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Abstract: In China, Wedelia trilobata (WT) is among the top most invasive plant species. The prediction
of its growth, using different efficient methods under different environmental conditions, is the
optimal objective of ecological research. For this purpose, Wedelia trilobata and its native plant species
Wedelia chinensis (WC) were grown in mixed cultures under different levels of submergence and
eutrophication. The multiple linear regression (MLR) and artificial neural network (ANN) models
were constructed, with different morphological traits as the input in order to predict dry weight as the
output for both plant species. Correlation and stepwise regression analysis (SWR) were used to find
the best input variables for the ANN and MLR models. Plant height, number of nodes, chlorophyll
content, leaf nitrogen, number of leaves, photosynthesis, and stomatal conductance were the input
variables for WC. The same variables were used for WT, with the addition of root length. A network
with the Levenberg–Marquart learning algorithm, back propagation training algorithm, Sigmoid
Axon transfer function, and one hidden layer, with four and six neurons for WC and WT, respectively,
was created. The best ANN model for WC (7-4-1) has a coefficient of determination (R2) of 0.98, root
mean square error (RMSE) of 0.003, and mean absolute error (MAE) of 0.001. On the other hand,
the ANN model for WT (8-6-1) has R2 0.98, RMSE 0.018, and MAE 0.004. According to errors and
coefficient of determination values, the ANN model was more accurate than the MLR one. According
to the sensitivity analysis, plant height and number of nodes are the most important variables that
support WT and WC growth under submergence and eutrophication conditions. This study provides
us with a new method to control invasive plant species’ spread in different habitats.

Keywords: invasive species; submergence; eutrophication; artificial neural network; multiple linear
regression

1. Introduction

Invasive plant species present a major threat to native diversity. After all, they can
grow in every habitat [1]. Globalization and human exchange over the last twenty years
facilitated the introduction of several plant species to novel terrestrial regions [2]. After
introduction into new habitats, some plant species become invasive plants in these novel
environments, and destructively affect the ecosystem, economy, and culture [3]. Invasive
plant species can capture resources from above and below ground [4]. These abilities
enable them to overcome the growth of their native competitor under mixed culture [5].
Understanding the mechanisms by which invasive plant species sustain their growth under
different environmental conditions is crucial for their management [6].

The role of functional traits is very important for the successful invasion of invasive
plant species under different habitat conditions [7]. Functional traits also assist invasive
plant species in boosting their growth under competition, and reduce the growth of their
native competitor [8]. Functional trait responses under different habitat conditions, such as

Water 2023, 15, 1896. https://doi.org/10.3390/w15101896 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15101896
https://doi.org/10.3390/w15101896
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15101896
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15101896?type=check_update&version=2


Water 2023, 15, 1896 2 of 16

nutrient availability, water fluctuation, and temperature variation, greatly impact invasive
plant species’ effective invasion and the growth of native plants [9]. Different functional
traits play a different role in the effective invasion of these invasive plant species; for exam-
ple, root and shoot functional traits are indicators of growth development [10]. Additionally,
photosynthesis, transpiration, and evaporation are the main indicators of leaf growth de-
velopment [11]. Therefore, understanding the responses of functional traits under different
environmental conditions is very fruitful for managing invasive plant species.

Considering globalization, many environmental factors, i.e., water, nutrients, CO2,
light, and temperature, affect the growth of native plant species, but assist invasive plant
species in sustaining their development because they prefer to grow in disturbed habi-
tats [6]. In wetland or riparian zones, the main issues are submergence and eutrophication.
The former, called submergence, is a type of flooding during which the shoot of a plant
is under water [12]. Expulsion of water from riversides, dams, and canals will create
submergence close to these areas, and vegetation will face submergence. Submergence
imposes considerable stress by decreasing energy and carbohydrate values [13]. Func-
tional traits, such as shoot elongation and leaves, assist both invasive and native plant
species in sustaining their growth under submergence, by enabling exposure to sunlight
for photosynthesis [5,14]. Eutrophication is another environmental factor that negatively
affects the aquatic ecosystem [15]. Eutrophication decreases the growth of native plant
species. It boosts the growth of invasive plant species because invasive plant species prefer
to grow in an environment with rich resources [16]. Eutrophication helps to overcome the
stress of submergence by enhancing the shoot of invasive species because these plants can
obtain more CO2, light for photosynthesis, and oxygen for transpiration [14]. Meanwhile,
invasive plant species enhance their root length in order to capture resources below ground,
and overcome the growth of their native competitor by enhancing their root length [17].
Therefore, for managing invasive plant species under submergence and eutrophication
habitats, the traits of different growth parameters assist us in understanding their invasion.

