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Abstract: The Rb/Sr ratio of lake sediments has been widely adopted as an indicator of weathering
intensity in studies of past climate change, but the geochemical significance of this ratio varies with
timescale. Here, we present Rb/Sr data for the past 300 years for sediments collected from Chaonaqiu
Lake in the Liupan Mountains of the western Chinese Loess Plateau as a decadal-scale record of
weathering intensity. To validate the application of this weathering proxy, we correlated the record
with those of other major elements, rock-forming minerals, and paleoclimatic proxies. We found
that Rb/Sr ratios are influenced mainly by Sr activity within the lake catchment (where Sr is likely
sourced from albite). In addition, higher (lower) Rb/Sr ratios of bulk sediments from Chaonaqiu
Lake are correlated with lower (higher) fractions of terrigenous detritus (SiO2, Ti, K2O, Al2O3, and
Na2O). These indicate that the Rb/Sr ratios of bulk sediments in Chaonaqiu Lake are closely linked
to terrigenous detritus input on decadal scales and also correlate well with TOC (a precipitation
indicator) and other high-resolution paleoclimate records (e.g., tree rings and drought/flood index)
in neighboring regions, with higher (lower) Rb/Sr ratios corresponding to more (less) precipitation.
Lake bulk sediment Rb/Sr ratios are dominated by the input of terrigenous detritus over decadal
timescales. Our data show that physical and chemical weathering in the Chaonaqiu Lake watershed
have opposing influences on Rb/Sr ratios of bulk sediment, competing to dominate these ratios of
lake sediments over different timescales, with ratios reflecting the relative importance of the two
types of weathering.

Keywords: Rb/Sr ratios; weathering intensity; decadal scales; Chaonaqiu Lake

1. Introduction

Numerous proxies based on ratios of elements have been used as indicators of past
environmental and climatic change over various timescales [1–7]. The ratio of immobile
to mobile elements usually indicates the intensity or degree of weathering [4,8,9]. Ru-
bidium (Rb) tends to coexist with K in silicate minerals, such as K-feldspar, muscovite,
biotite, etc., because the ionic radius of Rb is close to that of K. It exhibits inert behavior
during weathering and is isolated in residual phases. Strontium (Sr) prefers Ca-bearing
minerals, such as carbonate minerals, plagioclase, and pyroxene. When these minerals are
subjected to weathering, the K-bearing minerals are generally more stable than Ca-bearing
minerals, resulting in fractionation between Rb and Sr in weathering products [9]. The
different behaviors of Rb and Sr in natural processes are helpful in identifying material
sources and indicating chemical weathering intensity. Therefore, Rb/Sr ratios have been
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utilized for reconstructing the degree or intensity of chemical weathering and changes in
climatic conditions over geological timescales [8–12]. For example, Rb/Sr ratios in Chinese
loess/paleosoil profiles indicate the degree of weathering, where a higher Rb/Sr ratio
corresponds to a higher degree of weathering and thus to stronger Asian summer monsoon
intensity over long timescales, and vice versa [7,13–16]. On the other hand, the different
geochemical behaviors of Rb and Sr in the process of terrestrial supergene weathering
also provide a new idea for studying the records of trace elements in lake sediments. As
a collector of watershed materials, lake sediments receive a large number of weathering
products of rocks and soil in the basin. As the chemical weathering degree of rocks and soil
in the basin increases, more Sr is leached from rocks and soil into the lake, and Rb remains
in the original rocks and soil, resulting in a decrease in the Rb/Sr ratio of lake sediments.
As a result, Rb/Sr ratios of lake sediments have been widely applied in the research field of
lake paleoclimatology, often as an indicator of weathering intensity in catchments, where a
lower Rb/Sr ratio of lake sediments indicates stronger chemical weathering in the basin,
and vice versa [2–4,8,11,17,18]. For instance, Liu et al. [11] applied Rb/Sr ratios in recon-
structing chemical weathering variability over the past 1200 years in the Gonghai Lake
catchment, north China. Rb/Sr ratios in lacustrine sediments have also been adopted as
an indicator of the evolution of Central Asia’s westerly winds [19] and the Asian summer
monsoon [11,20,21].

