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Abstract: In the western United States, snow accumulation, storage, and ablation affect seasonal
runoff. Thus, the prediction of snowmelt is essential to improve the reliability of water supply
forecasts to guide water allocation and operational decisions. The current method used at the
Colorado Basin River Forecast Center (CBRFC) couples the SNOW-17 temperature-index snow model
and the Sacramento Soil Moisture Accounting (SAC-SMA) runoff model in a lumped approach.
Limitations in parameter transferability and calibration requirements for changing conditions with
the temperature-index model motivated this research, in which new avenues were investigated to
assess and prototype the application of an energy-balance snow model in a distributed modeling
approach. The Utah Energy Balance (UEB) model was chosen to compare with the SNOW-17 model
because it is simple and parsimonious, making it suitable for distributed application with the potential
to improve water supply forecasts. Each model was coupled with the SAC-SMA model and the
Rutpix7 routing model to simulate basin snowmelt and discharge. All the models were applied
on grids over watersheds using the Research Distributed Hydrologic Model (RDHM) framework.
Case studies were implemented for two study sites in the Colorado River basin over a period of two
decades. The model performance was evaluated by comparing the model output with observed daily
discharge and snow-covered area data obtained from remote sensing sources. Simulated evaporative
components of sublimation and evapotranspiration were also evaluated. The results showed that the
UEB model, requiring calibration of only a snow drift factor, achieves a comparable performance to
the calibrated SNOW-17 model, and both provided reasonable basin snow and discharge simulations
in the two study sites. The UEB model had the additional advantage of being able to explicitly
simulate sublimation for different land types and thus better quantify evaporative water balance
components and their sensitivity to land cover change. UEB also has a better transferability potential
because it requires calibration of fewer parameters than SNOW-17. The majority of the parameters
for UEB are physically based and regarded as constants characterizing spatially invariant properties
of snow processes. Thus, the model remains valid for different climate and terrain conditions for
multiple watersheds.

Keywords: snow modeling; operational water supply forecasts; SNOW-17 model; UEB model

1. Introduction

Snowmelt from mountainous areas is an important water source for regional stream-
flow in the western United States, and snow models play an important role in predicting
monthly to seasonal water supply for water-resources management [1]. The National
Weather Service (NWS) Colorado Basin River Forecast Center (CBRFC) is responsible for
basin-wide seasonal water supply forecasts for watersheds in the Colorado River and the
Great Salt Lake basins in the western United States. Currently, the CBRFC produces water
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supply forecasts using the SNOW-17 snow model [2] to generate inputs to the Sacramento
Soil Moisture Accounting (SAC-SMA) runoff model [3]. This forecasting method uses
a lumped approach where the two models (SNOW-17+SAC-SMA) are applied over the
basins, with the variability within basins represented through elevation zones.

SNOW-17 is a temperature-index model that uses air temperature and precipitation as
the model inputs to simulate snow accumulation and ablation. Using a temperature-index
model for operational water supply forecasts has the following advantages: (i) the climate
forcing inputs are easy to obtain and process in real time for most places [4], and (ii) it
has good model performance (e.g., good fit between observed and simulated discharge)
despite its simplicity [5]. However, the model parameters are often not transferable between
watersheds, and calibration for each watershed may require significant effort [4]. It is also
questionable to use a temperature-index model under the impact of climate change because
of the high sensitivity of the model to temperature and the reduced validity of calibrated
parameters as the system changes from the conditions used for calibration.

Changes in seasonal water resources due to climate change have broad economic and
ecologic impacts [6–8], thus highlighting the importance of advancing the current method
for forecasting water supply to address the challenges of future changing conditions and
to guide water resources management decision making. The increased availability of
meteorological data such as wind speed, vapor pressure, and solar radiation makes using
an energy-balance model a promising option for operational water supply forecasts. The
advantages of an energy-balance model are that it, in theory, requires less model calibration
and has the potential to provide forecasts that account for climate or land cover change [9].
However, using an energy-balance model may require more data and involve advanced
computation that places a high demand on computing resources, and model performance
relies on the availability and quality of the additional required climate input data.

Prior studies comparing temperature-index and energy-balance models have not been
conclusive as to whether one approach is better than the other [10–12]. Franz et al. [13]
compared the Snow-Atmosphere-Soil Transfer (SAST) energy-balance model with the
SNOW-17 model to simulate basin streamflow by coupling them with the SAC-SMA model.
They found that, although the simulations of snowpack and streamflow from the two
models were similar, the SNOW-17 model performed consistently well in general and in
some years better than the SAST model. Debele et al. [14] compared energy-balance and
temperature-index models within the Soil and Water Assessment Tool (SWAT) model. They
compared the runoff simulation results and found only insignificant differences between
the two approaches, noting that, for practical application, the temperature-index model can
be utilized when net solar radiation rather than turbulent heat flux dominates the snowmelt
process. Kumar et al. [15] compared the Isnobal energy-balance model with a temperature-
index model for snowmelt and streamflow simulation by linking them with the Penn State
Integrated Hydrology Model (PIHM). Their results showed that both the Isnobal model
and the calibrated temperature-index model could provide reasonable streamflow results.
Isnobal had the best accuracy, whereas the temperature-index model without calibration
had the poorest results. Thus, it is apparent that model complexity is not a determinant of
the reliability of snow or runoff simulation results. Calibrated temperature-index models
may produce similar or better results, and the uncertainty of climate input data is a major
factor affecting the performance of the energy-balance models. Therefore, it is important
to compare the model performance from different snow models before applying them in
various contexts.