Growth parameters play the main role in successfully invading invasive plant species
under different habitats, especially under competition. In the agriculture sector, many
growth prediction models have been developed with the help of varying growth param-
eters, under additional irrigation and planting methods [18–20]. Most modeling for the
prediction of growth was done with the help of different statistical techniques such as cor-
relation, path analysis, multiple linear regression (MLR), stepwise regression (SWR), factor
analysis, and principal component analysis (PCA) [21–23]. All of these methods presume
to follow the linear relationship of input and output. These methods could not explain
the complex relationship among the input variables and the output [24]. These complex
relationships required non-linear methods, such as Bayesian classification (BC), artificial
neural network (ANN) models, genetic expression programming (GEP), and adaptive
neuro-fuzzy inference systems (ANFIS) in order to overcome the drawback of these linear
models and provide more accurate results [25–27]. The ANN model is most commonly
used for modeling crop yield in agriculture [28]. It is a mathematical tool that attempts
to represent low-level intelligence in normal creatures. The construction of ANN models
is fairly basic, and it may create a non-linear relationship between the input and output
variables [29]. The neuron types, training technique, transfer function, and hidden layer of
ANN models are used to classify them [30]. Multi-layer perceptron (MLP) networks are
commonly used for ANN modeling in the agriculture sector [23,31].

These non-linear complex models were created in order to forecast the growth predic-
tion of different crops by using their growth parameters as input variables [21,22,28]. In
the ecological sector, there is a lack of research with the help of these non-linear complex
models being used to forecast the growth of invasive plants. Furthermore, there is no study
using the ANN model to predict the growth of invasive plants under different environ-
mental conditions, in China or all over the world, even though invasive plant species are
major threat to native biodiversity. The ANN model must be constructed in order to predict
invasive plant species responses under different environmental conditions.
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Furthermore, the hypothesis of this study that these predicting models describe to
us would help to control the growth of these invasive species under native biodiversity.
As a result, this work aimed to develop ANN and MLR models that could predict which
growth parameters help Wedelia trilobata and its native species, Wedelia chinensis, to survive
under submergence and eutrophication. Furthermore, predicting which growth parame-
ters of Wedelia trilobata would reveal the important factors that allow it to overcome the
growth of its native competitor under competition within submergence and eutrophication.
These prediction models could be very helpful for managing invasive plant species under
submergence and eutrophication habitats.

2. Materials and Methods

Wedelia trilobata (WT) is among the top most invasive plants in China [6]; WT and
Wedelia chinensis (WC) both come from the Asteraceae family [3]. It was mostly found
worldwide in arid, semiarid, and humid regions [9]. It is familiar as a groundcover plant
species in China, but over time, it moved speedily from gardens to the roadside and finally
into agricultural fields. It is also found in the wetland areas near the riverside [1]. This
likely indicates that WT can sustain its growth under submergence and eutrophication.

2.1. Study Site and Material Preparation

Plant material (Ramets) of WT and WC were collected around the Yangtze River
bank (29.7204◦ N, 112.6501◦ E), in Yangzhou, Jiangsu, China. Ramets of both plant species
were harvested after obtaining necessary approval, and all processes were conducted
in compliance with applicable standards and laws. It is considered a cultivation study
because ramets of both plant species have been used. This experiment was conducted in
the greenhouse of Jiangsu University (32.1993◦ N, 119.5143◦ E), Zhenjiang, Jiangsu China,
from the start of September to 20 November 2019, as presented in Figure 1. In the seedling
tray, ramets of WT and WC were prepared with sandy soil and peat moss (1:1) as growth
media for the experimental investigation. These seedling trays were kept in a greenhouse
with a temperature of 30 ± 5 ◦C and a relative humidity of 60%. Seedlings were watered
every day, and Hoagland solution was applied once a week.
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The water potential of each plant that underwent treatment was calculated using Psy-
pro, Wescor, USA before harvesting of plants. Details of the growth parameters, along 
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Figure 1. Experimental site (A); experimental plants, Wedelia chinensis (B) and Wedelia trilobata (C).

