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Abstract: As one of the most frequently occurring natural hazards, flooding can seriously threaten
global security and the sustainable development of our communities. Therefore, enhancing the
resilience of cities and improving their ability to adapt to flooding have become issues of great signifi-
cance. This study developed a new comprehensive evaluation model of flood resilience that includes
an evaluation index system from the basis of four key dimensions of social resilience, economic
resilience, ecological environment resilience and infrastructure resilience. Firstly, interpretative struc-
tural modelling (ISM) was applied to analyze the structural issues affecting urban flood resilience.
Secondly, the analytic network process (ANP) was then used to calculate the importance of these
indicators. Finally, taking three cities (Zhengzhou, Xi’an, and Jinan) in the Yellow River Basin of
China as examples, the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)
was used to evaluate their current levels of flood resilience using the findings from the earlier stages.
The results show that the levels of rainfall and vulnerability of groups were the fundamental factors
affecting urban flood resilience. Indicators such as average annual rainfall, fixed-asset investments,
and emergency rescue capabilities were also found to have a greater impact on urban flood resilience.
In the study area, Xi’an was found to have a higher level of resilience due to having strong ecological
environmental resilience. These findings are expected to provide a useful reference for policymakers
and stakeholders involved in the management of flooding events.

Keywords: urban flood resilience; influencing factors; resilience assessment; ISM-ANP-TOPSIS model

1. Introduction

Due to the interaction of climate change, population growth, and rapid urbanization,
the vulnerability of urban systems to natural disasters is increasing [1,2]. In recent years,
natural disasters have occurred more frequently around the world, causing serious losses
to lives, extensive damage to property, as well as wider-scale social and economic impacts.
Flooding is one of the most serious and frequent natural disasters [3,4]. For example, in
2007, 55,000 properties in the UK were flooded, with an estimated economic loss of EUR
3.2 billion. In October 2022, catastrophic floods in Nigeria killed 363 people and forced the
relocation of more than 2.1 million people. According to the statistics of the United Nations
Office for Disaster Reduction, one-third of global natural disasters and economic losses are
related to floods [5,6]. China is located in the eastern part of Asia, facing the Pacific Ocean
and having clear continental climatic characteristics. This country has the most severe
serious flood risks in Asia and possibly even the world [7]. Data from the ‘China Flood
and Drought Disaster Bulletin’ show that there were increasing levels of flooding in China
every year between 1990 and 2021 [8]. As global temperatures continue to rise, the number
of extreme weather events will increase in the future. Hence, how to improve urban flood
resilience and reduce the impact of floods has become an urgent challenge to be solved.
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Traditional urban flood management concepts have focused on the use of various
engineering measures to help prevent disasters. In the face of more serious and frequent
flood events, questions have arisen about these traditional flood control approaches. In
this context, in order to improve urban flood resilience and generate more effective water
management, countries around the world are actively seeking methods and strategies to
improve the status quo. For example, the United States proposed low-impact development
(LID) and best management practices (BMPS) [9], Australia proposed water-sensitive urban
design (WSUD) [10], and the United Kingdom proposed a sustainable drainage system
(SUDS) [11]. Based on this, China has formed a sponge city theory and applied it to
practice [12]. The Sendai Framework for Disaster Risk Reduction (2015–2030) [13] issued
by the United Nations emphasizes the importance of resilience in disaster prevention and
mitigation. “The CPC Central Committee’s Recommendations on the Formulation of the
14th Five-Year Plan for National Economic and Social Development and the Vision for
the Year 2035” emphasizes enhancing the resilience of urban systems and preventing and
resolving major risks. Thus, it can be seen that improving resilience has now become the
focus of the international community and is one of the main concerns of flood-prone cities
and countries.

Hence, research in flood risk management has shifted from flood vulnerability analysis
to flood risk identification and assessment; now, there is also a great focus on improving
flood resilience. Holling [14] first introduced resilience into the field of ecology and the
environment in 1973, believing that it is the ability of a system to discover and solve
external shocks in the event of a crisis. The concept of resilience has been introduced
into urban systems to contribute a new research perspective on urban flood control and
disaster reduction [15]. Zheng integrated resilience into the urban flood risk assessment
framework [16]. At present, there is no uniform standard for the definition of urban flood
resilience [17]. Chen and Leandro pointed out that urban flood resistance refers to the
ability to withstand a certain degree of disaster impact and restore the initial state after a
flood occurs in the urban system [18]. According to Mehryar and Surminski, urban flood
resilience refers to the ability to reduce flood risk in a timely and effective manner, resist
potential flood impacts, and adapt to future floods [19].

Assessing the development level of urban flood resilience and then finding ways to
enhance flood resistance will help to formulate long-term development plans and provide a
useful reference for stakeholders. Based on this theoretical basis, some scholars have made
attempts to assess resilience by selecting appropriate evaluation indicators. For example,
Zhu considered the entire flood disaster cycle and selected indicators from three stages
before, during, and after floods [15]. Moghadas et al. constructed an indicator system in-
cluding social, economic, and institutional aspects, as well as infrastructure, the community,
and the environment, and developed a multi-criteria decision-making (MCDM) tool to mea-
sure flood resilience in Tehran [20]. Chen et al. selected indicators according to the TOSE
(technology, organization, society and economy) framework and proposed suggestions for
flood management in Chongqing based on the results of a resilience assessment [21]. Other
scholars have assessed urban flood resilience by developing new models. Miguez and
Veról have developed an integrated flood resilience (FResI) tool for guiding flood control
decisions and simulating future floods compared to current conditions; they tested it in
a basin in the metropolitan area of Rio de Janeiro, Brazil, to improve flood resilience in
future scenarios [22]. Muhammad Tayyab et al. developed the urban flood resilience model
(UFResi-M) [23] and selected flood disasters, exposure, sensitivity, and response capacity
as the main parameters of the model. After data processing and analysis, the urban flood
resilience of two regions was compared.

