be calculated using Doppler
frequency shift. Frequency estimation techniques, which can be loosely categorized into
three categories, are mostly utilized for the frequency extraction of Doppler signals [64,65].
The zero-crossings and the period counting methods fall under the first category, which
are usually used for measuring the frequency or the period of a periodic signal. The
zero-crossings calculate the frequency of a signal by counting the number of times the
signal passes through the zero axis, while the period counting methods directly measure
the number of periods of the signal. Both the zero-crossings and the period counting
methods belong to the time domain analysis methods, which can intuitively reflect the
relationship between wavelength and Doppler effect, because these methods regard the
wave length of the echo signal as a stochastic variable with mean, standard deviation,
etc. [66,67]. The second category is special analysis methods, which generally comprise
wavelet transforms and other analysis methods [68,69]. The third category is the frequency
domain analysis methods [70,71], which use spectrum estimation methods to estimate the
power spectrum of the signal, including the classical spectrum estimation and the modern
spectrum estimation. However, not all of the aforementioned methods are appropriate
for calculating river flow velocities. For instance, the zero-crossings and period counting
methods have the drawback of being sensitive to noise and signal voltage, which would
result in insufficient accuracy and are rarely used in the field of radar flow monitoring [72].
The special analysis methods require a large quantity of data to be processed and take a
long time to calculate, which makes them unsuitable for real-time measurement of flow
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velocities [73]. The spectrum estimation methods may have problems such as spectrum
leakage in some cases [74].
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2.3. Signal Processing

As seen in Figure 2c, the echo signal received by radar was frequently mixed up with
various background clutter within the irradiation range of the antenna beam (such as
ground, rain, fog, waves, etc.). False detection and missed detection might occur when
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the target signals and clutters were simultaneously received but improperly handled,
which would have a significant impact on the accuracy of the results. Therefore, the key
challenge lies in identifying the target from the complex clutter background in real time
and automatically. Ideally, a fixed threshold (refers to a power threshold above which
any return can be considered to probably originate from a target as opposed to one of
the spurious sources.) needs to be set if the interference has a constant value. In practice,
however, the threshold value must be continuously updated according to the changes in
the interference to ensure a constant false alarm probability, which is known as the constant
false alarm rate (CFAR) [75,76].

2.4. Flow Calculation

The estimation of river flow is the last step after obtaining the river surface velocity
from the signal spectrum. Traditional flow calculation methods usually involve obtaining
the depth-averaged velocity or the cross-section average velocity and calculating the flow
rate based on the velocity-area method [77]. However, since radar can only measure the
flow velocity at a specific place or a small area on the river surface, it is necessary to
solve the problem of how to accurately calculate the cross-section flow from the surface
velocity [78].

3. State-of-the-Art
3.1. Sampling Methods

Digital sampling is indeed a requirement to ensure data accuracy in radar signal
processing. In order to maintain all of the signal’s information, especially the amplitude
and the phase, the raw data must undergo digital quadrature sampling and quadrature
coherent detection after receiving [79]. To achieve the above process, a certain sampling
theorem must be followed.

Figure 3 illustrates the streamlined signal sampling procedure in the time domain
and in the frequency domain. The continuous signal xn(t) is multiplied with the impulse
function p(t) to obtain the discrete signal x(nTs), which realizes the conversion from analog
to digital. The period of the impulse function in the time domain is Ts, while its period
in the frequency domain is f s. The frequency spectrum of x(nTs) will likewise exhibit
periodicity after being sampled. If f s is less than twice the maximum frequency f max of
the discrete signal spectrum, then the sampled spectrum appears to exhibit an aliasing
phenomenon. The Nyquist theorem states that in order to recover the continuous signal
xn(t) from the discrete signal without distortion, the sampling frequency f s must be at least
twice the maximum frequency f max of the discrete signal spectrum, f s ≥ 2f max [80,81].