However, the factors affecting the material load transported into lakes can be complex
and include the local climate, the chemical and physical properties of bedrock, and vegeta-
tion cover. Such factors may add complexity to the environmental interpretation of Rb/Sr
ratios of lake sediments. For example, with strong physical loads in a catchment, although
accompanying chemical weathering may be enhanced, the chemical composition of lake
sediment may be mainly influenced by terrigenous detritus rather than chemical/biogenic
deposition. Rb/Sr ratios of lake bulk sediment would in such a case serve primarily as
an indicator of physical rather than chemical weathering intensity [9,22–24]. Rb/Sr ratios
have also been regarded as an indicator of glacial conditions and lake water depth. For
example, lower Rb/Sr ratios of sediments of the glacial Kalakuli Lake have been interpreted
to indicate glacier advance, and vice versa [25]. Moreover, Rb/Sr ratios have been used as
a proxy for water depth in lacustrine deposits in the Qaidam Basin [26]. It follows that an
understanding of the controls on Rb/Sr ratios and their limitations is fundamental to their
application and interpretation.

Chaonaqiu Lake is located in the Liupan Mountains on the western Chinese Loess
Plateau in a zone that is transitional between semi-arid and semi-humid climatic con-
ditions on the margin of the area affected by the modern Asian summer monsoon. An
understanding of material transport from the catchment to the lake is critical in evaluating
and predicting ecological and environmental changes, clarifying the environmental inter-
pretation and significance of limnological indices, and elucidating weathering processes.
Studies of Rb/Sr ratios of lake sediments may help to address these issues. Sediment cores
recovered from Chaonaqiu Lake have yielded continuous varve sequences at high resolu-
tion with well-constrained chronology, and past changes in climate and vegetation have
been reconstructed in detail on the basis of proxies such as total organic carbon (TOC) con-
tent [27], nitrogen stable isotope ratios (δ15N; [28]), n-alkanes [29], carbonate [30], and pollen
records [31,32]. Recently, Zhang et al. [33] suggested that Rb/Sr ratios in Chaonaqiu Lake
sediments may be controlled by chemical weathering intensity on centennial–millennial
scales, although the exact weathering processes were not discussed. This study focuses on
the environmental geochemical significance of Rb/Sr ratios in Chaonaqiu Lake sediments
on decadal timescales based on the characteristics, geographical location, and significance
of multiple proxies and considers the relevant weathering process on different timescales.
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2. Materials and Methods
2.1. Study Area

Chaonaqiu Lake (latitude 35◦16′ N, longitude 106◦19′ E, altitude 2430 m a.s.l.) is
located in the Liupan Mountains, ~30 km to the northeast of Zhuanglang County (Figure 1a).
It has a surface area of 0.02 km2 with a maximum water depth of 10 m. Chaonaqiu Lake is
an alpine-barrier freshwater lake with a seasonal outflow on its western margin (Figure 1b),
and the lake water is supplied mainly by precipitation. The bedrock of the catchment
basin of the lake is red sandstone. The pH and salinity of the lake water are 7.83 and
0.17 g L−1, respectively [34], while total P and N concentrations are 40.2 and 1096.8 µg L−1,
respectively [28]. Meteorological records for 1960–2007 from the nearby Zhuanglang
meteorological station indicate a mean annual temperature (MAT) of 8.1 ◦C, with mean
temperatures for January and July of −5.2 ◦C and 20.1 ◦C, respectively (Figure 1c). The
mean annual precipitation is 513 mm, with ~70% falling in summer (June–September;
Figure 1c).
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of 1 cm to quantify the core mass depth for constructing an accurate chronological model. 
Core CNQ12−4 was subsampled in the laboratory at an interval of 1 cm. The core 
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Figure 1. Location and setting. (a) Location of our study site, Chaonaqiu Lake, in the south-western
Chinese Loess Plateau, and other previous studies mentioned in the text include the Taihe Mt. tree
ring and the Yuzhong and Tianshui drought/flood (D/F) index. (b) Satellite image of the Chaonaqiu
Lake (maps modified from Google Earth) and the location of sampling site. (c) Mean monthly
temperature (red dotted line) and precipitation (blue bars) from Zhuanglang meteorological station
based on 1960–2007 data from China Meteorological Administration.