In short, in the previous research, there are relatively few studies that quantify urban
flood resilience while focusing on the social, economic and ecological mechanisms that also
influence resilience. This is despite the fact that many studies have attempted to propose
measures to improve flood mitigation capacity and explore urban flood risk factors [24].
However, urban flood resilience is affected by many aspects, and as the internal systems are
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very complex, there remain gaps in the research on the impact these have on levels of flood
resilience. Therefore, the outstanding contribution of this study is to couple the structural
aspects of flood resilience with a broader assessment of resilience levels. Furthermore,
in developing countries with major flood-prone cities, such as China, further research is
necessary to allow urban communities to coexist with flood threats [25]. In this research,
the index system of urban flood resilience is further perfected, and a new comprehensive
evaluation model is developed by integrating interpretative structural modeling (ISM), the
analytic network process (ANP) and the technique for order preference by similarity to
an ideal solution (TOPSIS), which is another contribution of this study. The model will
help to understand the influence of key factors, assess the current level of urban flood
resilience, and suggest improvements. The research results reveal the core influencing
factors and mechanisms and provide a scientific basis for stakeholders to formulate targeted
and feasible urban flood control and disaster reduction measures.

2. Research Method
2.1. Selection of Research Methods

The evaluation of urban flood resilience can be classified as part of the multi-criteria
decision-making method (MCDM) [20,26], and MCDMs such as decision-making trial and
evaluation laboratory (DEMATEL), data envelopment analysis (DEA), entropy weight
method (EM), analytic network process (ANP), and grey relation analysis (GRA) have
been widely used in flood studies [26]. Ning et al. applied the Fisher information (FI) and
data envelopment analysis (DEA) to measure the sustainability of urban systems and also
compared the advantages and disadvantages of the two methods [27]. Moghadas et al.
used a hybrid AHP-TOPSIS approach to measure the resilience of Tehran and validated
the reliability of the model [20]. Zheng and Huang quantified urban flood risk and flood
resilience using the extension catastrophe progression method (ECPM) and analyzed the
commonalities and differences between them [28]. Peng et al. used the structural equation
model (SEM) to test the truth or falsity of the proposed hypotheses [29]. Chen ranked the
disaster resilience of cities based on the VIKOR-GRA (VlseKriterijumska Optimizacija I
Kompromisno Resenje, Grey Relational Analysis) method [21].

To justify the assessment method used, the currently available assessment methods
were compared, as shown in Table 1. The decision-making trial and evaluation labora-
tory (DEMATEL) enables the causality analysis of indicators [30,31], and interpretative
structural modeling (ISM) allows the analysis of causal relationships and considers direct
and indirect relationships between subsystems [32]. It was proved that ISM is suitable for
learning to understand systems with complex interrelationships [33]. Therefore, ISM was
chosen to analyze the internal structure of urban flood resilience. ANP and AHP (analytic
hierarchy process) are two common weighting methods. ANP considers the dependencies
between factors based on AHP [34], and these dependencies can be obtained from the
ISM model. Mousavi tested the effectiveness of several evaluation methods and found
the TOPSIS method to be the most effective [35]. Therefore, the TOPSIS technique was
introduced to quantify the level of resilience. However, the TOPSIS tool does not provide
a weight reference [20], and ANP can exactly fill its gap. Based on the above analysis,
these three methods can be closely linked and used to complement each other. Therefore, a
new comprehensive evaluation model was developed using a combination of techniques:
interpretative structural modelling (ISM), the analytic network process (ANP), and the
technique for order preference by similarity to an ideal solution (TOPSIS).
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Table 1. Comparison of evaluation methods.

No. Description Methods Advantages and Disadvantages Origin

1 Identifying factors influencing
flood resilience

DEMATEL
-ANP

Indicator causality and weights can be
derived, but the evaluation results are
more subjective and cannot reveal the
structural problems of the indicators

[36]

2

The relationship between
factors in the three dimensions

of stress, state, and response
was measured

Fuzzy
-DMATEL

The results can show causal influence
relationships between indicators, and the

results rely on expert judgment and do
not integrate objective data considerations

[37]

3 Explored how urban systems
affect urban flood resilience SEM

Clearly explains the strength of the
relationship between the factors, but the

evaluation results are too subjective
[29]

4

Quantitative analysis of
sustainability assessment of

urban systems, comparing the
results of FI and DEA methods

FI, DEA

FI facilitates the assessment of dynamic
changes in the system, DEA is suitable for

comprehensive evaluation with many
inputs and outputs, and both methods

ignore the influence of indicator weights

[27]

5
Ranking cities for disaster

resilience based on objective
data

VIKOR
-GRA

Objective data are fully utilized, but the
results may deviate from reality due to the

limited selection of indicators and
ignoring the experience of experts

[21]

6 Link between flood risk and
resilience through case studies ECPM

Objective quantification of urban flood
risk and resilience, but no analysis of

structural issues
[28]

7

The resilience of urban road
traffic network (URTN) was
explored using the entropy

method and G1 method

EM-G1

The combination of subjective and
objective measures does not require

consistency testing, but it cannot
determine the impact of changes in a

single indicator on the overall resilience of
the URTN

[38]

8 The hierarchy of 13 influencing
factors was analyzed ISM-ANP

The analysis of indicator hierarchy and
importance is more adequate, and the
ISM-ANP model relies on the personal

experience, knowledge, and professional
judgment of decision makers and lacks

objective and realistic analysis

[39]

9
The flood resilience of 31 key

flood control cities was
assessed

EM
-TOPSIS

The assessment results are more objective
and do not reflect the path of impact

factors
[40]

10

Research on the influence
mechanism and importance
level of indicators of urban
flood resilience to assess the

level of urban flood resilience

ISM-ANP
-TOPSIS

ISM can clearly reflect the influence
mechanism of impact factors compared

with other multi-objective decision
making; ANP-TOPSIS combines

subjective and objective data, and the
evaluation results will not be detached
from reality while making up for the
defects of other methods, which are

subjective

This research

The comprehensive evaluation model is shown in Figure 1. Firstly, the index system
of urban flood resilience was screened based on an extensive review of the literature,
questionnaires and surveys, and the Delphi method. Then, the structure of the complex
system was analyzed by ISM so as to clarify the relationships and influences between the
indicators. The hierarchical structure obtained by ISM and expert scoring results were
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input into the ANP model to determine the importance of the indicators. Finally, the flood
resilience level of the three chosen study areas was evaluated by TOPSIS.
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Figure 1. Comprehensive evaluation model.