The purpose of this research was to assess and prototype the application of an energy-
balance model for operational water supply forecasts. The requirements for a snowmelt
model to support operational water supply forecasts include not only model performance
but also computation time and input data availability. We separately coupled the SNOW-17
model and the Utah Energy Balance model [16] with the SAC-SMA runoff model and the
Rutpix7 routing model [17] and simulated basin snow and discharge to evaluate model
performance (SNOW-17+SAC-SMA+Rutpix7, UEB+SAC-SMA+Rutpix7). We also adopted
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a distributed modeling approach that applied the models on grids over watersheds. This
was motivated by the interest of the operational centers such as the NWS river forecast
centers to shift to distributed models with the expectation that the distributed models
can provide a more accurate representation of the spatial distribution of the snowmelt
process and lead to improved forecasts [15], and the data for distributed models and the
computational resources to run them are becoming increasingly available. We used the
Research Distributed Hydrologic Model (RDHM) framework [17] to support this approach.
This framework consists of multiple modules to simulate hydrologic processes such as
snowmelt, rainfall-runoff, and routing. Individual modules are called from within the
RDHM framework, and new modules can also be developed and added into this framework.
In this study, we added the UEB model as a component module to the RDHM framework.

We evaluated model performance by applying the approach to two study watersheds
in the Colorado River basin, USA. We evaluated the spatial distribution of the snowmelt sim-
ulation by comparing the simulated snow water equivalent (SWE) with the snow-covered
area (SCA) data from the MODIS snow-covered area and grain size (MODSCAG) prod-
uct [18], after the observed and modeled snow results were processed as binary snow/no
snow datasets. We also evaluated the seasonal runoff simulation by selecting different
evaluation metrics to compare the observed and simulated basin discharge. In addition,
we compared the model outputs of sublimation and evapotranspiration from the snow and
runoff models to discover the differences in simulated evaporative components between
the two model configurations (SNOW-17+SAC-SMA+Rutpix7, UEB+SAC-SMA+Rutpix7).

This research is part of a NASA-Roses project in collaboration with RTI International
(https://www.rti.org) for advancing water supply forecasts through improved snow pro-
cess representation [19,20]. This research is an initial investigation into the feasibility of
incorporating a more complex snow model within the CBRFC river forecasting system for
use in water supply forecasts. The model simulation in the RDHM framework is also a
first step towards exploration of a transition to operational distributed modeling at the
CBRFC. Moreover, the approach used in this research shows the potential of applying the
UEB model in other snow-dominated river basins for water supply forecasts in the western
United States or other locations with snowmelt as the dominant source of streamflow.

This paper presents the analysis of historical model simulation to evaluate the perfor-
mance of the two snowmelt models. In this paper, Section 2 describes the study area and
research data. It then presents the model description, model calibration, and evaluation
metrics. Section 3 provides the evaluation results and corresponding discussion. Finally,
Section 4 summarizes the work and discusses the advantages and challenges associated
with the application of an energy-balance model for operational water supply forecasts.

2. Methods
2.1. Study Sites and Data

The study sites are within the Colorado River basin and include watersheds of the
Dolores River above McPhee reservoir and the Blue River above Dillon reservoir (referred
to as the Dolores River watershed and the Blue River watershed in the following sections)
(Figures 1 and 2). We chose these two study sites because (i) they represented different
terrain and climate conditions, and (ii) they were high priority watersheds in the NASA-
Roses project.

The average elevation of the Blue River watershed (3347 m) is higher than that of the
Dolores River watershed (2786.54 m), whereas its total area (849.3 km2) is much smaller
than that of the Dolores River watershed (2080.1 km2). Each site consists of head sub-
watersheds and local sub-watersheds, with the details listed in Table 1. The annual mean
temperature in the Dolores River watershed is slightly higher than that in the Blue River
watershed (15.16 ◦C and 10.6 ◦C, respectively). The annual precipitation is around 700–750
mm in both watersheds. The major land types in both sites are evergreen and deciduous
forests, as well as shrub, with the Dolores River watershed having a higher forest cover
(87% and 53%, respectively).

https://www.rti.org
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Figure 2. Blue River above Dillon Reservoir study site.

Table 1. Details of sub-watersheds in the two study sites.

Sub-Watershed Name Index Area (km2) Elevation Range (m) Type

Dolores River watershed
DRRC2 275.11 2570–4324 Head watershed
LCCC2 172.42 2114–3393 Head watershed
DOLC2 1026.32 2112–4298 Local watershed
MPHC2 606.24 2093–2964 Local watershed

Blue River watershed
TCFC2 228.83 2777–4242 Head watershed
SKEC2 148.84 2839–4349 Head watershed
BUEC2 110.60 2999–4345 Head watershed
BSWC2 204.03 2750–4167 Local watershed
DIRC2 156.97 2687–3924 Local watershed
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We retrieved and processed data both from static datasets (e.g., topographic data and
canopy cover data) and dynamic datasets (e.g., meteorological data) to prepare the model
inputs. Precipitation and temperature are important model forcing inputs for both snow
models. We utilized historical gridded precipitation and temperature datasets from the
CBRFC. These 3-h time step, 800-m resolution datasets were created using the Mountain
Mapper algorithm based on quality controlled climate station data [21]. We also used
the CBRFC temperature data to derive the daily maximum and minimum temperature as
inputs to the UEB model for radiation flux calculation. Wind speed and vapor pressure for
the UEB model were prepared using gridded data from the NLDAS-2 land surface forcing
dataset with 1/8th degree (around 13 km) grid spacing and an hourly time step [22].