When the prepared seedlings had two completely grown leaves, then these seedlings
were shifted into plastic pots (12.7 cm height and 17.78 cm diameter) filled with sandy
soil as a growth medium. Pots of these seedlings were located in a bin (80 × 40 × 20 cm)
for mesocosm investigation within the greenhouse. Both species were grown together in
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mixed culture, with 15 replicates of every treatment. For one week, normal water was
provided to the seedlings to allow them to sustain in their new habitat condition. After
7 days, these transplanted seedlings were divided into 2 submergence and 3 eutrophica-
tion levels in order to simulate the naturally existing submergence and eutrophication
under the wetland environment. There were two submergence stages (S1 = 7 cm and
S2 = 14 cm) and three nutrient groups—N1 containing nitrogen (0.45 mg/L) and phospho-
rus (0.097 mg/L); N2 containing nitrogen (4.5 mg/L) and phosphorus (0.97 mg/L); and N3
containing nitrogen (45 mg/L) and phosphorus (9.7 mg/L),—using KNO3, NH4Cl, and
KH2PO4 to prepare each of these treatments, respectively [5]. There were 90 pots in total.
Every day, tap water was added to each treatment bin to maintain the submergence level,
and the nutrient solution was renewed one time after seven days. Plants were harvested
after 30 days.

2.2. Morphological Trait Measurement

Plant height and root length of the plants from each treatment were measured with
a ruler at the time of harvesting. ImageJ software was used to measure leaf area; the
number of leaves and nodes were counted at the time of harvesting for the plants from
every treatment. The dry weight (DW) of each plant per treatment was measured after
drying at ≤80 ◦C for 48 h. The specific leaf area was calculated using the formula of leaf
area to dry mass.

A portable LI-6400XT photosynthesis measurement instrument was used to measure
the photosynthesis, transpiration, and stomatal conductance of the plants from each treat-
ment. A fully expanded leaf was selected for measurement. Measurement was taken
from 10.00 to 11.00 am under full sunshine. Using LI-6400XT, the following settings were
noted during the measurement of data: atmospheric pressure 98.9 kpa, air molar flow
402.5 mmol m−2s−1, photosynthetically active radiation up to 1000 µmol m−2 s−1, CO2
concentration 402 µmol mol−1, vapor pressure 7.0 to 8.8 mbar, and ambient temperature
30.2 to 34.8 ◦C.

The water potential of each plant that underwent treatment was calculated using
Psypro, Wescor, USA before harvesting of plants. Details of the growth parameters, along
with their units and abbreviations, are presented in Abbreviations Part.

2.3. Processing of Data and Statistical Analysis
2.3.1. Criteria for Input Variables

The dataset’s normality was checked with the Anderson–Darling test using SPSS 22
statistical software. Pearson correlation coefficients and stepwise regression (SWR) were
used to assess the association between the morphological features and DW using SPSS
22 statistical software. Statistica software was used to run the ANN models, which used
DW as the dependent and other features as independent parameters [22]. Nightly samples
were used to train, test and validate the ANN model. The descriptive statistics of the trait
variables of both plant species are presented in Tables 1 and 2.

2.3.2. Artificial Neural Network (ANN)

The dry weights (DWs) of both plant species, WT and WC, were used as output
variables. In contrast, the remaining parameters were used as input variables. ANN
training and testing were done based on the morphological traits of the invasive plant
species under the submergence and eutrophication experiments. All datasets were divided
into training, testing, and validation by a 70:15:15% ratio. This selection was done according
to the previous literature [24].
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Table 1. Descriptive Statistics of different variables of Wedelia trilobata.

Parameters Minimum Maximum Mean Std. Deviation

PH 10.00 60.00 23.66 13.22
ND 2.00 14.00 5.62 3.16
CHI 5.60 13.50 8.75 2.44
LN 0.90 1.50 1.15 0.16
L 8.00 20.00 11.62 3.76
RL 8.00 22.00 14.45 3.51
SLA 138.54 342.03 205.22 45.61
LA 3.64 12.50 8.08 2.67
PN 5.01 7.87 6.08 1.02
TR 1.30 1.65 1.45 0.10
GS 0.04 0.08 0.06 0.01
DW 0.42 1.87 0.763 0.47

Note: PH = plant height; ND = nodes; CHI = chlorophyll content; LN = leaf nitrogen; L = leaves; SLA = specific
leaf area; PN = photosynthesis; TR = transpiration; GS = stomatal conductance; RL = root length; DW = dry
weight; LA = leaf area.

Table 2. Descriptive Statistics of different variables of Wedelia chinensis.