2.2. Establishing an ISM Model

The principle of the interpretative structural model is to establish an adjacency matrix
according to the direct correlation between the elements, calculate the reachable matrix,
and finally form a hierarchical multi-level recursive structural model. Its core is to use
tools such as directed graphs and matrices to perform mathematical operations, analyze
complex structures, and transform fuzzy ideas and opinions into intuitive models with
good structural relationships [39]. The final model is expressed in the form of a simple
directed topology graph. This method is especially suitable for system analysis with
many variables and complex relationships. This study uses the ISM method to obtain the
relationship between factors and then uses the ANP method to obtain the importance of
factors. The basic steps of ISM are as follows.

Step 1: Determine the correlation between indicators and establish the adjacency
matrix M. Firstly, through literature analysis and expert investigation, the correlation
between indicators is obtained, and the adjacency matrix that can reflect the correlation
between indicators is established as M. Define M = (aij)mn, where aij is the influence of
the index Si on Sj.

aij =

{
1, Si has an e f f ect on Sj
0, Si has no e f f ect on Sj

(1)

Step 2: Calculate the reachable matrix T. According to the theory of system engineer-
ing, the Boolean logic operation is carried out after the adjacency matrix is established.
Using Matlab version 2018 software calculations, until (M + I)k = (M + I)k+1 stops, the
reachable matrix is T = (M + I)k.
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Step 3: Index factor level decomposition is performed, as is drawing ISM model
diagram. Based on the reachability matrix, the reachable set P(Si) and antecedent set Q(Si)
of each element are determined. The hierarchical division is carried out by the method of
reason priority–result priority rotation, and finally, a multi-level hierarchical interpretative
structural model is obtained.

2.3. ANP Method

The analytic network process (ANP) is a commonly used subjective weighting method
derived from the analytic hierarchy process (AHP). This method takes into account the
interaction between elements between groups and elements within groups, transforms
complex problems into network structures for hierarchical and systematic analysis, and is
suitable for internal complex decision-making systems with dependence and feedback. In
this research, the Super Decisions 2.10 (SD 2.10) software was used to calculate ANP. The
calculation steps are as follows.

Step 1: Construct the network structure of the evaluation index. In general, the main
structure of the ANP model includes a control layer and a network layer. The control layer
is composed of problem objectives and decision criteria. Each criterion is independent
of each other and is not affected by other criteria at the same level. The network layer is
extended and decomposed into different elements by the control layer criterion, and the
elements influence and dominate each other to form a network structure of interdependence
and feedback.

Step 2: Establish the judgment matrix. After completing the establishment of the
network structure, it is necessary to compare the dependence and feedback relationship
between the indicators to establish a judgment matrix. The expert research method is
usually used to determine the judgment matrix, and the relative importance value is
determined according to the Satty scoring table. It is worth noting that in this process, the
consistency test should be carried out according to the formula CR = CI/RI < 0.1 to avoid
logical errors.

Step 3: Determine the weight value of each index. The Super Decisions 2.10 software
is used to input and test the judgment matrix, and then the unweighted super matrix shape,
the weighted super matrix, and the limit weighted super matrix are obtained. Click the
‘Priorities ‘ command to generate the weight values (Wj) of all indicators.

2.4. TOPSIS Method

The technique for order preference by similarity to an ideal solution is a common
evaluation method in multi-objective decision-making [41]. The basic principle is to regard
the evaluation value of a limited number of targets as a point in n-dimensional space and
sort them by the relative distance between each point and the ideal solution to reflect the
relativity between each evaluation object [42]. The calculation steps are as follows.

Step 1: Determine the positive and negative ideal solution. The initial matrix Xij is
non-dimensionalized, and the weighted normalized matrix Yij = Wj × Xij is constructed.
Formulas (2) and (3) compute the positive ideal solution Y+ and negative ideal solution Y−.

Y+ =

{(
max

i
Yij|j ∈ Q1

)
,
(

min
i

Yij|j ∈ Q2

)}
(2)

Y− =

{(
min

i
Yij|j ∈ Q1

)
,
(

max
i

Yij|j ∈ Q2

)}
(3)

Here, Q1 represents the benefit attribute, and Q2 represents the cost attribute.
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Step 2: Calculate the spatial distance. The formula for the distance from the evaluation
object to the positive and negative ideal solution is as follows:

D+
i =

√√√√ n

∑
j=1

(yij − y+j )
2

(1 ≤ i ≤ m, 1 ≤ j ≤ n) (4)

D−i =

√√√√ n

∑
j=1

(yij − y−j )
2 (1 ≤ i ≤ m, 1 ≤ j ≤ n) (5)

Step 3: Calculate the closeness. If the closeness Si is close to 1, it indicates that its
resilience level is high. If the closeness is closer to 0, the resilience level is low.

Si =
D−i

D+
i + D−i

(6)

3. Case Study
3.1. Description of the Study Area

The three major cities of Zhengzhou, Xi’an, and Jinan were selected as the case studies
for evaluating the applicability of the model. These three cities are economically well-
developed and have high levels of urban agglomeration, and all are prone to severe
urban flooding. In addition and according to previous studies, the flood exposure and
vulnerability in these three regions are high [43]. The study areas are shown in Figure 2.
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Zhengzhou is the capital city of Henan, across the Yellow River and Huaihe River.
The area has concentrated rainfall in the summer, with June and September accounting for
about 60% of the annual rainfall. The pace of development in Zhengzhou has increased
in recent years, placing extra demand on the drainage systems in the city. In the event of
extreme precipitation events, such as on 20 July 2021, 380 people were killed, resulting in
direct economic losses of CNY 40.9 billion and a huge loss of life and property.