2.2. Sampling

In September 2012, four surface sediment cores, designated CNQ12–1, CNQ12–2,
CNQ12–3, and CNQ12–4, were retrieved from the center of Chaonaqiu Lake using a gravity
corer (UWITEC, Austria). Cores CNQ12–1 (~73 cm) and CNQ12–2 (~130 cm) were retrieved
from Site 1, and cores CNQ12–3 (~70 cm) and CNQ12–4 (~138 cm) were retrieved from Site
2 (Figure 1b). Sediment profiles were undisturbed, with a clear interface between sediment
and water. Core CNQ12–1 was subsampled in the field at an interval of 1 cm to quantify
the core mass depth for constructing an accurate chronological model. Core CNQ12–4 was
subsampled in the laboratory at an interval of 1 cm. The core CNQ12–1 was used for this
study.

2.3. Chronology Control
137Cs and 210Pbex radioactivity of core CNQ12–1 was determined through HpGe

(GWL-250-15 detector; Ortec, Atlanta, GA, USA) high-resolution gamma spectrometry,
with an experimental error of <10% and a detection limit of 0.1 Bq kg−1 at a 99% confidence
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level [35], at the Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China.
The dating results have been reported by Ref. [27].

2.4. Experiment and Statistical Analysis

Thirty-seven subsamples from core CNQ12–1 were selected for traditional XRF anal-
ysis by X-ray fluorescence spectrometry (XRF; PW440, Axios advanced, The Nether-
lands; [36]). For this, ~1 g of dried sample powder was calcined in a muffle furnace
at 550 ◦C to remove organic matter, and 0.6 g of subsamples was mixed with 6 g dry lithium
tetraborate (Li2B4O7) for fusion to glass in a platinum crucible at 1000 ◦C. Calibrations
involved 4 Chinese soil samples (GSS1~4) with analytical uncertainties of ±3% for ma-
jor elements. Twenty-six representative sediment samples from core CNQ12–1 and one
surface soil sample from the catchment were selected for X-ray diffraction (XRD) analysis
(details see [30]) to obtain mineral assemblages and elemental geochemical characteristics
of sediments. All analyses were undertaken at the Institute of Earth Environment, Chinese
Academy of Sciences, Xi’an, China.

We used SPSS 17.0 software to conduct Pearson correlation analysis on experimental
data and other related data. Considering the differences in the number of samples for each
experimental indicator, all data were symmetrized based on the sample number before
correlation analysis to ensure the accuracy and scientificity of the results.

3. Results
3.1. Chronology

Based on the age model, the core CNQ12–1 has a constant mass accumulation rate
(MAR) of 0.0852 g·cm−2·yr−1 over the period of 1743–2012 (refer to [27] for details ). The
137Cs–210Pb ages of Chen et al. [28] and Guo et al. [32] from Chaonaqiu Lake are also plotted
in Figure 2 and correlate well with those of our dating model (Figure 2). In addition, the
14C age of 500 cal yr BP occurs at 100 cm depth [32] and 620 cal yr BP at 162 cm depth in
Chaonaqiu Lake [29,37], consistent with our 137Cs age model. The close correspondence of
these various age constraints confirms that our presented chronology is reliable.
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core GS14A (purple curve, 137Cs−210Pb age model; [28]) and that reported by Guo et al. [32] (blue
curve, 137Cs−210Pb age model).

3.2. Elemental Geochemical and Mineral Assemblages

The Rb contents of core CNQ12–1 are in the range of 176.1–246.5 ppm with an average
of 200.8 ppm, while Sr contents are in the range of 175.6–236.6 ppm with an average
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of 203.58 ppm. Rb/Sr ratios range from 0.78 to 1.29 with an average of 0.99 (Figure 3).
Rb and Sr display generally opposing trends at 1–15 cm and 55–73 cm depths in the
profile but are consistent at 15–55 cm. Rb/Sr ratios are negatively correlated with Sr
(Pearson correlation coefficient r = −0.703, p = 0.01; Table 1) and positively correlated
with Rb (Pearson correlation coefficient r = 0.623, p = 0.01; Table 1) contents (Figure 3).
This suggests that the variation in Rb/Sr ratios depends primarily on Sr element activity
during weathering.
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Table 1. Pearson correlation coefficients between species in sediments from core CNQ12–1.