So far, there are many quadrature coherent detection methods, such as digital product
detection [82], Bessel interpolation [83], Hilbert transform [84], and low-pass filtering [85]. The
above methods can be broadly classified into two categories: time domain interpolation and
frequency domain filtering. Time domain interpolation methods are simple, fast and require
low interpolation order, but are difficult to acquire considering the existence of amplitude
and phase error between quadrature channels. Frequency domain analysis methods are
time consuming and complex to design, but are more resistant to interference and more
effective [86]. Considering that the results obtained using the above methods are relatively
similar, the more robust low-pass filter is typically employed as the original signal’s anti-
aliasing filter. For instance, the target signals, as depicted in Figure 2c, are roughly located
between 50 and 120 Hz, while false alarms start to arise between 200 and 300 Hz. If the prior
knowledge of the target or background clutter is predictable, a 120 Hz low-pass filter could
be used simply, as depicted in Figure 4, to efficiently filter out high-frequency congestion.
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3.2. Spectrum Estimation Methods

Frequency domain analysis, which encompasses both the classical and the mod-
ern spectrum estimation, is currently the most common technique for estimating the
Doppler spectrum.

3.2.1. Classical Spectrum Estimation

The Fourier transform-based analytical technique known as “the classical spectrum es-
timation” is frequently used in the design of radar current meters and the signal processing
of flow measurement, which includes the periodogram and the correlation function [87,88].

The process of the periodogram is to take N discrete points of the random signal x(n)
as a sequence xN(n), and then perform the Fourier transform on it to obtain xN(ejω), after
which the square of the amplitude is taken and divided by N to obtain the power spectrum
P(ejω), and the discrete power spectrum P̂PER(k) is obtained by taking ω equally spaced
on the unit circle:

P̂PER(k) =
1
N

∣∣∣∣∣N−1

∑
n=0

x(n)e−j 2π
N nk

∣∣∣∣∣
2

(5)

As can be seen from the equation above, the discrete power spectrum needs to be
calculated by n2-th multiplication and addition, which is a complex and computationally
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intensive process. Considering the portability and cost of a fixed-point radar, the Fast
Fourier transform (FFT) is mostly used. Alimenti et al. designed a low-cost radar based on
the FFT algorithm, and the results showed that the accuracy of this radar was comparable
to that of a high-precision commercial radar flowmeter [89]. The FFT algorithm’s basic
idea is to continually split the discrete signal xN(n) by using the symmetry and periodicity
of e−j 2π

N nk. This reduces the computational steps to (n/2)log2n times multiplication and
nlog2n times addition while maintaining the precision of the results.

The correlation function is to calculate the autocorrelation function r̂(m) of the signal
x(n) first, after which the Fourier transform of the autocorrelation function is performed
and the power spectrum can be estimated using P̂BT(ω):

r̂(m) =
1
N

N−1

∑
n=0

x(n + k)x∗(n), k = 0, 1, 2, 3, . . . . . . , M (6)

P̂BT(ω) =
M

∑
m=−M

r̂(m)e−jωm, |M| ≤ N − 1 (7)

Notably, the periodogram is a specific instance of the correlation function where
M = N − 1.

3.2.2. Modern Spectrum Estimation

Different from classical spectrum estimation, modern spectrum estimation is model-
based, which uses sampled data to build a model that extrapolates the data and thus
improves the resolution of the spectral estimate. The modern spectrum estimation mainly
includes the parametric model and the non-parametric model. Parametric model meth-
ods include the AR (Autoregressive) model, the MA (Moving average) model, and the
ARMA (Autoregressive moving average) model [90]. Nonparametric model methods in-
clude the minimum variance method [91] and the MUSIC (Multiple Signal Classification)
method [92].

The idea of the parametric model is to assume that the signal x(n) is the output of a
causal Linear Shift Invariant (LSI) filter with the rational system function defined by H(z).
The discrete time series u(n) are the result of applying a linear filtering operation to some
unknown time series x(n). Generally, u(n) is assumed to be a white noise sequence with
zero mean and variance σ2; the relationship between x(n) and u(n) can be expressed as:

x(n) = −
p

∑
k=1

akx(n− k) +
q

∑
k=0

bku(n− k) (8)

The H(z) can be represented as:

H(z) =
B(z)
A(z)

=

q
∑

k=0
bkz−k

p
∑

k=0
akz−k

(9)

The power spectrum of x(n) is as follows:

Px(ejω) =
σ2B(ejω)B∗(ejω)

A(ejω)A∗(ejω)
= σ2

∣∣∣∣ B(ejω)

A(ejω)

∣∣∣∣2 (10)

By solving σ2 and ak, bk, the power spectrum could be calculated. If the all the
coefficients bk are zero for k > 0, the model is referred to as an Autoregressive (AR) model.
If all the coefficients ak, except for a0 = 1, are zero, the model is referred to as a Moving
Average (MA) model. If at least one of each of the coefficients ak and bk for k > 0 are nonzero,
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the model is referred to as an Autoregressive Moving-Average (ARMA) model. There are
many different algorithms for the above models, such as the Levinson-Durbin, Burg, and
Marple algorithms, etc. [93,94]. The AR model represents a regression of the current value
that is generated based on the past values, while the MA model generates the current
values based on the errors from the past forecasts. The ARMA models cover both aspects
of AR and MA, which predicts the future values based on both the previous values and
errors, and has better performance than the AR and MA models alone. However, frequency
domain analysis methods are mostly used in radar signal processing, and the model-based
analysis methods are rarely used [95].