Xi’an is located in the middle of the Yellow River Basin, with a temperate monsoon
climate. The average annual precipitation is 740.4 mm. The rainfall has the characteristics
of uneven spatial and temporal distribution, which is mainly concentrated in the summer
and autumn. Short-term intense heavy rainfall is the main cause of urban flooding. For
example, in July 2016, a short period of heavy rain caused Xi’an to be ‘watching the sea’ in
many places, and the water accumulation in many areas was very serious, reaching above
1 m in depth in many populated areas.

Jinan is the capital city of Shandong Province, also known as ‘Quancheng’. The
southern part of the city is adjacent to Mount Tai, the north is dependent on the Yellow
River, and the terrain is high in the south and low in the north. Jinan has a warm temperate
continental monsoon climate zone with four distinct seasons. The average annual rainfall
is about 700 mm, and the precipitation is mainly concentrated from June to September. The
main rivers in the territory are the Yellow River and the Xiaoqing River. The northwest
corner of Jinan City and the line along the Xiaoqing River are low-lying and often flooded.
During heavy rain, it is easy for large-scale water accumulation and serious flood accidents
to occur. For example, on 18 July 2007, Jinan City suffered a super rainstorm, resulting
in more than 30 deaths, with more than 170 people being injured and approximately
330,000 people being affected; the city’s direct economic losses were about CNY 1.32 billion.

3.2. Sources of Data

The data in this research were mainly derived from the ‘Zhengzhou Statistical Year-
book’, ‘Xi’an Statistical Yearbook’, ‘Jinan Statistical Yearbook’ and ‘China Urban Statistical
Yearbook’ in 2022. In addition, the establishment of some data was based on the knowledge
and experience of a range of experts who were consulted through multiple rounds of
consultation, interviews, or questionnaires. To guarantee the validity of the results, the
selected experts had been researching or working in the field of urban development and
flood risk reduction for at least 5 years. The profile of the expert group is shown in Table 2.
The questionnaire is shown in Appendix B.

Table 2. Introduction of expert group.

Background Option Number Background Option Number

Experts
(n = 28)

Age
30–39 5 Highest

academic
credentials

Undergraduate 3
40–49 17 Master’s 19
≥50 6 Ph.D. 6

Work unit

Colleges and
universities 10

Expertise or
research field

Urban resilience 8

Government
departments 6 Flood management 9

State-owned
enterprises 4 Risk assessment 6

Research institutes 8 Flood control and
disaster reduction 5

3.3. Establishing Evaluation Index System

This study selects indicators based on the pressure–state–response (PSR) conceptual
framework, which was first proposed by Rapport and Friend in 1979 [44]. The PSR explains
how human activities exert pressure on the environment, the environment self-regulates,
and society responds to environmental regulation [45]. “Pressure“ refers to the pressure
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faced by the urban system, such as the pressure caused by natural disasters or development
and construction. “State” refers to the condition of the regional urban social environment,
economic environment, ecological environment, and other subsystems. “Response” refers
to the policies or measures to reduce flood risk, improve resilience, and promote sustainable
urban development. The complex ecosystem theory holds that cities are composed of three
different systems: social, economic, and natural [46]. Based on this theoretical perspective,
the urban water and social systems, economic systems, ecological environment systems,
and infrastructure systems are considered inseparable.

By reviewing a large number of articles related to flood resilience [37,42,45,47], the
indicators affecting flood resilience were preliminarily identified, and some invalid indi-
cators were eliminated, taking into account the actual situation of Chinese cities coping
with flood disasters. Accordingly, a questionnaire was formulated (Appendix B), and the
expert group was invited to evaluate and verify the indicators. When experts’ opinions
diverged, a second round of surveys was conducted to gradually obtain more consistent
results. When the experts’ combined views on an indicator exceeded 80%, it was considered
a factor influencing the resilience to urban flooding. Based on the questionnaires filled
out by experts, indicators that did not meet the criteria, such as internet penetration [29],
public awareness of disaster prevention [48,49], etc., were removed. The final evaluation
index system of urban flood resilience was constructed, which covers four dimensions:
social resilience, economic resilience, ecological environment resilience, and infrastructure
resilience, and thirteen secondary indicators, as shown in Table 3.

Social resilience refers to the ability of the urban system to maintain normal social order
in the face of external interference [50]. The indicators selected in this dimension include
vulnerable groups [49], population density [21,51], medical service capacity [20,29,40], and
emergency rescue capacity [1,52]. Vulnerable groups can reflect the ability of the public
to resist disasters [53]. The more children there are and the greater the elderly population,
the higher the vulnerability is, and the more vulnerable to floods the population is. The
population density reflects the concentration of the population. The more concentrated the
population, the more urban areas need to take disaster prevention and mitigation measures
in advance and make emergency plans [54]. Medical service ability reflects whether the
casualties can be quickly and effectively rescued after the disaster and whether the number
of hospital beds and medical and health staff can meet the basic needs after the emergency.
Emergency rescue capability reflects the speed and quality of urban system rescue and
disaster relief [54,55].

Economic resilience is a dimension that cannot be ignored. The construction of urban
flood control facilities and the investment of disaster prevention funds are inseparable from
economic factors [2]. Economic resilience refers to the ability of the economic system to
maintain the original economic capacity in the face of disasters. This incorporates three
indicators: fixed-asset investment [29], per capita disposable income [21,56], and disaster
prevention capital investment [40]. Fixed-asset investment can promote economic prosper-
ity and development. Per capita disposable income is the sum of residents’ consumption
and savings, which can reflect the economic situation of local residents [21]. A good eco-
nomic situation means that there is a good material basis for resisting various disasters.
The more investment in disaster prevention funds, the more funds the city has for disaster
prevention and mitigation, and the stronger the ability to cope with disturbances [40].