Parameters Minimum Maximum Mean Std. Deviation

PH 12.00 38.00 23.79 6.22
ND 3.00 9.00 5.75 1.75
CHI 4.40 17.00 9.11 3.05
LN 0.80 1.70 1.19 0.24
L 6.00 14.00 10.58 1.71
RL 7.00 16.00 11.77 2.72
SLA 145.66 341.21 244.93 57.18
LA 1.90 6.04 4.28 1.28
PN 5.10 6.75 5.76 0.60
TR 1.28 1.59 1.40 0.10
GS 0.03 0.61 0.07 0.11
DW 0.18 2.04 0.69 0.53

Note: PH = plant height; ND = nodes; CHI = chlorophyll content; LN = leaf nitrogen; L = leaves; SLA = specific
leaf area; PN = photosynthesis; TR = transpiration; GS = stomatal conductance; RL = root length; DW = dry
weight; LA = leaf area.

All data have been normalized and placed within the data ranges, where the Tanh
[–1, 1] and Sigmoid [0, 1] are activation functions [32]. For normalization, Equation (1)
was utilized.

XNorm =

[(
Xi − Xmin

Xmax − Xmin

)
× 0.8

]
+ 1 (1)

where Xnorm is the normalized value of an independent or dependent variable. Xmin and
Xmax are the variable’s minimum and maximum values, and Xi’s are the original data.

The optimal neural network structure contains three primary layers: input, hidden,
and output. The output of the network is presumed via Equation (2).

yf = ao +
n

∑
j=1

djf

(
m

∑
i=1

Cijyf − 1 + boj

)
+ €t (2)

Yf represents the model output (DW), n and m represent the hidden layers and input
nodes, and the transfer function is donated by f. Cij i = 1, 2, . . . , m; j = 0, 1, . . . , n is the
weight from the input through the hidden node, and dj j = 0, 1, . . . , n are the weight vectors
extending from the hidden layers to the output nodes. The weight of leading arcs from bias
terms, denoted by a0 and b0j, are always equal to 1. Based on earlier research [21,22,32], the
current study used a feed-forward multi-layer perceptron (MLP) topology with three layers,
and the back propagation (BP) training technique, along with the Levenberg–Marquardt,
Momentum, and Conjugate Gradient learning algorithms. Trial-and-error testing was used
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to identify hidden layers (1–3) and neurons [25]. Sigmoid Axon, Tangent Hyperbolic Axon,
Linear Sigmoid Axon, and Linear Tangent Hyperbolic Axon activation functions were
used to determine the best equation with high accuracy within the hidden and output
layers [33,34].

2.3.3. Multiple Linear Regression (MLR)

Stepwise regression analysis (SWR) was conducted in order to determine the relative
contributions of independent variables and to create a prediction model for the DW of WT
and WC [35]. Equation (3) was used to generate the SWR model using the same data as
the ANN model. Independence of error was determined using the Durbin–Watson test.
The tolerance value and variance inflation factor (VIF) were also tested in order to check
the occurrence of multicollinearity for predictor variables. Higher collinearity described a
smaller tolerance value (<0.1) or a high VIF (>10) value.

yi = ao + a1X1 + a2X2 + . . . + anXn + €t (3)

where a0 + an is the regression coefficient, X1 − Xn are independent variables, and € is the
error of the nth observation.

2.3.4. Performance and Sensitivity Analysis

As demonstrated in Equations (4)–(6) [36], the accuracy of the ANN and MLR models
was evaluated using the root mean square error (RMSE), coefficient of determination (R2),
and mean absolute error (MAE).

RMSE =

√
∑n

i=1(Yi− Yj)2

n
(4)

R2 = 1−
∑n

i=1 (Yi − Yi◦)
(
Yj − Yj◦

)
∑n

i=1
(
Yi − Yi◦)2

(
Yj − Yj◦)2 (5)

MAE =
1
n

n

∑
n=i
|Yi− Yj| (6)

where n represents the number of data, Yi denotes the actual value, and Yj denotes the
predicted value. Yio and Yjo are the mean values of observed and predicted values, re-
spectively. A model with lower values of RMSE and MAE and a higher value of R2 is
considered the best prediction model.

Sensitivity analysis was performed by choosing the most appropriate input parameters
that control the dry weight of WT and WC within submergence and eutrophication, after
determining the best ANN model. The sensitivity analysis was performed by running a
dataset without any input variables, and the values of R2, RMSE, and MAE determined the
accuracy of the model [37].