Slope and aspect inputs for the UEB model were created using the 30-m National
Elevation dataset (NED) [23], and canopy coverage fraction, canopy height, and leaf area
index inputs for the UEB model were prepared using the 30-m National Land Cover dataset
(NLCD) [24].

The RDHM framework uses the Hydrologic Rainfall Analysis Project (HRAP) grid
system [25]. We defined the model resolution as 0.25 HRAP (around 1.2 km) and the model
simulation time step as 6 hr. This choice was based on trading off computational consider-
ations with explicit spatial detail. However, as UEB is a point model most meaningfully
applied with a spatial footprint around 30 m [26], we applied UEB at grid cell centers
within the 0.25 HRAP grid and with slope, aspect, and vegetation calculated from their
respective 30-m scale datasets. This approach prevents the smoothing of the terrain that
would occur if 1200-m grid cells were used but does not represent the variability of slope
and aspect within any one grid cell. Rather, the assumption is that, aggregated over the
watershed, these center points are sufficiently representative. Dynamic forcing data for the
1988–2010 time span were resampled from their 800-m (temperature and precipitation) or
1/8-degree (humidity and wind) resolution by selecting the value for the grid cell as the
value where the 0.25 HRAP grid cell center falls.

The observed datasets used for performance evaluation included daily discharge and
remotely sensed snow-covered area (SCA) data. Daily historical natural discharge data
for 1988–2010 were obtained from the CBRFC, where they were produced by adjusting
the USGS streamflow using diversion and reservoir data to calculate historical natural
flows without the impacts of regulation. The MODIS Snow-Covered Area and Grain Size
(MODSCAG) retrieval algorithm daily SCA data for 2000–2010 at 500-m resolution were
used to evaluate the model snow outputs.

2.2. Models Description

We compared two model configurations for simulating snow and basin discharge,
each of which coupled a snowmelt model with the SAC-SMA runoff model and the Rutpix7
routing model. The first configuration used the SNOW-17 temperature-index model,
represented as SNOW-17+SAC-SMA+Rutpix7. The second used the UEB energy-balance
model, represented as UEB+SAC-SMA+Rutpix7. The RDHM framework (with version
2.4.3) was used to support each of these model configurations. SNOW-17, SAC-SMA with a
heat-transfer component (SAC-SMA-HT), and Rutpix7 models were already part of RDHM,
whereas the UEB model was added to the framework as a new module in this research.
This took advantage of the extensibility that RDHM provides for the addition of module
code files configured following the developer’s instructions [27]. Descriptions of the two
model configurations are provided in the following subsections.

2.2.1. Utah Energy Balance Model (UEB)

The UEB model is a physically based model for snow accumulation and melt de-
veloped to predict snowmelt rates that contribute to stream and river flows during the
spring and summer. This model uses a single layer representation of the snowpack and
a modified force restore approach [28,29] that allows the snow surface temperature to be
different from the snow average temperature. This design avoids modeling the complex



Water 2023, 15, 1886 6 of 21

processes within a snowpack and provides a parsimonious model with a small number
of state variables that is applicable over a spatial grid with no or minimal calibration at
different locations. In addition, the UEB model’s vegetation component enhances its ability
to model energy and mass balance processes in forested areas [30–32]. The vegetation
component estimates the transmission and attenuation of radiation through a forest canopy,
precipitation interception and unloading, snowmelt and sublimation of intercepted snow,
and turbulent energy exchanges between the ground surface, canopy, and atmosphere.

The UEB model inputs include air temperature, precipitation, wind speed, relative
humidity, incoming solar radiation, and longwave radiation at a time step sufficient to
resolve the diurnal cycle (e.g., hourly, three-hourly, and six-hourly). Slope and aspect terrain
conditions and canopy properties such as the leaf-area index, canopy height, and canopy
cover are also required. In the absence of external input radiation, the solar and longwave
radiation are parametrized using the air temperature, daily range of air temperature, and
humidity. The daily temperature range is used to estimate the cloudiness fraction. The
cloudiness fraction determines the direct and diffuse components of the solar radiation
that reaches the surface of the earth and the emissivity of the atmosphere for longwave
radiation. The equations and detailed description of the UEB radiation parametrization are
provided in the model user manual [16].

In the UEB model, the two major state variables of energy content, U, and water
equivalence, W, are determined at each time step using the inputs mentioned above and
the following energy and mass balance equations.

dU
dt

= Qsn + Qli + Qp + Qg − Qle + Qh + Qe − Qm (1)

dW
dt

= Pr + Ps − Mr − E (2)

In the energy-balance equation, the state variable U is energy per unit of horizontal area
(kJ m−2). The flux terms are Qsn, net shortwave radiation; Qli, incoming longwave radiation;
Qp, advected heat from precipitation; Qg, ground heat flux; Qle, outgoing longwave
radiation; Qh, sensible heat flux; Qe, latent heat flux due to sublimation/condensation; and
Qm, advected heat removed by meltwater, all of which are in units of energy per unit of
horizontal area, per unit time (kJ m−2hr−1). In the mass-balance equation, the state variable
W is the snow water equivalent (m). The flux terms are Pr, rainfall rate; Ps, snowfall rate;
Mr, meltwater outflow from the snowpack; and E, sublimation from the snowpack, all in
m/hr of water equivalent. Readers are referred to the UEB model papers [30–32] for details
on how each process is modeled.