All of the aforementioned spectrum estimation techniques are frequently used to esti-
mate flow velocities, but they are all constrained by determining the direction of arrival and
thus cannot fully reconstruct the flow field on the river surface. Due to its multicomponent
characteristic, the MUSIC algorithm in the nonparametric model is frequently used to
estimate the directional angle of ocean surface currents [34,35,96]. Recently, this method
has been gradually applied to rivers [46].

The foundation of the MUSIC algorithm is that there are P-th spatially independent
echoes from different orientations θi and incidences on the array:

S(t) =
[
s(θ1), · · · , s(θp)

]
(11)

Then its output:
X(t) = AS(t) + N(t) (12)

where A = [a(θ1), · · · , a(θn)] is the directional coefficient matrix, N(t) is the noise.

a(θ) =


1

ej 2πd sin θ
λ

· · ·
ej 2πdn sin θ

λ

 (13)

The covariance matrix of the signal is:

RXX = E
[

XXH
]

(14)

The eigenvalue can be decomposed as:

RXX = U∑ UH = US∑ sUH
S + UN∑ NUH

N (15)

where ∑ = diag(λ1, . . . , λM) is the eigenvalue matrix, US is the signal subspace, and UN is
the noise subspace. The spectrum function is denoted as:

P(θ) =
1

aH(θ)UNUH
N a(θ)

(16)

Even though the MUSIC algorithm has enhanced the resolution of calculating the di-
rection angle, and opened up the possibility of reconstructing the flow field, the application
of this method is still constrained by the fact that the majority of the radar flowmeters used
in rivers currently are fixed-point radars, which usually have only one signal channel and
can only receive echo from one direction.

3.3. Target Detection Methods

Doppler frequencies are known to be produced by targets with radial movement, and
their magnitude varies with the moving velocity. Currently, the differences in velocities
are served as the theoretical foundation for separating moving targets from stationary
interference clutter. Techniques such as moving target indication (MTI) and moving target
detection (MTD) are constantly being used to figure out the target signal and suppress
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the clutter. Moreover, CFAR processing is required to maintain the radar target detection
system with a certain false alarm probability and detection probability. The main difference
between MTI/MTD and CAFR is that the former focuses on clutter suppression while
the latter focuses on target detection. Usually, the two algorithms can be used together,
for example when dealing with sea clutter problems with severe interference. However,
compared with sea clutter, river clutter is relatively simple, so only CFAR is used for
velocity detection [97].

3.3.1. MTI and MTD

The purpose of the MTI filter is to minimize clutter interference while maintaining
the maximum amount of information in the target signal. In order to increase the ability to
detect the target signal while against the background clutter, the output signal-to-clutter
ratio (SCR) should be improved as much as possible after the received echo signal passes
through the MTI filter [98,99].

Usually, the signal x(t) received by the radar includes the target echo signal s(t) and
the noise n(t), and when there is clutter c(t), the echo signal can be expressed as:

x(t) = s(t) + n(t) + c(t) (17)

The SCR, which is defined as the ratio of signal power to the average power of clutter,
is the key factor affecting the signal detection performance, since the average power of
clutter Pc is frequently larger than the average power of noise Ps.

SCR =
Ps

Pc
(18)

MTI filters can be constructed using both analog and digital methods. Usually, the
digital clutter cancellers are the most commonly used, which can be separated into single,
double, and multiple types based on the quantity of cancellations [100,101].