Pearson Correlation
Ti Na2O Al2O3 K2O Rb Sr Rb/Sr

Sig. (2-Tailed)

SiO2
0.686 ** 0.817 ** 0.134 0.163 −0.095 0.340 * −0.303

0.000 0.000 0.430 0.334 0.574 0.039 0.068

Ti
0.409 * 0.659 ** 0.630 ** 0.449 ** 0.210 0.153
0.012 0.000 0.000 0.005 0.213 0.365

Na2O −0.258 −0.094 −0.407 * 0.543 ** −0.698 **
0.123 0.581 0.012 0.001 0.000

Al2O3
0.896 ** 0.919 ** 0.034 0.633 **

0.000 0.000 0.843 0.000

K2O 0.920 ** 0.385 * 0.353 *
0.000 0.019 0.032

Rb
0.111 0.623 **
0.511 0.000

Sr
−0.703 **

0.000

Note: N = 37. * Significant at p = 0.05. ** Significant at p = 0.01. Bold and italic fonts indicate positive and negative
correlations, respectively. SiO2 data are from [27].

Overall, element and oxide contents are strongly correlated in core CNQ12–1 (Figure 3;
Table 1). Rb contents are positively correlated with those of Ti, K2O, and Al2O3, especially
with K2O and Al2O3 (r > 0.90; Table 1); Sr contents are significantly and positively corre-
lated with SiO2, K2O, and Na2O contents; and Rb/Sr ratios are similarly correlated with
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Al2O3, K2O, and Na2O contents (Table 1). Si, Al, K, and Ti contents of lake sediments are
generally considered to be associated with the influx of exogenous clastic materials [38,39]
and are positively correlated with each other in Chaonaqiu Lake sediments (Figure 3;
Table 1), reflecting their similar characteristics, sources, and transport and sedimentation
processes [40].

Our XRD analyses reveal that core CNQ12–1 has a mineralogic composition that is
dominated by quartz, biotite, albite, chlorite, and calcite (Figure 4). Except for calcite, the
close correspondence of mineralogic compositions and primary peaks between surface
soils and lake sediments implies that sediments in Lake Chaonaqiu are sourced primarily
from terrestrial clastic material. The element compositions of these minerals in sediment
are similar to the elements listed in Table 1, indicating that these elements have similar
characteristics, sources, and transportation and sedimentation processes [40].
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4. Discussion
4.1. Environmental Geochemical Significance of the Rb/Sr Ratio in the Chaonaqiu Lake

Under natural conditions, Sr-bearing minerals in lake sediments are derived from
two sources: terrigenous detritus (directly brought in by physical erosion) and dissolved
materials (produced by chemical weathering). If the Rb/Sr ratios in bulk sediments are
controlled mainly by physical loads, then more intense physical weathering should be
correlated with higher contents of terrigenous detritus, with lower Rb/Sr ratios [22,23].
In contrast, if the Rb/Sr ratios in bulk sediments are mainly determined by chemical
weathering, more intense chemical weathering is expected to be correlated with higher Sr
contents and lower Rb/Sr ratios [3,4,8,11,17,18]. Therefore, Rb/Sr ratios of lake sediments
reflect the competition between (i.e., the relative importance of) physical weathering and
chemical weathering [9]. Where Sr in sediments occurs mainly in coarse terrigenous clastic
minerals (e.g., feldspar minerals), the Rb/Sr ratio reflects the intensity of physical transport
within the basin [3,22]. XRD analyses show that the minerals in lake sediments and surface
soil are dominated by quartz, albite, biotite, and chlorite (Figure 4), with the calcite in
sediments being authigenic [30]. As shown in Figure 5, the trend of Sr content is consistent
with that of albite signal strength (Figure 5), and there is a significant positive correlation
between them (Pearson correlation coefficients r = 0.777, p = 0.01; Table 2). In contrast, the
trends in Sr content are not consistent with that of calcite signal strength, and although
there is a positive correlation between them, the Pearson correlation coefficient (r = 0.134;
Table 2) is much lower than that for albite. These results imply that Sr is likely enriched in
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albite. Rb/Sr ratios are also strongly correlated with the content of the terrigenous fraction
(SiO2, Ti, K2O, Al2O3, and Na2O; Table 1 and Figure 3), implying that the Rb/Sr ratios in
sediments of Chaonaqiu Lake are likely dominated by terrigenous detritus and, therefore,
that physical weathering predominated within the catchment of the lake. This is similar to
the results observed in Lake Qinghai [9] and Lake Teletskoye [22,23].

Table 2. Pearson correlation coefficients among Sr and other proxies or indicators from core CNQ12–1.