3. Results and Discussion
3.1. Selection of Input Variables

The selection of input parameters is crucial for developing a model. These input
factors have a major impact on the weighted coefficient and the model’s final design [23].
Therefore, this phase is critical for determining the optimum function for statistical models
such as ANN and MLR. A Pearson correlation coefficient was used to assess the associ-
ation between the DWs of WT and WC. Figures 2 and 3 demonstrate WC and WT with
various features used as input variables. WC demonstrates a strong positive correlation
with PH (R2 = 0.951), followed by ND (R2 = 0.943), CHI (R2 = 0.777), LN (R2 = 0.643), L
(R2 = 0.626), PN (R2 = 0.819), and GS (R2 = 0.795). WT also demonstrates a positive correla-
tion with PH (R2 = 0.906), followed by ND (R2 = 0.859), CHI (R2 = 0.488), LN (R2 = 0.550), L
(R2 = 0.761), PN (R2 = 0.781), and GS (R2 = 0.448). At the same time, WT negatively corre-
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lates with RL (R2=−0.780). A negative correlation of WT and RL, under competition due to
phenotyping plasticity, help WT to capture resources below ground and destroy the growth
of WC [5]. The negative correlation of RL also makes WT a stronger competitor in capturing
resources below ground [12]. Under submergence and eutrophication, the plant height and
number of leaves facilitate the plant’s exposure to sunlight in order to alleviate the negative
effects of submergence and eutrophication [14] and continue their photosynthetic process
for growth development [9]. Therefore, according to previous studies [9,14,38], and this
study’s correlation results, it can be postulated that PH, ND, CHI, LN, L, RL, PN GS are the
most important trait parameters to determining the DW of WT and WC, as presented in
Figures 2 and 3.
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Figure 2. Pearson correlation of Wedelia chinensis between dry weight and other trait variables. Note:
** significant at <0.01; NS at >0.05. PH = plant height; ND = nodes; CHI = chlorophyll content;
LN = leaf nitrogen; L = leaves; RL = root length; PN = photosynthesis; TR = transpiration;
SLA = specific leaf area; GS = stomatal conductance; LA = leaf area. NS = non-significant.

In addition to the correlation coefficient, stepwise regression analysis (SWR) was
performed to counter-check the relationship between the trait variables and DW. Correlation
within different parameters can be disturbed by the positive and negative incidental effects
of other variables; this problem disturbs the efficiency of selecting input variables [39,40].
The authors of Refs. [21,22] also described that SWR is the best method for selecting input
variables and increasing the model’s efficiency. Therefore, SWR was performed in order to
determine the best input trait variables. According to the SWR, PH, ND, CHI, LN, L, PN,
and GS were considered to be the most appropriate input variables for the ANN and MLR
models for WC under submergence and eutrophication in Table 3.

Meanwhile, similar input variables were found for WT under SWR only with the
addition of RL, as presented in Table 4. SWR reduced the number of input variables because
it only selected the more efficient model development variable [41,42]. While in our study,
results of correlation and SWR have the same because all these growth trait variables greatly
influence the DW of WT and WC within submergence and eutrophication [5].
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Figure 3. Pearson correlation of Wedelia trilobata between dry weight and other trait variables. Note:
** significant at <0.01. PH = plant height; ND = nodes; CHI = chlorophyll content; LN = leaf nitrogen;
L = leaves; RL = root length; PN = photosynthesis; TR = transpiration; SLA = specific leaf area;
GS = stomatal conductance; LA = leaf area. NS = non-significant.

Table 3. Stepwise regression analysis for dry weight of Wedelia chinensis as the dependent variable.

Step Entered Variable Variable in Model Partial-R-Square a R-Square b

1 GS GS 0.632 0.795
2 PN GS PN 0.716 0.846
3 L GS PN L 0.732 0.856
4 LN GS PN L LN 0.738 0.859
5 CHI GS PN L LN CHI 0.760 0.872
6 ND GS PN L LN CHI ND 0.898 0.948
7 PH GS PN L LN CHI ND PH 0.909 0.953
Durbin–Watson value = 1.60; variance inflation factor (VIF); VIF for all variables (5 < VIF);
tolerance for all variables (1 > TOL)

Notes: a Partial determination coefficient; b determination coefficient; Durbin–Watson value = 1.260. Note:
PH = plant height; ND = nodes; CHI = chlorophyll content; LN = leaf nitrogen; L = leaves; PN = photosynthesis;
GS = stomatal conductance.

Table 4. Stepwise regression analysis for dry weight of Wedelia trilobata as the dependent variable.