The simplest MTI filter is the single delay line canceller, which functions by subtracting
two consecutive echo signals. The unit impulse response and its Fourier transform are
given when the input is x(t), the system function is h(t), and the output is y(t).

h(t) = δ(t)− δ(t− T) FT→ H1(ω) = 1− e−jωT (19)

The power gain of the single delay line canceller is:

|H1(ω)|2 = 4(sin(ωT/2))2 (20)

The SCR cannot be improved significantly when the clutter dynamics change due to
the single delay line canceller’s characteristics. This issue can be resolved by connecting
several delay line cancellers in series as shown in Figure 5, which could improve the
filtering effect. Its impulse response and power gain are:

h(t) = α0δ(t) + α1δ(t− T) + α2δ(t− 2T) · · · αnδ(t− nT) (21)

|Hn(ω)|2 = |H1(ω)|2n = 22n(sin(ωT/2))2n (22)
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The primary idea of MTI is to filter clutter by canceling numerous echoes. However,
this method is limited to situations where the clutter never changes or the clutter with fixed
features, and has a poor effect on suppressing other types of clutter. Based on the optimal
filter theory, MTD was created to address the drawbacks of MTI, and has the advantage of
recognizing targets as movable that are not currently moving [102]. In the process of MTD,
a narrowband Doppler filter set is cascaded after the MTI in order to cover the entire range
of repetition frequencies, which is essentially a coherent integration process for different
channels [103,104]. The coherent integration can be expressed as:

y(n) =
N−1

∑
i=0

wix(n− iTr) (23)

where Tr is the radar repetition period, N is the number of accumulated pulses, and wi are
the weighting coefficients. The weighting coefficients are transformed as follows:

wik = e−
j2πik

N (i = 0, 1, 2, . . . , N − 1) (24)

where i is the i-th coefficient output and k is the weighted value, corresponding to different
Doppler filter responses, the impulse response functions are:

hk(t) =
N−1

∑
i=1

δ(t− Tr)e−
j2πik

N (25)

The frequency response functions are:

Hk( f ) = e−j2π f t
N−1

∑
i=0

e−j2πi( f Tr− k
N ) (26)

The filter amplitude characteristics can be expressed as:

|Hk( f )| =
∣∣∣∣ sin[πN( f Tr − k/N)]

sin[π( f Tr − k/N)]

∣∣∣∣ (27)

So far, a narrowband Doppler filter bank can currently be implemented in two different
ways: the time domain method and the frequency domain method [105,106].

3.3.2. CFAR

CFAR is an important part of radar signal processing. It distinguishes targets from
clutter by setting a certain power threshold, above which is determined as a target. Various
sources of interference, including internal device noise, ground features, water waves,
rain, and snow, are constantly presented when detecting target signals [107,108]. In an
automatic detection system, when the detection threshold was set, the likelihood of false
alarms increased as interference intensity rose. Even though there is currently a sufficient
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signal-to-clutter ratio, the radar signal processing system is still unable to reach a reliable
decision [109]. As a result, a consistent false alarm rate detection is also necessary in order
to recover the target signal in a severe interference environment.

CFAR was initially used for processing sea clutter and then for river clutter. In
dealing with uniform and smooth clutter, a cell-averaging constant false alarm (CA-CFAR)
algorithm was presented by Finn et al., which was based on the assumption that the
amplitude of echoes from clutter follows the Rayleigh distribution [110]. This algorithm
uses the data from the nearby cells around the detection cell to estimate the power of
background clutter and the detection threshold, which has the best detection performance
in a uniform environment. However, a target suppression effect refers to the inability to
effectively distinguish the target to be measured due to the superposition of multiple signals,
which happens when several targets are near together and have the same orientation, or
when one target is in the detection cell and others are in the reference cells. To deal with
the target suppression effect, and prevent miss detections of the target, Trunk et al. have
proposed the Smallest Of (SO)-CFAR algorithm, the threshold value of which is defined
by the average minimum value of cells [111]. In addition, the clutter edge effect has been
suggested, which occurs at the junction of clutter and can easily lead to missed detections
and rapid rise in constant false alarms when the clutter power in adjacent cells differs
greatly. Hansen et al. has suggested using the Greatest Of (GO)-CFAR algorithm to reduce
false alarms at the clutter edge [112]. The difference between SO-CFAR and GO-CFAR is
that instead of the minimum value of the cells now the maximum one is used. In the case
of multi-target detection, the Ordered Statistics (OS)-CFAR algorithm was employed to
enhance the performance of the CA-CFAR algorithm [111]. Instead of averaging the data
in the reference cells to estimate the power, this type of algorithm sorts the data in the
reference cells from the smallest to the largest, uses the k-th sorted value as the estimation
of the power, and multiplies it by the threshold factor as the detection threshold. Although
the OS-CFAR algorithm is processed with only one reference data value, it essentially relies
on all sample data within the reference cells, and the value of k directly affects the quality
of the detection result. Rohling et al. [113] and Nathanson et al. [114] have studied the
length N of the reference window and the value of k of the OS-CFAR algorithm in detail,
and the results showed that the clutter edge effect would be enhanced when k < N/2. As
a result, the value of k is usually taken to be around 3N/4. Table 1 lists the advantages
and disadvantages of the typical algorithms above. However, there is no perfect solution
that can fix all problems simultaneously, because the application of the above algorithms is
typically constrained, while the background signal clutter is complex and changeable.