2.2.2. SNOW-17 Model

The SNOW-17 model is a conceptual model that uses precipitation as the water input
and air temperature as the index to determine the energy exchange across the snow–air
interface. This model is mainly used for river forecasting and requires the calibration of
melt factors to generate reliable simulation results [4].

The SNOW-17 model calculates snow surface melt differently depending on whether
rain is present or not. For rain on snow, the model computes the surface melt based on the
following equation [4]:

M = σ·∆t·
[
(Ta + 273.15)4 − 273.154

]
+ 0.0125·P·fr·Tr + 8.5·UADJ·∆t·[(ea − 6.11) + 0.00057·Pa·Ta] (3)

where M is the depth of melt (mm); σ is the Stefan–Boltzmann constant; ∆t is the time
interval (hr); Ta is the air temperature (◦C); P is the water equivalent of precipitation (mm);
fr is the fraction of precipitation in the form of rain; Tr is the rain temperature (◦C); UADJ is
the average wind function during rain-on-snow events (mm·mb−1·hr−1); ea is the vapor
pressure of the air (mb); and Pa is the atmospheric pressure (mb). This calculation is based
on energy-balance concepts but neglects solar radiation, assuming that the sky is overcast.
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The first term represents longwave radiation, the second represents melt by rain, and the
third represents melt by sensible and latent heat. The parameter UADJ accounts for the
effect of wind speed on the rate of snow melt through the turbulence flux of heat and
water between the snow surface and the near-surface air layer. The initial value of UADJ is
estimated from land cover type, which affects the wind profile near the surface as described
in Koren et al. [33] and Anderson et al. [4].

When there is no rain and the air temperature is above the base value, the SNOW-17
model uses a melt factor to calculate the snowmelt as follows:

M = Mf·(Ta − Tb) (4)

where M is the depth of melt (mm); Mf is a seasonally varying melt factor (mm/◦C); Ta
is the air temperature; Tb is the base temperature above which melt starts (usually 0 ◦C).
To represent the seasonal variation in the melt factor, Mf is calculated from a sinusoidal
curve with maximum (MFMAX) and minimum (MFMIN) melt factor values as model
parameters [4].

The SNOW-17 model uses a heat deficit to keep track of the net heat loss from the
snow cover under conditions of no surface melt [4]. When the air temperature is below
freezing, the snow cover can lose or gain heat depending on the thermal gradient in the
upper layers of the snowpack. This gradient is estimated as the difference between the
snow surface temperature Tsur and the temperature at some distance within the snowpack
computed as the antecedent temperature index (ATI). When Tsur is less than the ATI, the
heat deficit is increasing; otherwise it is decreasing. When the heat deficit is zero and the
amount of liquid water held in the pack equals the holding capacity, the snow cover is ripe
and the excess liquid water will become the outflow. This is calculated using empirically
derived equations to represent the lag and attenuation of water through the snow cover.
Note that, unlike the UEB model, the SNOW-17 model does not have any representation of
snow sublimation, and all snow water equivalent losses from SNOW-17 become snowmelt
inputs to the SAC-SMA model of surface hydrology and runoff generation processes. For
full details, refer to Anderson et al. [4].

2.2.3. Sacramento Soil Moisture Accounting Model (SAC-SMA)

The SAC-SMA model is a two-layer conceptual rainfall-runoff model [34]. This model
parameterizes the soil characteristics that are responsible for streamflow production and
represents soil moisture storage, percolation, drainage, and evapotranspiration (ET) pro-
cesses in a conceptual way. It uses rain-plus-melt data as its input, which can be obtained
from the output of snow models such as the SNOW-17 or the UEB model; however, it
requires the calibration of parameters quantifying processes such as soil water storage and
percolation rate to produce runoff simulations.

The SAC-SMA model estimates evapotranspiration (ET) using the available tension
water volume and potential evaporation (PE) demand. When ET occurs, the moisture is
withdrawn from the upper and lower zones of water tension. The PE demand is estimated
using PE grids and PE adjustment factors. Twelve mean monthly PE grids are available for
the model, and PE adjustment factors are used to account for the effects of vegetation.

2.2.4. Rutpix7

Rutpix7 is a hillslope and channel-routing model [17]. Inputs to the Rutpix7 model
include fast (surface) and slow (subsurface/ground) runoff from the SAC-SMA model.
In each cell, fast runoff is routed over a conceptual hillslope to a channel. Then, the
channel inflow from the hillslopes, the slow runoff, and the upstream pixel outflows are
routed through a cell conceptual channel, after which a topographically defined cell-to-cell
connectivity sequence is used to move water from upstream to downstream. See Koren
et al. [33] for details.
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2.3. Model Calibration