Step Entered Variable Variable in Model Partial-R-Square a R-Square b

1 GS GS 0.420 0.648
2 PN GS PN 0.613 0.783
3 RL GS PN RL 0.681 0.825
4 L GS PN RL L 0.702 0.838
5 LN GS PN RL L LN 0.726 0.852
6 CHI GS PN RL L LN CHI 0.801 0.895
7 ND GS PN RL L LN CHI ND 0.813 0.902
8 PH GS PN RL L LN CHI ND PH 0.861 0.928
Durbin–Watson value = 1.60; variance inflation factor (VIF); VIF for all variables (5 < VIF);
tolerance for all variables (1 > TOL)

Notes: a Partial determination coefficient; b determination coefficient; Durbin–Watson value = 1.34. Note:
PH = plant height; ND = nodes; CHI = chlorophyll content; LN = leaf nitrogen; L = leaves; RL = root length;
PN = photosynthesis; GS = stomatal conductance.
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3.2. Prediction of Dry Weight of Wedelia trilobata and Wedelia chinensis Using ANN

After selecting the appropriate input variables for model development, selecting
the transfer function, hidden layers, and their neurons are important for optimal model
development. These can be determined by trial and error [43,44]. For this purpose, four
different transfer functions—Tangent Hyperbolic Axon, Sigmoid Axon, Linear Tangent
Hyperbolic Axon, and Linear Sigmoid Axon—were used in order to determine the best
transfer function, as presented in Table 5. Learning algorithms and different transfer
functions were used to assess the efficiency of the ANN model [45]. The lowest RMSE and
MAE, and higher R2, were determined by using the Sigmoid Axon as a transfer function
for both plant species in the testing, training, and validation phase, as presented in Table 6.
These findings could be related to the transfer function. It is possible that the input variables
and output in this study revealed a complex non-linear relationship; meanwhile, it can be
obtained that the Sigmoid Axon function can cover complex non-linear variations related
to other transfer functions [24]. Many crop growth prediction models utilized the Sigmoid
Axon transfer function [21,22,25,46].

Table 5. Summary of the components of the artificial neural network model used to predict the
growth of Wedelia trilobata and Wedelia chinensis.

ANN Method Number of
Hidden Layers

Number of Neurons
in Each Layer Transfer Function Learning

Algorithm
Training
Algorithm

Multi-
layerperceptron
(MLP)

1–5 1–20

Sigmoid Axon

Levenberg–
Marquardt

Back Propagation

Linear Sigmoid
Axon
Tangent
Hyperbolic Axon
Linear Tangent
Hyperbolic Axon

Note: ANN = artificial neural network.

Table 6. The performance of the best ANN models for predicting dry weight of Wedelia trilobata and
Wedelia chinensis.

Output Network
Structure

Transfer
Function

Learning
Algorithm

Training
Algorithm

Testing Training Validation
R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

WC MLP-7-4-1 SigmoidAxon Levenberg–
Marquardt

Back Prop-
agation 0.98 0.003 0.001 0.98 0.047 0.027 0.99 0.28 0.16

WT MLP-8-6-1 SigmoidAxon Levenberg–
Marquardt

Back Prop-
agation 0.98 0.018 0.004 0.99 0.008 0.004 0.99 0.23 0.16

Note: WT = Wedelia trilobata; WC = Wedelia chinensis.

After selecting the optimum transfer function, the various numbers of hidden layers
were examined in order to determine the best number of hidden layers for DW predic-
tion in the ANN model [32]. Based on the values of RMSE, MAE, and R2 under dif-
ferent hidden layers, the optimum results in testing (RMSE = 0.003, MAE = 0.001, and
R2 = 0.98), training (RMSE = 0.047, MAE = 0.027, and R2 = 0.98), and validation (RMSE = 0.28,
MAE = 0.16, and R2 = 0.99), for WC were determined, with one hidden layer, along with
four neurons. Similarly, for WT, testing (RMSE = 0.018, MAE = 0.004, and R2 = 0.98),
training (RMSE = 0.008, MAE = 0.004, and R2 = 0.99), and validation (RMSE = 0.23,
MAE = 0.16, and R2 = 0.99) were determined, also with one hidden layer, along with
six neurons, as presented in Table 6. The transfer function between hidden layers and
nodes, exhibiting the complexity of the ANN, is one of the most important elements influ-
encing the accuracy and performance of the ANN [32]. Increasing the number of hidden
layers and neurons did not affect performance and accuracy of the model discussed in
this work [26]. The total input, the output variables, the algorithm used for training, the
complexity of the ANN structure, and the number of samples used for the training network
are the elements that can disturb hidden layers and units in the ANN [32,47–49].
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Back propagation training algorithms, along with Levenberg–Marquardt learning
algorithms containing the Sigmoid Axon transfer function, with seven input variables in
the input layer for WC and eight input variables for WT, one hidden layer having four
neurons within each layer for WC, and one hidden layer having six neurons within each
layer for WT, along with one output for both plant species, were used to build ANN models
for both plant species. As depicted in Table 6, the optimum topology of the ANN model
used to determine the DW of both plant species is 7-4-1 for WC and 7-6-1 for WT. The
selection criteria of the best predicted ANN model should hold the minimum hidden
layers, fewer neurons, and higher performance values [50,51], which were considered in
these predicted models. Many epochs can reduce the ANN performance and increase the
chances of memorization and overtraining [32]. A pretest, using one hidden layer and
many epochs (10–500), was conducted in order to reduce overtraining and memorization.
Figure 4 depicts the convergence point within training and testing where the conclusion of
training time will avoid overtraining.
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Measured and predicted DW values for both plant species are presented in scatter
plots, with the help of the training datasets, in Figure 5. Both predicted and estimated
values exhibit the same distribution in the scatter plots, indicating non-significant results
for both plant species.
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3.3. Multiple Linear Regression (MLR)