Table 1. The advantages and disadvantages of different CFAR algorithms.

Algorithm Advantages Disadvantages

CA-CFAR High detection performance in the case of
uniform clutter background.

The detection performance degrades in multiple targets
and the clutter edge condition.

SO-CFAR Good detection performance in the case of
multiple targets

The probability of false alarm rises in the clutter edge
condition.

GO-CFAR Robust edge clutter resistance. Multiple targets increase the likelihood of false alarms
and decrease the detection performance.

OS-CFAR
Great detection performance in multiple
targets circumstances.
Good anti-clutter edge capabilities.

High false alarm loss due to the influence of k-value.
Time-consuming process, and high hardware
requirements.

3.4. Flow Calculation Methods

Since the radar can only measure the surface velocity, translating the surface velocity
into the cross-section flow is of great necessary. The index-velocity method, the probability
concept method, and the surface velocity coefficients method are currently the most widely
utilized techniques.
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3.4.1. Index-Velocity Method

The index velocity method is often used to correct the observations of the flow meters
so as to reduce errors from the real average velocity, which is currently one of the most
frequently used techniques by many nations and international organizations. The essence
of this method is to determine the relationship between the index-velocity and the cross
section average velocity, in other words, to utilize the local velocity of the river section to
determine the cross section average velocity [115,116]. Three categories of typical index-
velocity exist [117]:

1. Single point velocity, which measures the velocity at a single point in a river section.
2. Depth averaged velocity, which takes into account the river’s average velocity in a

vertical direction.
3. Horizontal average velocity, which utilizes a certain water layer’s average velocity.

There are two traditional methods that can be used to determine the cross section
average velocity of the river, when the cross section average velocity Vm and the index-
velocity Vindex are obtained:

The first one is the least squares linear regression, which is generally applicable when
the changes in water level have little effect on the velocity. Its regression equation is
as follows:

Vm = aVindex + c (28)

where a, c are regression coefficients.
The second one is multiple linear regression, which is suitable when the changes in

water level have a large impact on the velocity, and its regression equation is as follows:

Vm = (a + bH)Vindex + c (29)

where a, b, c are regression coefficients, H is the water level.

3.4.2. Probability Concept Method

In 1988, Chiu et al. [118] introduced the Shannon’s entropy theory [119] into the
hydraulic calculation and derived the velocity distribution of an open channel, which was
known as the probabilistic velocity distribution method. In 1998, this method was used by
Chiu and Chen to estimate the river flow rate with the fewest observations in a short time,
which solved the problem of monitoring high flows and improved the safety of testing [120].
After that, this method was respectively applied to the tidal and typhoon-affected rivers,
and the results demonstrated that it has good applicability for unsteady flow [121].

The fundamental idea of the probability concept method is to convert the traditional
y-z coordinate system into a ξ-η iso-velocity coordinate system, as shown in Figure 6.
Where ξ is the iso-velocity line, which corresponds to the flow velocity, and the η line is
orthogonal to the ξ line. At y = 0, the ξ = ξ0, and the maximum flow velocity is reached when
ξ = ξmax = 1. If h > 0, it indicates that the maximum flow velocity occurs below the water
surface, if h < 0, it is meaningless. The relationship between y and ξ can be expressed as:

ξ =
y + δy

D + δy − h
e
(1− y+δy

D+δy−h ) (30)

where δy is related to the cross-sectional geometry of the channel, its relationship with the
area A, channel width B, and water depth D is as follows:

A
BD

= 1−
δy

D
ln(

1 + δy
D

δy
D

) (31)
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According to the flow velocity distribution model proposed by Chen, the relationship
between the maximum flow velocity and the average flow velocity of the cross section can
be deduced as follows:

ξ − ξ0

ξmax − ξ0
=
∫ U

0
p(u)du =

eM U
Umax − 1

eM − 1
(32)

where p(u) is the probability density function, it meets:

p(u) =
M

UmaxeM − 1
eM U

Umax

∫ Umax

0
p(u)du = 1

∫ Umax

0
u · p(u)du = U (33)

The relationship between the average flow velocity and the maximum velocity can be
determined using the equation below:

U
Umax

=
eM

eM − 1
− 1

M
= Φ(M) (34)

As a result, the flow rate can then be described as:

Q = AU = AΦUmax (35)

3.4.3. Surface Velocity Coefficients Method

As mentioned above, the first step in calculating the flow rate is to obtain the average
velocity of the cross section. To achieve this purpose, some researchers have multiplied
the surface velocity by the surface velocity coefficient ηs. Then, as illustrated in Figure 2d,
the river flow can be computed using the velocity-area method. Commonly used flow
distribution models include logarithmic distribution, exponential distribution, parabolic
distribution, and elliptical distribution, etc. The most usually used exponential distributions
is taken as an example below [122].

Assuming that the flow velocity distribution is exponential, the flow velocity u(z) at
any point in the vertical direction can be expressed as:

u(z) = us(
z
h
)

1
m (36)

where us is the surface velocity, h is the depth of water, m is the roughness coefficient
of channel.
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The mean vertical velocity v and surface velocity coefficient ηs are:

v = us ·
m

m + 1
ηs =

m
m + 1

(37)

The relationship between surface velocity coefficient and channel roughness is shown
in Table 2

Table 2. The relationship between surface velocity coefficient and channel roughness.

Pretty Coarse Coarse Normal Smooth

m 1–2 3–4 5–7 8–10
ηs 0.50–0.67 0.75–0.80 0.83–0.88 0.89–0.91

The surface velocity coefficients can be chosen in accordance with Table 2, when the
exponential distribution is chosen as the velocity distribution model [123]. The USGS
suggests taking ηs in the range of 0.80–0.85 for natural channels. In Japan, ηs = 0.85 is
used as the reference value. In France, Hauet et al. came to the following conclusions
after analyzing 3611 stations on 176 channels: (1) The relationship between the surface
velocity coefficient and roughness is complex and still unknown. (2) The average value of
the surface velocity coefficient for natural rivers (with a sand, cobble, or boulder bed) is
0.80. (3) The average value of the surface velocity coefficient for artificial concrete channels
is 0.90 [124].

4. Discussion
4.1. Current and Future Limitations

After assessing the state-of-the-art signal sampling, the following limitations of radar
flow monitoring technology can be identified to be most critical:

Limitations of the radar equipment: Since the fixed-point radar can only measure the flow
velocity at a specific point or a small range of the river, multiple devices would be required
if the river is wide, which would result in high input costs, installation and maintenance
challenges, data assimilation calculation complexity, and other issues [125]. Therefore, it
is currently only applicable to the hydrological sections that are relatively stable, narrow,
and where there are bridges, cableways, or cantilevers that can be used. Secondly, the
fixed-point radar has strict requirements on installation position and angle, which increases
the uncertainty of measurement and the difficulty of maintenance. The main factors
affecting the measurement accuracy are the beam width, azimuth, and elevation angle.
As the beam tilt illuminates the water surface, any strong reflection within the elliptical
projection formed by the beam width may be identified as the flow velocity, so the larger
the beam width, the smaller the elevation angle, and the higher the uncertainty of the
measurement. Finally, fixed-point radars usually operate at high frequencies. Considering
the cost and portability, the design of this type of radar on the market is relatively simple,
and fewer filtering methods are equipped, so the velocity measurement performance will
be significantly impacted by heavy rain or other adverse weather conditions. The side-scan
radar has a longer measuring distance, can not only monitor the average flow velocity
within a segmented range, but also estimate the direction of arrival, which to a certain extent
makes up for the shortcomings of the fixed-point radar. However, the current side-scan
radars mostly adopt the HF/UHF band to monitor the gravity waves of water flow. Due
to the frequency and bandwidth limitations, it has a low Doppler measurement accuracy
and is challenging to obtain stable measurements on smooth surfaces or in turbulent flows.
Moreover, the band used by this radar might interfere with local communication in some
regions [42].