We used code obtained from RTI International to automatically calibrate parameters
for the snow and rainfall runoff models to minimize the difference between simulated and
observed discharge. The code that RTI International provided implemented the Nondom-
inated Sorting-based Multi-objective Genetic Algorithm II (NSGA-II) [35]. Three fitness
functions were used in the algorithm: (i) Kling–Gupta efficiency [36] based on the difference
between the simulated and observed discharge, (ii) the monthly volume difference between
the observed and simulated discharge, and (iii) a penalty score to constrain model parame-
ters within a prescribed valid range. To select a calibration parameter set on the pareto front
defined by these metrics, the root-mean-square error (RMSE), Nash–Sutcliffe efficiency
(NSE), and bias were evaluated for the simulated discharge and used to rank parameter
sets from which the best, in the judgment of the author, was chosen. This automatic cali-
bration was used to calibrate the SNOW-17 and the SAC-SMA model parameters given in
Table 2. These parameters are either scalar, meaning that a single value applies to the whole
domain, or gridded, meaning that they vary spatially. In the case of gridded parameters,
RDHM provides procedures to compute a priori parameters based on topography, soils,
and land cover information [17]. For our study watersheds, these a priori parameters were
provided by RTI International. The spatial pattern from these geospatially derived a priori
parameters was retained in the calibration algorithm by using a separate scalar multiplier
for each grid parameter. Parameters (scalars and multipliers) were calibrated separately
using the method described above for each sub-watershed using all the available data from
1988 to 2010.

Table 2. Parameters of the SNOW-17 and the SAC-SMA models used in calibration.

Parameter Description Type

snow_SCF Snow correction factor Scalar
snow_PXTMP Temperature that separates rain from snow [◦C] Scalar
snow_MFMAX Maximum melt factor [mm (6 hr)−1 ◦C−1] Grid
snow_MFMIN Minimum melt factor [mm (6 hr)−1 ◦C−1] Grid
snow_UADJ Wind function factor during rain-on-snow periods [mm mb−1] Grid

sac_peadj Potential evaporation adjustment factor (12 factors in total) Scalar
sac_UZTWM Upper zone tension water maximum storage [mm] Grid
sac_UZFWM Upper zone free water maximum storage [mm] Grid
sac_LZTWM Lower zone tension water maximum storage [mm] Grid
sac_LZFPM Lower zone free water primary storage [mm] Grid
sac_LZFSM Lower zone free water supplementary storage [mm] Grid

sac_UZK Upper zone free water storage depletion coefficient [day−1] Grid
sac_LZPK Lower zone primary storage depletion coefficient [day−1] Grid
sac_LZSK Lower zone supplementary storage depletion coefficient [day−1] Grid

sac_ZPERC Maximum percolation capacity coefficient [dimensionless] Grid
sac_REXP Exponent for the percolation equation Grid

sac_PFREE Percent of percolated water which always goes directly to lower
zone free water storages (decimal fraction) Grid

Note: Prefix “snow” denotes the SNOW-17 model and “sac” denotes the SAC-SMA model.

In the first model configuration (SNOW-17+SAC-SMA+Rutpix7), the SNOW-17 and
SAC-SMA model parameters were automatically calibrated. As a result of separate cali-
bration for each sub-watershed, the scalar parameters such as the snow correction factor
(SCF) and PE adjustment factors differ between sub-watersheds. In the second model
configuration (UEB+SAC-SMA+Rutpix7), only SAC-SMA model parameters were auto-
matically calibrated. The UEB model is physically based; thus, its parameters were held
fixed at a priori published values and not calibrated. Initial results (not shown) revealed
a low flow underestimation problem for some sub-watersheds that was diagnosed to be
due to bias in the precipitation inputs. This bias occurred in the Blue River watershed and
was indicated by the SNOW-17 SCF being larger than 1.2, which means the calibration
adjusted the precipitation input multiplier to increase the precipitation input. The UEB
model parameter that accounts for bias in precipitation input is the drift factor. In cases
where SCF was larger than 1.2, we increased precipitation input by setting the drift factor
to the SCF value. This was the only UEB parameter changed from a priori published values,
and this change resolved the low flow underestimation problem.
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Furthermore, Rutpix7 model parameters were kept constant using a set of pre-defined
hillslope and channel parameters for both model configurations. RTI International completed the
calibration for the first model configuration, and we calibrated the second model configuration.

2.4. Performance Measures

The MODSCAG SCA data product was used to compare simulated snow water
equivalents from the two snow models. MODSCAG SCA data at ~500 m resolution were
resampled using a nearest neighbor approach to 0.25 HRAP resolution and then classified
as snow (value 1) where SCA was larger than 5% and as no snow (value 0) elsewhere.
The modeled SWE was classified into a binary snow/no snow dataset using a 1-mm SWE
threshold. The binary snow-cover maps were created only for the dates on which less
than 10% of pixels were invalid (e.g., cloud cover or missing data) and at least one of the
data sources (MODSCAG, UEB, SNOW-17) had snow in the watershed. Since there were
insufficient valid observation data for the Blue River watershed, we focused comparison of
the observed and simulated spatial distribution of the snowmelt process on the Dolores
River watershed.

We used area and pixel-based methods to compare modeled and observed snow. The
area-based comparison used fractional snow-covered area (Equation (5)) and calculated
the mean absolute error (MAE) as the difference between the modeled and observed SCA
fractions (Equation (6)). MAE calculations were performed separately for each month to
account for seasonality and then averaged over all of the years with data. We also used the
daily fractional SCA to calculate both the annual and melting period (March–June) NSE
(Equation (7)). The pixel-based evaluation compared the observed and modeled binary
snow-cover maps using a fitness statistic (Equation (8)) based on the number of pixels
where snow was observed and modeled, observed and not modeled, not observed and
modeled, and not observed and not modeled (Table 3) [37,38]. The fitness is the ratio
between the number of pixels where both the simulation and observation have snow and
the number of pixels where either the simulation or the observation has snow.