Ecological resilience refers to the ability of the ecological environment system to resist,
adapt, and restore the original structure by its own resilience when it is damaged [39].
The indicators selected in this dimension include the green coverage rate of built-up
areas [18,57], the average annual rainfall [40,58], and the spatial structure of land use [59].
The higher the green coverage rate in the built-up area, the better the urban greening and
the higher the ecological environment resilience. Extreme rainfall can sometimes cause the
collapse of urban flood control and drainage systems, leading to flooding [60]. Reasonable
spatial structures of land use can reduce flood risk to a certain extent.
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Infrastructure resilience refers to the ability of infrastructure systems to withstand
disasters, absorb losses, and restore their normal functions after a disaster occurs [52,61].
The indicators selected in this dimension include the density of drainage pipelines in
built-up areas [62,63], per capita road area [56], and sewage treatment capacity [58,62].
The density of drainage pipelines in the built-up area can ensure the timely discharge of
rainwater or sewage [64]. Per capita road area can ensure the smooth flow of traffic when
disaster comes [38]. Floods can often cause the rapid spread of non-point-source pollution,
underground sewage and industrial waste, and other large-scale diffusion, which brings
great harm to the health of urban residents [58]. Sewage treatment capacity reflects the
positive effects of human activities on urban systems.

3.4. Index System Structure Division

According to the 13 indicators identified above, 28 experts with rich experience in
studying urban flood resilience were invited to participate in a survey to collect their
opinions. After summarizing the findings, the results were fed back to each expert. Through
three rounds of comprehensive collation of opinions, more consistent results were gradually
obtained. Finally, the relationship between all index factors was obtained, and the adjacency
matrix M was established as follows:
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Table 3. List and explanation of each selected indicator.

Goal Layer First-Level Indicators Secondary Indicators Labels Explanation References

Evaluation index system of
urban flood resilience

Social resilience

Vulnerable groups N1 The proportion of people over 60 years old and under
15 years old indicates vulnerable groups. [49]

Population density N2 Population per square kilometer. Reflects the density of
population distribution. [21,51]

Medical service capacity N3

Reflects the efficiency and level of medical services. It
can be measured by the number of health institutions
per 10,000 people, the number of health technicians,

and the number of hospital beds.

[20,29,40]

Emergency rescue capability N4 The capability of emergency rescue and disaster relief
under emergencies. [1,52]

Economic resilience

Fixed-asset investment N5 The workload of construction and purchase of
fixed-asset activities. [29]

Per capita disposable income N6 The sum of final consumption expenditure and savings. [21,56]
Disaster prevention capital

investment N7 Total capital investment against various disasters. [40]

Ecological environment
resilience

Green coverage rate of built
district N8 The proportion of green areas and built-up areas. [18,57]

Average annual rainfall N9 The average annual rainfall in a region. [40,58]

Spatial structure of land use N10 The spatial location of various types of land in the
region and their combined pattern. [59]

Infrastructure resilience

Drainage pipe density in
built-up area N11 The density of drainage pipeline distribution. [62,63]

Per capita road area N12
The per capita road area occupied by urban population
is expressed by the ratio of the total area of urban roads

to the total urban population.
[56]

Capability of sewage treatment N13 The capacity of a sewage treatment plant (or treatment
plant) to treat sewage volume every day and night. [58,62]



Water 2023, 15, 1887 12 of 24

The reachable matrix T was calculated by Boolean logic operation rules and Matlab
2018 software programming. According to the reachable matrix, the reachable set and the
antecedent set (Table 4) were obtained, and finally, the explanatory structure model of the
influencing factors of urban flood resilience was obtained, as shown in Figure 3.
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Table 4. Reachable set, antecedent set, and intersection set.

Reachable Set P(Si) Antecedent Set Q(Si) P(Si)∩Q(Si)

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13 1 1
2, 4, 6, 7, 8, 10, 11, 12, 13 1, 2 2
3, 7, 8, 10, 11, 12, 13 1, 3, 5, 9 3
4, 7, 8, 10, 11, 12, 13 1, 2, 4, 5, 9 4
3, 4, 5, 6, 7, 8, 10, 11, 12, 13 1, 5, 9 5
6, 7, 8, 10, 11, 12, 13 1, 2, 5, 6, 9 6
7, 8, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 7, 8, 10, 11, 12, 13
7, 8, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 7, 8, 10, 11, 12, 13
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 9 9
7, 8, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 7, 8, 10, 11, 12, 13
7, 8, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 7, 8, 10, 11, 12, 13
7, 8, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 7, 8, 10, 11, 12, 13
7, 8, 10, 11, 12, 13 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 7, 8, 10, 11, 12, 13

Note: Numbers represent certain elements, such as 2 for N2.
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4. Results and Analysis
4.1. Analysis of Index Level Results

It can be seen from the explanatory structure model of the influencing factors of urban
flood resilience (Figure 3) that the thirteen evaluation indicators can be divided into four
levels, and the underlying-level factors can affect the upper-level factors. Here, the first
layer represents those factors that have a direct impact, while the second and third layers
play a transitional role and are the factors influencing the middle layer. The fourth layer is
located at the bottom, with the longest action path, which can be considered fundamental
factors affecting flood resilience.

In this model, the first layer’s direct influencing factors include the per capita road area
(N12), drainage pipeline density (N11), sewage treatment capacity (N13), green coverage
rate of built-up areas (N8), disaster prevention investment (N7), and the spatial structure
of land use (N10). When a flood event occurs, the surface or direct factors will come into
effect. For example, effective land-use spatial structures can ensure the preservation of
people’s lives. The built infrastructure and ecological environment, such as road area per
capita, drainage pipeline density, green coverage of built-up areas, and sewage treatment
capacity, can help reduce the impact of flooding. The investment in disaster prevention
funds provides a material basis for urban disaster prevention and mitigation. Therefore,
improving these indicators has a direct role in enhancing urban flood resilience.

The factors located in the middle layer include medical service capacity (N3), emer-
gency rescue capacity (N4), per capita disposable income (N6), fixed-asset investment (N5),
and population density (N2). These factors are affected by rainfall and vulnerable groups
and, at the same time, act as a medium. Among them, medical service level, emergency
rescue ability, and per capita disposable income are affected by fixed-asset investment and
population density. The factors of the middle layer can link the factors of different levels
and are also very important in improving the influence of factors in the middle layer.