Problems with spectrum estimation methods: The modern spectrum estimation is a non-
linear estimation method where the estimation performance is dependent on the parametric
model and is weakly applicable. The model used must be appropriate for the signal being
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analyzed; otherwise, the spectrum estimate will be incorrect or inaccurate. The classical
spectrum estimation based on the Fourier transform is currently the mainstream spectrum
estimation method. However, both the periodogram and the correlation function suffer
from low resolution and poor variability [126]. The low resolution is due to the fact that the
frequency resolution is proportional to the length of the data recorded, and the longer the
data, the higher its resolution. However, since the data from radar flowmeters is typically
used for short-term or emergency monitoring in some cases, it is impossible to accumulate
enough data. The reason for the poor variance performance is that the classical spectrum
estimation lacks averaging and limit procedures, which makes it less stable. Improved
algorithms for classical spectrum estimation have already emerged, such as the Welch
method and the window function method, etc. [127]. The Welch method uses techniques
like averaging and smoothing to improve the variance performance of the periodogram,
but it lowers the resolution and increases the bias. The window function widens the main
lobe of the power spectrum while reducing the resolution simultaneously. Therefore, in
practice, a trade-off must be made between variance, bias, and resolution.

Applicability of target detection algorithms: Conventional target detection techniques
usually have a fixed center of the filter bank, while the Doppler frequency of a moving
target might be located anywhere between two adjacent filters, which may result in signal
loss and even lead to filtering failure. In addition, these techniques generally perform well
only in specific clutter environments, but the detection performance cannot be guaranteed
due to the complexity of the clutter environment in practice, which makes it difficult to
maintain a certain false alarm rate and an accurate target detection probability.

Accuracy of flow inversion algorithms: Methods for calculating river flows by obtaining
surface velocities inevitably have some limitations. For instance, the empirical index-
velocity method depends on the utilization of long-term measured velocity and flow rate
to determine the relationship between the average velocity and the index velocity, which
is challenging to use in areas where data are not available. In addition, this method also
has limited ability to predict the flow rate over the long term because it merely performs
a simple regression of surface velocity and index velocity without accounting for the
characteristics of the cross-section. The probability concept method points out that there is
a linear relationship between the maximum surface velocity and the average velocity, so
when this method is used for flow calculation, the location of the maximum surface velocity
is generally needed to be measured in advance. Another disadvantage of this method is the
poor resilience of long-term observations, since the movement of the flow field is intricate
and the velocity at each location cannot be constant. The surface velocity coefficients
method is typically used for wide and shallow rivers, which generally assumes that all
unit sections follow the same velocity distribution model while ignoring the interactions
between waters, and its accuracy needs to be improved.

4.2. Future Potentials

In recent years, different radar technologies, such as phased array, multiple input
multiple output, over-the-horizon, quantum detection, terahertz, and others, have been
developed significantly in various fields [128]. These developments have guided the theory
and practice of expanding radar techniques applied to hydrometric. For instance, radar
integrated with phased array and over-the-horizon techniques can accomplish measure-
ments of velocity, flow direction, and flow rate in extra-wide rivers or lakes, which used
to be conducted via manual methods. Additionally, the hydrometric can be expanded to
monitor the physical and chemical properties using non-contact measurement techniques
such as terahertz, quantum detection, and other new technologies.

In addition, radar technology for river flow monitoring is a non-contact method. The
use of radar eliminates the need for workers and equipment to come into contact with the
water, which improves the safety of the operators, particularly during times of extreme
floods and emergencies. Moreover, it has no impact on ship navigation, and is suitable
for seasonal rivers or low water level areas without being damaged by sand content or
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floating objects. Therefore, radar is a necessary and crucial piece of hydrological monitoring
equipment for the future, whether it is for emergency monitoring of floods brought on by
severe weather or dealing with extreme water flow conditions such as high velocity, high
water level, and high sand content.

Furthermore, radar has made significant advancements in the temporal and spatial
density of data acquisition compared to traditional methods. Traditional methods are labor-
intensive, yield few results, and are expensive due to the manual labor involved. Radar can
obtain surface velocity data from multiple sections in a short time, without on-call personnel
and independent of weather, which significantly lessens the workload of hydrometric and
shifts the focus from labor-intensive testing to data analysis and processing. As a result of
these modifications, we are now able to automate and intelligently perform hydrometric
while also obtaining large amounts of data with high temporal and spatial resolution as the
target dynamics change. We are also no longer restricted to flow monitoring and can use
big data analysis techniques and multi-dimensional data for real-time forecasting and even
achieve early warning of extreme natural disasters, which is a big trend for the future.