MLR models were used to build models when there were linear relationships within
input and output variables [52]. SWR was conducted using different input variables (PH,
ND, L, LN, CHI, PN, GS, and RL) for WT and WC in order to determine the best MLR
model for determining the DW of both plant species. It used the same input and output
dataset to build a regression model used for the ANN model. Independence error is the
main hypothesis in regression analysis. Independence error was determined according
to the Durbin–Watson test, and the 1.60 value of the Durbin–Watson test indicated the
independent errors in the model [53]. Non-multicollinearity, in addition to independent
error, is the vital hypothesis for MLR because collinearity might result in the selection of
the most significant predictor being inaccurate [54]. Tolerance and VIF values were used
to check the multicollinearity hypotheses for each independent variable. The smallest
tolerance values (<0.1) and higher values of VIF (>5) described high collinearity, which
was found in this study, as presented in Tables 3 and 4. MLR model equations were deter-
mined with the help of SWR analysis to predict the DW for WT and WC, as presented in
Equations (7) and (8).

DW = −0.367 + 6.035GS− 0.120PN− 0.25RL− 0.001L + 0.753LN− 0.055CHI− 0.072ND + 0.103PH (7)

DW = 0.232 + 0.234GS− 0.015PN + 0.002L + 0.311LN + 0.008CHI + 0.71ND + 0.033PH (8)

Equations (7) and (8) are the MLR equations for WT and WC, which describe the
effects of the input variables on the output, and their importance. Furthermore, it also
indicates how the DWs for both plant species were changed by changing the input variable
datasets. The SWR analysis results determined that GS has the lowest R2 value for both WC
and WT because it demonstrated less impact for DW production in both plant species [19].
On the other hand, PH has the highest R2 value for both WC and WT because it helps
expose the plants to sunlight so that they can run their photosynthetic process in order
to overcome the effects of submergence and eutrophication [5]. Many researchers used
SWR to understand the role of the independent variables on the dependent variable for
the development of regression models, i.e., in sesame (Sesamum indicum L.) and Ajowan
(Trachyspermum ammi L.) [21,55]. Graphs between the predicted and measured DW values
for WT and WC were created with the help of the MLR model in Figure 6. The predicted
MLR model for WT has R2 = 0.96, RMSE = 0.08, and MAE = 0.009, while the Predicted
MLR model for WC has R2 = 0.97, RMSE = 0.09, and MAE = 0.01, as presented in Figure 6.
These errors and coefficient of determination values indicate that MLR models have low
performance compared to the ANN model.
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3.4. Comparsion of MLR and ANN Models

Based on the error values and coefficients of determination (R2, RMSE, and MAE),
the MLR and ANN models were compared. These are the best criteria to determine the
performance of differently trained models [46]. According to the results presented in the
scatter plots in Figures 5 and 6, the lower values of RMSE and MAE and higher values
of R2 in the ANN model described that the predicted values of the ANN model are very
similar to the measured values, compared to the MLR model. In short, the ANN model is
more accurate in describing both plant species’ dry weights, by using different growth trait
variables when compared to the MLR model because the MLR model could not describe
non-linear relationships more accurately [24–26]. Many other researchers have agreed that
the ANN model is a better method, compared to the MLR model, for the growth prediction
of different crops [21,22,25,46,56].