The underlying factors include average annual rainfall (N9) and vulnerable groups
(N1). In general, short-term heavy rainfall and extreme weather are the root causes of
urban floods. Vulnerable groups can reflect the age composition of the population and
the degree of human vulnerability and have a link to the impacts on society, the economy,
infrastructure, and the ecological environment.

4.2. Analysis of ANP Results

The weighted scores of the influencing factors of urban flood resilience are shown
in Table 5. Based on this, a histogram of index weight scores was drawn (Figure 4). The
calculation processes are shown in Tables A1 and A2 in Appendix A. It can be seen from
Table 5 that in the criterion layer, the weights of social resilience and economic resilience
are higher, followed by ecological resilience and infrastructure.

Table 5. Index weight.

First-Level
Indicators Weight Secondary Indicators Intra-Group

Weight Index Weight Ranking

Social resilience 0.285

Vulnerable groups 0.317 0.090 4
Population density 0.239 0.068 8

Medical service capacity 0.121 0.034 12
Emergency rescue capability 0.322 0.092 3

Economic
resilience

0.267
Fixed-asset investment 0.480 0.128 2

Per capita disposable income 0.194 0.052 11
Disaster prevention capital investment 0.326 0.087 5
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Table 5. Cont.

First-Level
Indicators Weight Secondary Indicators Intra-Group

Weight Index Weight Ranking

Ecological
environment

resilience
0.243

Green coverage rate of built-up districts 0.335 0.081 6
Average annual rainfall 0.540 0.131 1

Spatial structure of land use 0.125 0.030 13

Infrastructure
resilience

0.205
Drainage pipe density in built-up area 0.310 0.064 10

Per capita road area 0.316 0.065 9
Capability of sewage treatment 0.374 0.077 7
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Figure 4. Index weight score histogram.

In the indicator layer, average annual rainfall (N9) and fixed-asset investments (N5)
account for a higher proportion, indicating that these two indicators are the key factors
in improving urban flood resilience. Fixed-asset investment drives regional economic
development and is important for urban infrastructure development and post-disaster
recovery [15].Therefore, it is necessary to continue to increase investment in fixed assets
so as to promote urban development and lay a foundation for improving urban resistance
to floods. Secondly, emergency rescue capability (N4), vulnerable groups (N1), disaster
prevention capital investment (N7), the green coverage rate of built-up areas (N8), and
sewage treatment capacity (N13) are indicators that are more important and are the focus of
improving flood resilience. Therefore, urban flood resilience can be enhanced by improving
emergency rescue capabilities and paying attention to vulnerable groups. Further increas-
ing investments in disaster prevention funds, taking disaster prevention and mitigation
measures in advance, and regularly inspecting flood control materials and equipment are
also beneficial measures. In addition, it is also necessary to expand the green area, enhance
the sewage treatment capacity, adopt an ecologically friendly way of production and life,
and consolidate the construction of an urban ecological environment.

4.3. Analysis of Flood Resilience in the Three Cities

Taking into account the weights obtained by the ANP model, a weighted normalized
matrix was constructed, and the flood resilience levels of the three cities were calculated
by Formulas (2)–(5). The closer the closeness value is to 0, the lower the urban flood
resilience level is. The closer the value is to 1, the higher the urban flood resilience level
is. The results are shown in Table 6. It can be seen from Table 6 that the resilience score is
Xi’an > Jinan > Zhengzhou. Among the three research areas, Xi’an has the best resilience
level, followed by Jinan, with Zhengzhou having the weakest flood resilience level.
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Table 6. Regional flood resilience.

Research Object D+
i D−i Si Ranking

Jinan city 0.189 0.194 0.506 2
Zhengzhou city 0.213 0.183 0.463 3

Xi’an city 0.189 0.212 0.529 1

The study found that the resilience levels of the three research areas of Zhengzhou,
Xi’an, and Jinan were not much different as a whole. In order to track the reasons, the
resilience levels of each dimension are compared. According to Figure 5, Xi’an’s social
resilience and ecological environment resilience are the best, while Zhengzhou’s social
resilience and ecological environment resilience are the worst, and the resilience level of
Jinan’s four dimensions fluctuates relatively little.
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In the dimension of social resilience, the resilience levels of Jinan and Xi’an are very
close, whereas Zhengzhou is weak, and there is much room for improvement. From the
dimension of economic resilience, Zhengzhou scored higher, which can reflect its faster
economic growth rate, higher fixed-asset investment, investment in disaster prevention,
and total per capita disposable income. From the perspective of ecological environment
resilience, Xi’an scored much higher than the other two cities, reflecting Xi’an’s emphasis
on ecological environment protection. The ecological vulnerability of Zhengzhou City
is relatively the highest among the three cities, and the impact of floods may be the
largest. Therefore, Zhengzhou should give priority to the development of the ecological
environment and increase environmental protection. From the perspective of infrastructure
resilience, the gap between the three cities is small. Jinan and Zhengzhou have high
infrastructure resilience and can effectively cope with sudden flood disasters. Xi’an’s
infrastructure resilience is slightly lower, so Xi’an can improve its ability to cope with flood
disasters by accelerating the construction of infrastructure.

4.4. Suggestions and Measures

The cities of Zhengzhou, Xi’an, and Jinan all need to monitor and forecast heavy
rainfall in a timely manner and regularly inspect urban drainage facilities to ensure that
they can respond and recover quickly in the event of a flood disaster. In addition, the three
cities should develop measures to improve urban flooding resilience according to local
conditions.
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Zhengzhou should focus on building an environmentally friendly city while develop-
ing its economy. There is a need to improve the planning process and improve the efficiency
of urban space utilization while expanding green areas and enhancing the environmental
capacity. Furthermore, there is a need to promote the development of green industries
according to the requirements of sustainable development. In addition, Zhengzhou is
characterized by high population density and “crowding”, with a population density of
1683 people per square kilometer in 2021, more than twice that of Jinan. Therefore, the
ecological impact of population growth can be mitigated by promoting the movement of
people to other small and medium-sized cities.