Pearson Correlation

albite calcite TOC TCCSig. (2-Tailed)

N

Sr
0.777 ** 0.134 −0.570 ** 0.004
0.000 0.514 0.000 0.981
26 26 37 37

albite
/ 0.618 ** 0.007
/ 0.001 0.972
/ 26 26

calcite
/ 0.803 **
/ 0.000
/ 26

TOC
0.248
0.139
37

Note: ** Significant at p = 0.01. Bold fonts indicate significant correlation. TOC (total organic carbon, a precipitation
indicator) data from [27], TCC (total carbonate content, a temperature indicator) and calcite data are all from [30].

Chaonaqiu Lake is situated in the Liupan Mountains, in the western Chinese Loess
Plateau, which is in the transitional zone between a semi-arid and semi-humid climate,
with significant annual and daily temperature differences [41]. Although the mean annual
precipitation (513 mm) in the Chaonaqiu Lake basin reflects a semi-humid climatic environ-
ment, the precipitation distribution is uneven (~70% occurs during summer, often in heavy
rainstorms) because the climate zonation of the Loess Plateau has not changed [42,43].
Therefore, regardless of whether total annual precipitation increases or decreases, local
precipitation characteristics do not change. During wetter intervals, more precipitation
increases the vegetation cover in the watershed, which stabilizes soil and also reduces the
sediment-carrying capacity of runoff, resulting in less terrigenous detritus entering into the
lake and higher Rb/Sr ratios in bulk sediments. During drier periods, less precipitation
decreases the vegetation cover in the watershed, and the sparse vegetation cover results
in more surface soil in the watershed being exposed, producing a less cohesive soil such
that even low-intensity rainfall may generate a higher sediment-carrying capacity of runoff
with increased terrigenous detritus transport and lower Rb/Sr ratios of lake sediments.

4.2. Comparison of the Rb/Sr Ratio with Other Precipitation Indicators and Records

The organic matter in lake sediments mainly includes endogenous organic matter
(produced by aquatic plants and planktonic algae in the lake) and terrestrial organic mat-
ter (from plants growing in the watershed) [40,44,45]. According to our previous work,
TOC contents in Chaonaqiu Lake have been demonstrated to indicate local precipitation
variations [27]. In wetter climatic conditions, more precipitation increases the vegetation
coverage in the watershed, leading to relatively more terrestrial organic matter being trans-
ported into the lake and therefore to higher TOC content [27]. On the other hand, in drier
climatic conditions, less precipitation decreases the vegetation coverage in the watershed,
resulting in relatively less terrestrial-derived organic matter being transported into the lake
and therefore lower TOC content [27]. We found that the trend of Sr content is opposite
to that of TOC (Figure 5) and found a significant negative correlation between Sr contents
and TOC contents (Pearson correlation coefficient r = −0.570, p = 0.01; Table 2), while
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the correlation between Sr contents and TCC (total carbonate contents, as a temperature
indicator [30]) is much lower than that with TOC contents (Pearson correlation coefficient
r = 0.004; Table 2), even though there is a positive correlation between them. This reveals
that the Sr contents in the sediments of Chaonaqiu Lake were mainly controlled by precipi-
tation rather than temperature on decadal scales such that more precipitation is correlated
with lower Sr contents and thus higher Rb/Sr ratios and less precipitation correlated to
higher Sr contents and therefore lower Rb/Sr ratios.

As shown in Figure 5, the temporal trends in Rb/Sr ratios and other indices (e.g., SiO2
content and albite signal strength) in core CNQ12–1 are generally similar to those of the
precipitation indicator (e.g., TOC; [27]) and records from Taihe Mt. tree rings [46] and the
drought/flood (D/F) index [47–49] in neighboring regions on decadal scales. The Rb/Sr
ratios exhibited five lower value phases (e.g., 1770–1780 AD, 1830–1845 AD, 1870–1880 AD,
1925–1935 AD, and 1970–1980 AD; see cyan shadings in Figure 5) over the past 300 years,
implying strong physical weathering in these five intervals. For example, the Rb/Sr
ratios showed the lowest value (highest Sr contents) during the period of 1830–1845 AD,
suggesting strong physical weathering (Figure 5). The TOC contents exhibited a lower
value during the same period, which implied a drier climate condition, and both Taihe
Mt. tree rings [46] and the Drought/Flood (D/F) index [47–49] in neighboring regions
also identified drier conditions during this interval. The arid environment resulted in an
enhancement in physical weathering, which caused more albite and Sr to be transported
into the lake, leading to a lower Rb/Sr ratio during this episode (Figure 5).
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other precipitation records in neighboring regions. The TOC (total organic carbon) is a precipitation
indicator (higher value indicates a wetter climate condition, and vice versa; see [27] for details). The
smoothed curve of Taihe Mt. SPEI (standardized precipitation evapotranspiration index, where
higher value indicates a wetter climate condition; [46]) and the D/F index (higher value indicates a
drier climate condition, and vice versa; [47–49]) are all 11-year running means. The cyan shadings
indicate dry intervals.
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4.3. Response of Weathering Intensity to Climate Change on Different Timescales