3.5. Sensitivity Analysis

Sensitivity analysis tests were performed within the ANN and MLR models in or-
der to understand the roles of the input variables that can disturb the DW of WT and
WC under submergence and eutrophication. The authors of Refs. [25,57,58] performed
a sensitivity analysis in order to determine the main variables that disturb the predicted
growth values of different crops. To evaluate the accuracy of the MLR and ANN models,
a sensitivity analysis was performed without specific input variables (PH, ND, CHI, LN,
L, RL, PN, GS) for WT and WC in order to predict DW, as presented in Tables 7 and 8.
In the MLR and ANN models, PH had the lowest R2 value (0.78, 0.85), with high RMSE
(0.11, 0.028) and MAE (0.014, 0.008) for WT, similar to WC, which had the lowest R2

value (0.72,0.86), with high RMSE (0.13, 0.037) and MAE (0.016, 0.012), as presented in
Tables 7 and 8. Furthermore, results described that PH, followed by ND, was recognized
as the most important parameter in predicting DW under both models. SWR and corre-
lation results also agreed with the sensitivity analysis, as presented in Tables 3 and 4 and
Figures 2 and 3, respectively. It can be concluded with sensitivity analysis, SWR, and
correlation analysis that PH and ND are the most important factors affecting the DW of
both plant species. PH played an important role in sustaining plant growth under submer-
gence and eutrophication because greater height can increase exposure to sunlight in order
to perform the photosynthetic process for better growth development [1,5]. The higher
number of nodes helped the plant to increase the plant height and number of leaves, which
help overcome the stress of submergence and eutrophication by increasing exposure to air
in order to obtain CO2, light for photosynthesis, and oxygen for transpiration [1,4].

Table 7. Sensitivity analysis of input variables to predict dry weight of Wedelia trilobata.

Method
ANN MLR

R2 RMSE MAE R2 RMSE MAE

The best ANN/MLR with (PH,
ND, CHI, LN, L, RL, PN, GS 0.98 0.018 0.004 0.96 0.08 0.009

ANN/MLR without (PH) 0.85 0.028 0.008 0.78 0.11 0.014
ANN/MLR without (ND) 0.88 0.034 0.006 0.84 0.12 0.015
ANN/MLR without (CHI) 0.90 0.044 0.002 0.88 0.093 0.008
ANN/MLR without (LN) 0.92 0.057 0.006 0.90 0.103 0.011
ANN/MLR without (L) 0.93 0.089 0.003 0.91 0.102 0.010
ANN/MLR without (RL) 0.95 0.091 0.005 0.93 0.13 0.014
ANN/MLR without (PN) 0.97 0.031 0.013 0.80 0.107 0.011
ANN/MLR without (GS) 0.96 0.059 0.001 0.90 0.106 0.011

Note: PH = plant height; ND = nodes; CHI = chlorophyll content; LN = leaf nitrogen; L = leaves; RL = root length;
PN = photosynthesis; GS = stomatal conductance.
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Table 8. Sensitivity analysis of input variables to predict dry weight of Wedelia chinensis.

Method
ANN MLR

R2 RMSE MAE R2 RMSE MAE

The best ANN/MLR with (PH,
ND, CHI, LN, L, PN, GS 0.98 0.003 0.001 0.97 0.09 0.010

ANN/MLR without (PH) 0.86 0.037 0.012 0.72 0.13 0.016
ANN/MLR without (ND) 0.88 0.052 0.005 0.75 0.120 0.010
ANN/MLR without (CHI) 0.91 0.087 0.07 0.81 0.103 0.010
ANN/MLR without (LN) 0.90 0.046 0.04 0.85 0.091 0.08
ANN/MLR without (L) 0.93 0.032 0.06 0.76 0.11 0.013
ANN/MLR without (PN) 0.95 0.021 0.08 0.78 0.12 0.012
ANN/MLR without (GS) 0.96 0.056 0.06 0.82 0.10 0.011

Note: PH = plant height; ND = nodes; CHI = chlorophyll content; LN = leaf nitrogen; L = leaves;
PN = photosynthesis; GS = stomatal conductance.

4. Conclusions

Determining the identity and growth trait components that help invasive species
to sustain their growth under changed ecological conditions by using efficient modeling
methods are new features in the ecological sector. The findings of this study revealed that
ANN modeling predicted the DW of WT and WC more accurately than the MLR model
under submergence and eutrophication. The MLR model was not able to describe the
complex relationship between the output and input variables. The findings of this study
thus demonstrated a new technique with which to predict the growth of invasive species
under different ecological conditions by using available data. By using these models, the
spread of invasive species within native biodiversity can be controlled.
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Abbreviations

Parameters Abbreviation Units
Plant height PH Cm
Nodes ND No
Chlorophyll content CHI SPAD
Leaf nitrogen LN mg/g
Leaves L No
Root length RL Cm
Specific leaf area SLA Cm2/g
Leaf area LA Cm2

Photosynthesis PN umol (CO2)m2
S
−1

Transpiration TR mol (H2O)m2s−1

Stomatal conductance GS mmolm2s−1

Dry weight DW G
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