The economic resilience of Xi’an is lower than the other two cities, and for Xi’an, the
first consideration should be to increase the per capita disposable income of residents,
increase investments in fixed assets, and build the economic structure system of a resilient
city. The population density under the social resilience dimension is also higher, so it
is also necessary to manage the agglomerated population and increase the construction
of infrastructure such as transportation road networks, drainage facilities, and sewage
treatment facilities.

Jinan City’s economic, ecological and social resilience are all at the lower-middle level.
Therefore, economic development can be promoted by encouraging young people to work
and start their own businesses and by developing industrial support policies. Community-
based organizations can organize greening activities for residents to increase greening
coverage. Government departments can develop a system to protect ecological resources
such as wetlands and water sources for the purpose of enhancing the ecological resilience
of the city. Jinan has a high percentage of vulnerable groups, so it can consider setting up
relevant institutions to protect vulnerable groups, promote flood mitigation methods, and
enhance self-help awareness. Medical and health departments should strengthen the level
of medical services and the capacity to undertake emergency rescue work, such as transfers
and treatment, when disasters occur.

5. Discussion

Resilience considers the whole cycle of natural hazards, including preventive mea-
sures that can be undertaken before flooding, such as considering population density and
reasonable spatial structures of land use in urban construction and improving drainage
and sewage treatment according to the reality of urban development and construction. In
the event of a flood, effective response measures can help speed up and support emergency
rescue efforts and disaster relief. Recovery measures after floods enable cities to quickly
return to normal order after being impacted. This study considers the characteristics of the
whole process of the occurrence of floods, and the evaluation index selected according to
the PSR framework and the structure of the urban system has a high degree of reliability.
However, there is no unified index system to evaluate flood resilience at present. Among
the many factors found to influence resilience, only those indicators with the greatest
influence were selected, and those with less influence were eliminated. In future research,
a paradigm for assessing urban flood resilience can be gradually formed.

The research of Hu et al. shows that the central and northern parts of Shandong
Province, the northern part of Henan Province, and the central part of Shaanxi Province
have high hazard exposure and vulnerability, and the flood risk of these locations is high,
leading to frequent flood disasters [43]. However, the flood risk is also reduced to a certain
extent by virtue of its high recoverability, and the final outcome is that these areas have
a moderate flood risk. On the other hand, the cities in these regions are located in the
Yellow River Basin and are also more vulnerable to floods. Therefore, the case study
selected the capital cities of these three regions, namely Zhengzhou City, Jinan City, and
Xi’an City. Further research on the flood resilience of these three areas was carried out,
and the mechanism of action of the factors of flood resilience was analyzed. The weight
was also considered when evaluating the resilience level. Xu et al. investigated three
different types of communities in China through a network structure model. TOPSIS can
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be used to evaluate flood resilience [65]. Ji and Chen used this method to evaluate the
resilience of Suzhou, Wuxi, and Changzhou [45]. Zhang et al. used the entropy-weighted
TOPSIS method to evaluate the flood resilience of 31 key flood control cities in China [40].
Based on the existing research, this study developed a comprehensive evaluation model,
ISM-ANP-TOPSIS, to evaluate urban flood resilience.

According to the research results, rainfall and vulnerable groups are the deep funda-
mental factors affecting flood resilience and also the factors with the highest weighting. In
general, most urban floods are caused by heavy rain [60]. Short-term heavy rainfall is the
most common cause of flooding. For example, the 2021 ‘7.20’ event in Zhengzhou, Henan
Province, was triggered by heavy rainfall. Similarly, in 2019, Houston, Texas, experienced
unprecedented heavy rains, resulting in catastrophic floods [66]. Vulnerability reflects the
ability of the population to cope with such events. The greater the total population of
the elderly and children, the more people there will be waiting for rescue in emergencies,
which is likely to cause more casualties. Therefore, managers need to pay attention to the
underlying factors that influence urban flood resilience. To address the problem of heavy
rainfall, rainwater flooding can be collected and utilized through measures to enhance flood
control and drainage capacity and by expanding green areas to protect the ecosystem. For
vulnerable groups, attention needs to be paid to raising awareness and the co-development
of appropriate protection measures, such as establishing community help groups.

Decision makers and stakeholders involved in flood event management need to have
a comprehensive understanding of the factors that influence urban flood resilience, as well
as a good knowledge of the current situation, so as to support the basis on which scientific
and rational decisions can be made. The National Development and Reform Commission
(NDRC) and the Ministry of Housing and Construction (MOHURD) have proposed to
build climate-resilient cities, and the program integrates the concept of resilience into the
whole process of urban planning and construction [67,68]. Similarly, the Sponge City Plan
(SCP) aims to maximize the use of precipitation [69], realizing a rainfall and flood cycle
system that puts water resources to use on the one hand and enhances the stability of urban
systems on the other. The perspective of this study fits with these plans and helps cities to
adapt to the threats and challenges posed by floods and mitigate the impact of flooding on
urban systems.

6. Conclusions

In this research, by considering the factors affecting flood resilience in four dimensions,
social flood resilience, economic flood resilience, ecological and environmental flood re-
silience, and infrastructure flood resilience, through a search of the literature and consulting
expert opinions, an index system for evaluating the flood resilience of Chinese cities was
constructed. The system includes 13 indicators: vulnerable groups (N1), population density
(N2), medical service capacity (N3), emergency rescue capacity (N4), fixed-asset invest-
ment (N5), per capita disposable income (N6), disaster prevention capital investment (N7),
green coverage of built-up areas (N8), average annual rainfall (N9), the spatial structure of
land use (N10), drainage pipeline density (N11), per capita road area (N12), and sewage
treatment capacity (N13). An ISM-ANP-TOPSIS comprehensive evaluation model was
developed to evaluate the level of flood resilience and the influence of factors across four
dimensions in three cities (Zhengzhou, Xi’an, and Jinan) in China, providing a scientific
reference point for the future management and decision-making involved in urban flood
disasters. According to the results of this study, we can draw the following conclusions:

1. There are many factors that affect the resilience of urban flooding, and each factor
also affects each other. The explanatory structural model diagram intuitively reflects
the influence mechanism of indicators. In this study, the direct influencing factors
include per capita road area (N12), drainage pipeline density (N11), sewage treatment
capacity (N13), green coverage rate of built-up areas (N8), disaster prevention capital
investment (N7), and the spatial structure of land use (N10). The influencing factors
of the middle layer include medical service capacity (N3), emergency rescue capacity
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(N4), per capita disposable income (N6), fixed-asset investment (N5), and population
density (N2). The average annual rainfall (N9) and vulnerable groups (N1) are the
deep and fundamental influencing factors and the root causes of urban flood problems.