Fractional SCA =
Ns

Ns + Nd
(5)

MAE =
1
N ∑ abs(fOi − fMi) (6)

NSEsnow = 1 − ∑(fOi − fMi)
2

∑
(

fOi − fO
)2 (7)

Fitness =
A

A + C + B
(8)

Table 3. Four pixel types used in the fitness evaluation.

Number of Pixels Observed Snow Observed No Snow

Modeled Snow A B
Modeled No Snow C D

In these equations, Ns is the total number of pixels with snow in the binary snow-cover
map; Nd is the total number of pixels without snow in the binary snow-cover map; fOi
and fMi are the fractional SCA from observation and simulation; A, B, and C in the fitness
function are the number of pixels in each group as defined in Table 3.

Basin discharge was simulated at a 6-hr time step and averaged as a daily time step for
evaluation. Moreover, before using this result, we removed the first water year (water year 1989)
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as the system spin-up period. Observed daily discharge was compared with the simulation
results using metrics of RMSE, NSE, bias, and percent April to July volume error:

RMSE =

√
1
N ∑(Oi − Mi)

2 (9)

NSEdischarge = 1 − ∑(Oi − Mi)
2

∑
(
Oi − O

)2 (10)

Bias =
1
N ∑(Oi − Mi) (11)

Volume error =
[

∑(VOi − VMi)

∑ VOi

]
·100% (12)

where Oi and Mi are the daily discharge (m3s−1) from observation and simulation and VOi and
VMi are the daily discharge volume (m3) of observation and simulation from April to July.

Aside from the snow and discharge analysis, we also compared the model outputs of
sublimation and ET from the snow and runoff models to discover the differences between
the two model configurations in simulating the evaporative components. We compared the
water mass balance by calculating the simulated interannual domain average of precipita-
tion, sublimation, and ET. We also examined the sublimation results of the UEB model in
different land types to evaluate the model performance.

3. Results and Discussion
3.1. Snow Process Simulation

Both observation and simulation datasets for the Dolores River watershed were con-
verted into binary snow-cover maps, and the evaluation metrics were calculated using
results from 2000 to 2010. Table 4 shows the annual and melting period (March–June)
NSE results. Table 5 shows the monthly MAE and fitness (except for July–September).
The UEB model produced a higher NSE for both the annual and melting period and a
lower MAE in most of the months compared to the SNOW-17 model, indicating that the
UEB model performed better for the area-based evaluation. As for the fitness results, the
SNOW-17 model had a higher fitness value most of the time, and hence a better pixel-based
performance than the UEB model. Additionally, both models have higher fitness during
the snow accumulation period (December–March) than during the melting (April–June)
and early snowfall (October–November) periods. This is because both observation and
simulation have a high SCA over the watershed during the snow accumulation period,
which increases the possibility of matching pixels between the simulation and observation
binary snow-cover maps.

Table 4. Annual and melting period (Mar–June) NSE of SCA in the Dolores River watershed evaluated
over 2000–2010.

Models Annual NSE Melting Period NSE

SNOW-17 0.739 0.822
UEB 0.886 0.891
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Table 5. Monthly MAE and fitness of the SCA in the Dolores River watershed evaluated over
2000–2010.

MAE (%) Fitness

Month UEB SNOW-17 UEB SNOW17

Jan 7.5 10.2 0.878 0.898
Feb 7.0 15.6 0.801 0.837
Mar 6.7 10.3 0.819 0.860
Apr 12.4 18.3 0.557 0.582
May 7.2 6.3 0.375 0.372
Jun 2.3 1.6 0.185 0.184
Oct 4.5 8.0 0.083 0.177
Nov 13.2 22.3 0.196 0.237
Dec 14.6 24.7 0.747 0.741

In order to gain a better understanding of the spatial and temporal dynamics of the SCA
in the watershed, we further examined the results in water year 2006, which has the largest
number of satellite observation images with sufficient valid data. A time-series plot of the
modeled and observed fractional SCA during water year 2006 (Figure 3), shows that both
models generally follow the observed SCA pattern. During the snow accumulation period,
the SNOW-17 model tended to have higher peaks (e.g., during October and November) and
overestimate the SCA more than the UEB model does. During the melting period, both
models simulated the snowmelt process with reasonable timing and amount compared to the
observational data. The binary snow-cover maps (Figure 4) show the spatial distribution of
snow cover from the two snow models and the MODSCAG observations for various dates
in water year 2006. The four days correspond to the accumulation (13 October, 6 December)
and snowmelt (9 April, 1 May) periods. The maps show that the UEB model better captures
the reduction in area during melt-out, whereas the SNOW-17 model overestimates the SCA.
This is also a problem during the snow accumulation period (13 October). Examining the UEB
SCA simulations, a scattered or pixelated pattern is present (e.g., 13 October). This is due to the
UEB model using terrain parameters (slope and aspect) at the center point of each 0.25 HRAP
grid cell. These center point values do not represent the larger grid cell as a whole and may
have slope and aspect disassociated with the slope and aspect of adjacent large grid cell centers,
leading to the pixelated SCA pattern.
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The UEB model’s better performance in the area-based evaluation can be explained as
follows. First, the automatic-calibration adjusted SCF (SCF > 1) from the SNOW-17 model
leads to greater snow accumulation, which may delay snow disappearance. Second, the
UEB model does simulate sublimation, which may lead to more rapid snow depletion and
disappearance than SNOW-17. Third, the SNOW-17 model uses a melt factor to implicitly
represent the energy input and corresponding topographic effect for snowmelt, whereas
the UEB model directly calculates the radiation fluxes using slope, aspect, and canopy data
as inputs. This makes the UEB model more sensitive to the variability in melting caused by
different terrain conditions.