4.3. Future Challenges

The following scientific issues must be resolved in order to advance the state-of-the-art
signal sampling and make the announced potential applications feasible in the future:

Multi-point and high-precision flow monitoring radar: The fixed-point radar can only
monitor a single point or a small area, while the side-scan radar can monitor a large area,
but the accuracy needs to be improved. As a result, both fixed-point and side-scan radars
are lacking in monitoring range or accuracy at present. It is required to build a radar
system that balances the detection distance and resolution accuracy to realize simultaneous
multi-point measurements of velocity. Typically, the higher the radar frequency, the better
is its measurement performance. Therefore, the millimeter-wave radar can be introduced
into the flow measurement system to improve the flow measurement accuracy. In addition,
multi-channel frequency modulated continuous wave radar can be used to innovatively
achieve distance and velocity estimation at multiple points on the river surface from both
range and Doppler dimensions, so as to improve system robustness and meet various
application scenarios and accuracy requirements.

Adaptive filtering algorithms: The monitoring of flow velocity is highly dependent on
the filtering methods when there is clutter interference. However, at the present, different
filtering algorithms only work when there is prior knowledge of the clutter. In order to
obtain highly accurate monitoring results, a model of the target clutter background must
be created first or simply fit an existing model, such as the Rayleigh, the Log-Normal, or
the Weibull distribution [129]. Once the clutter model has been determined, the number of
interference targets and the clutter edge of the clutter background can then be determined.
After that, the filtering algorithm can be adaptively selected based on the clutter model to
achieve better detection results.

High-precision analysis of Doppler spectrum: The components of the radar echo signal are
complex, and the Doppler spectrum is greatly broadened due to the antenna beam width,
the distributed multiple scattering points, and environmental conditions. The exploitation
of the micro-Doppler information is insufficient because current signal processing is only
able to be operated in the one-dimensional frequency domain and relies mostly on a
relatively rough Doppler spectrum analysis of the strong scattering points. As a result,
in the future, it may be possible to develop micro-Doppler models using time-frequency
analysis of the Doppler spectrum at various time and frequency scales to produce more
precise flow velocity results.

Flow inversion algorithm considering hydrodynamic processes: The traditional surface
velocity to flow algorithms are mostly empirical or semi-empirical models, which do not
consider the influence of water movement on the flow field, and therefore have poor
applicability for calculating different river flows. In order to ensure the accuracy and
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universality of the model, the relationship between the surface flow field and cross-section
flow velocity distribution should be considered from the perspective of hydrodynamics.

Integration with other monitoring technologies: Due to the complexity of information
acquisition, the amount of data collected by a single sensor is relatively sparse, and complex
algorithms are usually required to obtain the necessary information, which increases the
difficulty of calculating velocity. Limited by the construction of the sensor, the detectable
range, detectable objects, and the type of data obtained are different, which can lead to false
or missed detections and cannot achieve all-weather, high-precision monitoring of the target.
Therefore, in order to obtain more complete and accurate comprehensive information,
traditional monitoring methods or other non-contact methods (such as satellite, vision, etc.)
can be considered in combination with radar technology to extend the measurement range
and enhance the adaptability and robustness of the system.

5. Conclusions

Radar-based flow monitoring techniques have advanced significantly since they were
first used in hydrometrics. The derived flow results are now comparable to those of
traditional methods owing to the developments in signal sampling, Doppler spectrum
estimation, signal processing, and flow inversion techniques. The advantages of non-
contact methods and the dramatic advances in the temporal and spatial density of the
acquired data show the potential of radar technology. The application prospects for this
technology are fairly extensive due to the ongoing advancements in radar technologies and
the rising demand for dynamic, accurate, and intelligent hydrological information.

To fully utilize this technology, though, a number of challenges must be overcome.
The monitoring distance and accuracy of the radar equipment currently used still need to
be improved, and the filtering algorithms, Doppler spectrum analysis techniques, and flow
inversion techniques still have their limitations. However, with an increase in active studies
and a focus on non-contact monitoring techniques in several nations over the past few years,
radar-based flow monitoring techniques have acquired progressively momentum, and the
research on radar flow monitoring is becoming an established field in hydrometrics. It is
hoped that the assessment of the current state-of-the-art signal sampling and the general
comments on its limitations and challenges will be helpful in directing future study in this
fascinating and developing field.
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