As physical weathering decreases in the Chaonaqiu Lake catchment over short (decadal)
timescales, the chemical weathering intensity likely increases with precipitation, but water–
rock reactions may weaken with less terrigenous material being involved. This implies that
during wet intervals, although the intensity of chemical weathering increases, the amounts
of Sr-bearing minerals chemically/biogenically deposited in sediments would decrease, not
increase. Increased chemical weathering would thus be correlated with higher Rb/Sr ratios over
short timescales. The Rb/Sr ratios of lake sediments are affected mainly by terrigenous detritus
input, reflecting environmental conditions on short timescales [3]. This effect is recorded with
high resolution because the terrigenous detritus sinks rapidly to the lake bottom.

In comparison, over long timescales (millennium scales), chemical weathering is likely
to be more important than physical weathering in regulating long-term trends in sediment
Rb/Sr ratios. Zeng et al. [3] and Xu et al. [9] considered that if the Rb/Sr ratios in lake
sediment are used as an indicator of chemical weathering, it may reflect environmental
trends on long timescales (i.e., low resolution) because chemical weathering is a continuous
and gradual process affected by both climatic factors and the lake water hydrochemical
environment. Our previous study found that the carbonate in the sediments of Chaonaqiu
Lake is authigenic and derived mainly from calcite [30]. The rate of autogenic carbonate
deposition in Chaonaqiu Lake is influenced by temperature-controlled water salinity, and
long-timescale records of Sr contents (and hence Rb/Sr ratios) should be the result of
the co-dominance of precipitation and temperature. Therefore, there is a relationship
between precipitation and Rb/Sr ratio as follows: a “more precipitation~lower Rb/Sr
ratio” relationship applies over long terms (e.g., centennial–millennial scales; [33]), while a
“more precipitation~higher Rb/Sr ratio” relationship applies over short terms (e.g., decadal
scales, as shown in Figure 5). Hence, the interpretation of the environmental geochemical
significance of Rb/Sr ratios of lake sediments must consider the timescale involved.

5. Conclusions

Rb and Sr in lacustrine sediments originate from terrigenous detritus and dissolved
materials. The environmental geochemical significance of Rb/Sr ratios in bulk sediments
of Chaonaqiu Lake was investigated in this paper. We have drawn conclusions as follows:

(1) The trend of Sr concentration is consistent with that of albite signal strength rather
than that of calcite, and there is a significant positive correlation between them. This implies
that Sr is likely sourced from albite rather than calcite. The correlation between Rb/Sr ratios
and Sr concentration is higher than that with Rb concentration, indicating that the variation
in Rb/Sr ratios depends mainly on Sr activity within the lake catchment. The Rb/Sr ratio
in the sediment of Chaonaqiu Lake may be closely linked to terrigenous detritus input
from the watershed on decadal scales, which is determined by physical weathering in the
watershed of the lake.

(2) The Rb/Sr ratios identified five lower value intervals (e.g., 1770–1780 AD,
1830–1845 AD, 1870–1880 AD, 1925–1935 AD, and 1970–1980 AD), implying stronger phys-
ical weathering during these periods. These correlate well with lower TOC contents in
the sediments, a lower tree-ring SPEI, and a higher D/F index in neighboring regions,
suggesting strong physical weathering due to drier climate conditions on decadal scales.

(3) Physical weathering and chemical weathering in the Chaonaqiu Lake catchment
have opposing influences on the sediment Rb/Sr ratio and may compete on different
timescales for dominant control. Investigation of temporal trends in Rb/Sr ratios is nec-
essary, especially on short timescales, before their application in studies of catchment
weathering intensity.
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