For pixel-based evaluation, the UEB model uses the slope and aspect at the center
point of each pixel to represent the terrain features of the corresponding grid area. However,
terrain features at the center points are different from the grid cell as a whole, especially
when the grid spacing is large, and this may lead to the mismatch with observed SCA
and thus a lower fitness. However, the similarity of the aggregate observed and UEB
SCA suggests that over the basin these points may be sufficient to represent basin terrain
variability, something that is not achieved by SNOW-17 which does not account for slope
and aspect.

3.2. Basin Discharge Simulation

We evaluated the basin discharge performance by comparing the observed and sim-
ulated daily discharge with different evaluation metrics for water years 1990–2010. Ac-
cording to the values of the different performance metrics, the overall model performance
for the basin discharge simulation indicated a satisfactory calibration for each model con-
figuration in the two watersheds (Tables 6 and 7). In the Dolores River watershed, the
UEB model had a somewhat better performance than the SNOW-17 model, with a higher
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NSE and lower values for the other metrics in most of the sub-watersheds, whereas the
SNOW-17 model outperforms the UEB model somewhat in the Blue River watershed when
comparing these metrics. In addition, the head watershed LCCC2 had a much lower NSE,
indicating that the model performance was not as good as for the other sub-watersheds.
This is because LCCC2 has much less precipitation input than other sub-watersheds and
generates intermittent streamflow that mainly happens during the spring melt season, with
almost no streamflow during July to September. Since neither snow model can simulate
the streamflow during dry periods well (results not shown here), the model performance
for this sub-watershed is not as good as for the others.

Table 6. Results of evaluation metrics for basin discharge in the Dolores River watershed.

Sub-Watershed Name
Index Model NSE RMSE

(cms) BIAS (cms) Vol Err
(%)

DRRC2
SNOW-17 0.851 2.201 0.112 1.285

UEB 0.897 1.827 0.023 −0.138

LCCC2
SNOW-17 0.654 0.871 0.027 1.796

UEB 0.684 0.832 0.013 0.151

DOLC2
SNOW-17 0.905 5.494 0.159 0.826

UEB 0.915 5.231 0.132 0.184

MPHC2
SNOW-17 0.900 6.834 0.425 3.343

UEB 0.913 6.411 0.572 2.777

Table 7. Results of evaluation metrics for basin discharge in the Blue River watershed.

Sub-Watershed Name
Index Model NSE RMSE

(cms)
BIAS
(cms)

Vol Err
(%)

TCFC2
SNOW-17 0.937 1.174 0.068 −1.922

UEB 0.928 1.257 0.045 0.09

SKEC2
SNOW-17 0.921 0.776 −0.02 −2.404

UEB 0.931 0.727 −0.024 −0.834

BUEC2
SNOW-17 0.912 0.576 −0.008 −2.381

UEB 0.896 0.629 −0.013 −3.373

BSWC2
SNOW-17 0.924 1.125 0.0 −1.248

UEB 0.915 1.191 −0.011 −1.665

DIRC2
SNOW-17 0.947 2.794 −0.056 −2.462

UEB 0.937 3.063 −0.186 −2.819

Figures 5 and 6 present the simulated domain average SWE and observed and simu-
lated discharge in different water years (1994, 1997, 2001, and 2008) for the Dolores River
and Blue River watersheds, respectively. These years were chosen because they were typical
of and spanned the range of model performance over the two decades (22 years), except for
one year that was exceptionally dry and where there was a poor model performance from
both models (water year 2002). These results show that the two snow models coupled to
SAC-SMA and Rutpix7 provide reasonable discharge simulations for the two watersheds,
each of which had different snowmelt and discharge patterns.

Aside from the discharge results, both the SNOW-17 and the UEB model were found
to have similar timing for snow accumulation and snowmelt. The SNOW-17 model has
a higher SWE during the accumulation period mainly because the UEB model simulates
water loss from sublimation, leading to less snow accumulation than the SNOW-17 model.
As a result, the SNOW-17 model actually provides more rain-plus-melt input to feed the
SAC-SMA model that simulates the runoff and ET processes. This leads to differences in
the simulated quantity of ET from the two model configurations. This will be discussed in
the next subsection.
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Figure 6. Simulated and observed daily discharge (left) and simulated domain average SWE (right)
in the Blue River watershed for four water years (WY). Panel (a,b) are results for water year 1994;
panel (c,d) for water year 1997; panel (e,f) for water year 2001; panel (g,h) for water year 2008.