2. The importance of correctly identifying indicators is of great significance for evalu-
ating flood resilience. The ANP method used in this study scores the importance of
indicators with the help of experts’ knowledge and experience, ensuring the results
are more in line with reality. The results of the ANP model show that the key indi-
cators affecting urban flood resilience are average annual rainfall (N9), fixed-asset
investments (N5), emergency rescue capability (N4), vulnerable groups (N1), and
disaster prevention funding (N7).

3. The levels of flood resilience of Zhengzhou, Xi’an, and Jinan were evaluated. Ac-
cording to the research results, the resilience level of Xi’an is the best, followed by
Jinan, and the flood resilience of Zhengzhou is relatively weak. The economic re-
silience and infrastructure resilience of Xi’an need to be enhanced; for Jinan City, the
resilience performance of the four dimensions is moderate, and there is no particularly
poor dimension. However, Zhengzhou’s social resilience and ecological environment
resilience levels are poor and need to be consolidated and improved urgently.

The initial data of ISM and ANP are derived from the opinions of the expert group,
which makes the evaluation results more consistent with the actual situation. The assess-
ment results of the ISM-ANP-TOPSIS integrated evaluation model were relatively reliable.
Nevertheless, there are still areas to be improved in this study: the selection of indicators
considering the availability of data was limited; when there were disagreements among
expert groups, only the generally accepted valid data were retained, which may lead
to some inaccuracies. These issues need to be further enhanced and improved through
further research.
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Appendix A

Table A1. Weighted Supermatrix.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13

N1 0.0000 0.1629 0.2053 0.1650 0.0000 0.1375 0.1375 0.0000 0.0000 0.0000 0.1667 0.2222 0.1667
N2 0.1387 0.0000 0.0815 0.1650 0.0000 0.1092 0.0000 0.0000 0.1465 0.0000 0.0000 0.0000 0.1667
N3 0.0000 0.0646 0.0000 0.0000 0.1250 0.0866 0.1092 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
N4 0.2774 0.1026 0.1293 0.0000 0.1250 0.0000 0.0866 0.0000 0.1465 0.0000 0.0833 0.1111 0.0000
N5 0.1818 0.0000 0.3635 0.0000 0.0000 0.1667 0.0000 0.2929 0.1294 0.2761 0.2500 0.0000 0.3333
N6 0.1818 0.1922 0.0000 0.0000 0.1250 0.0000 0.0000 0.0000 0.0494 0.0000 0.0000 0.0000 0.0000
N7 0.0000 0.0961 0.0000 0.2883 0.1250 0.1667 0.0000 0.0000 0.0283 0.1381 0.0000 0.3333 0.0000
N8 0.0000 0.2068 0.0000 0.0000 0.0777 0.3333 0.0000 0.0000 0.1953 0.1953 0.0000 0.0000 0.1111
N9 0.0000 0.0000 0.0000 0.2068 0.1234 0.0000 0.3333 0.2761 0.0000 0.3905 0.2500 0.0000 0.2222

N10 0.0000 0.0000 0.0000 0.0000 0.0490 0.0000 0.0000 0.1381 0.0976 0.0000 0.0000 0.0000 0.0000
N11 0.1469 0.0583 0.1102 0.0454 0.0650 0.0000 0.0000 0.1465 0.1381 0.0000 0.0000 0.0000 0.0000
N12 0.0000 0.0583 0.0000 0.0721 0.1032 0.0000 0.3333 0.1465 0.0000 0.0000 0.0000 0.0000 0.0000
N13 0.0735 0.0583 0.1102 0.0572 0.0819 0.0000 0.0000 0.0000 0.0690 0.0000 0.2500 0.3333 0.0000

Table A2. Limit Supermatrix.

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13

N1 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024 0.09024
N2 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813 0.06813
N3 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446 0.03446
N4 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177 0.09177
N5 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825 0.12825
N6 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201 0.05201
N7 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872 0.0872
N8 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144 0.08144
N9 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113 0.13113

N10 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032 0.03032
N11 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356 0.06356
N12 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481 0.06481
N13 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669 0.07669
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Appendix B

Part I. Basic information.
1. Your gender is ( )
a. Male b. Female
2. Your age is ( )
a. 30–39 years old b. 40–49 years old c. 50 years old and above
3. Your job category is ( )
a. Colleges and universities b. Government departments c. State-owned enterprises d.

Research institutes
4. Your area of expertise or research is ( )
a. Urban resilience b. Flood management c. Risk assessment d. Flood prevention and

mitigation
Part II. The following evaluation indicators were initially established in this research,

and you are invited to score them according to the level of importance. If you have
additional information, please fill in the last column.
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Table A3. Questionnaire.

First-Level
Indicators Secondary Indicators

Score Column
SupplementaryExtremely

Important Important General
Importance Not Important Least Important

Social resilience

Vulnerable groups � � � � �
Population density � � � � �

Medical service capacity � � � � �
Public awareness of disaster prevention � � � � �

Emergency rescue capability � � � � �

Economic resilience

Fixed-asset investments � � � � �
Per capita disposable income � � � � �

Local revenue � � � � �
Disaster prevention capital investment � � � � �

Ecological
environment

resilience

Green coverage rate of built-up district � � � � �
Average annual rainfall � � � � �

Harmless disposal rate of domestic
waste � � � � �

Spatial structure of land use � � � � �

Infrastructure
resilience

Drainage pipe density in built-up area � � � � �
Internet penetration � � � � �
Per capita road area � � � � �

Capability of sewage treatment � � � � �
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