3.3. Evaporative Components Simulation

The UEB model coupled to SAC-SMA simulates both sublimation and ET. However,
since SNOW-17 does not simulate sublimation, the only evaporative component in the
SNOW-17 model coupled to SAC-SMA is ET. In order to better understand the consequences
of this difference, we compared the water mass balance from the two model configurations.
We calculated the watershed average of annual mean precipitation, sublimation, and ET for
the two watersheds over the simulation period (Figure 7). Precipitation adjustments made
to SNOW-17 through the SCF parameter, and to UEB through the drift factor parameter, are
shown. Precipitation inputs to both snowmelt models were adjusted by a similar amount in
the Blue River watershed, whereas only the SNOW-17 model was adjusted in the Dolores
River watershed, noting from the calibration section above that the drift factor was not
adjusted when the SCF was less than 1.2. Since the simulated precipitation inputs are
similar and the models were calibrated against the same observed discharge, both model
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configurations have similar total evaporative components for each of the watersheds. The
UEB model, however, explicitly simulated the portion due to sublimation. The results
show that the water loss due to sublimation is a considerable amount (12–13% of annual
mean precipitation), and it should not be neglected in the snow mass balance for these
watersheds.
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Figure 7. Domain average of annual mean precipitation, sublimation, and ET fluxes simulated from
the two model configurations. Error bars denote the standard error of the mean. Panel (a) is for the
Dolores River watershed; panel (b) is for the Blue River watershed.

We further examined the canopy and ground sublimation simulated by the UEB
model for different land types (Figure 8). This figure shows the watershed average of
the annual mean precipitation, as well as the canopy and ground sublimation for forest
and open areas. The canopy sublimation in the forest area dominates the process, and the
total water loss from sublimation in the forest areas is about twice as much as in the open
area. In addition, the annual mean precipitation and canopy sublimation were compared
for different forest types and at different elevations using the simulated results at each
grid cell over the watershed domain. Figure 9 shows that annual precipitation increases
with increased elevation, and the canopy sublimation increases with increased elevation,
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precipitation, and forest density, determined by the LAI, canopy cover, and canopy height
of different forest types (Table 8). These results are similar to findings from other works that
have evaluated sublimation variability in semi-arid mountainous regions [39,40]. For the
sensitivity analysis of the UEB model for various canopy types, please refer to the previous
work by Mahat et al. [32].

Table 8. LAI, canopy cover, and canopy height for each forest type used in the simulation.

Land Type LAI Canopy Cover Canopy Height

Evergreen forest 4.5 0.7 15
Deciduous forest 1 0.5 8

Shrub 1 0.5 3
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Figure 8. Simulated domain average annual mean sublimation fluxes compared to annual mean
precipitation in forest and open areas. The percentage listed above the sublimation column represents
the percentage of annual mean precipitation that was sublimated in each land cover type. Error bars
denote the standard error of the mean. Panel (a) is for the Dolores River watershed; panel (b) is for
the Blue River watershed.
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Since a large fraction of both watersheds consists of forest area (87% in the Dolores
River watershed and 53% in the Blue River watershed), land type changes may affect
sublimation and thus impact the water mass balance in the watersheds [41–43]. This
analysis highlights the advantages of using the UEB model, including it better quantifying
the proportions of the different evaporative components and providing the means to
evaluate the impact of land cover change on the sublimation process and the corresponding
influence on water availability in the watershed. Using SNOW-17 to accomplish these same
tasks would be difficult or impossible because the model does not directly account for the
sublimation process.

4. Summary and Conclusions

This research is part of a project with the objective to assess whether applying an
energy-balance model in the river forecasting system used by CBRFC would improve water
supply forecasts in the Colorado River basin. This research focused on using analysis of his-
torical, or retrospective, model simulations to evaluate model performance in comparison
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to snow-covered area, daily discharge, and water mass balance. The UEB and SNOW-17
models were evaluated by coupling them with the SAC-SMA model and the Rutpix7 model
within the RDHM framework for distributed modeling of basin snow and discharge in
the Dolores and Blue River watersheds. Parameters for the SNOW-17 and the SAC-SMA
models were calibrated using an automated multi-objective procedure. In the UEB model,
the drift factor parameter was adjusted to account for the precipitation input bias, but other
parameters were held fixed at their literature values.

Comparison of the simulated and observed SCA data showed that both snow models
were able to simulate the spatial and temporal change in the SCA in the Dolores River
watershed with reasonable timing and amount (e.g., the annual NSE of SCA is larger
than 0.7). The results indicated that both model configurations were also able to provide
good discharge simulation results for the study sites (e.g., the NSE of discharge is between
0.85 and 0.94 for most sub-watersheds). Although both models have a similar performance,
the UEB model showed its potential for application in the river forecasting system to
advance water supply forecasts for future changing conditions. First, the UEB model
was able to simulate the sublimation process for different land cover types, whereas
sublimation is not represented in the SNOW-17 model. Sublimation is an important
evaporative component during the snow season in the Colorado River basin, and the UEB
model demonstrated its capability to evaluate sublimation water loss and its impact on the
water mass balance when the land type alters. Second, the UEB model held parameters
(except for the drift factor) constant and achieved fit metrics comparable to the SNOW-17
model, where parameters were calibrated for each sub-watershed. This suggests that
the UEB model parameters are more transferable and provide the ability to simulate the
snowmelt process under different terrain or climate conditions, thus reducing the intensive
model calibration work required within the temperature-index model to provide a reliable
simulation. Moreover, the maximum/minimum melt factors in the SNOW-17 model were
calibrated against historical data, which may not well represent the melt rate under potential
future conditions given a changing climate. In contrast, the UEB model accounts for the
physical process of snowmelt based on energy and water mass balance, which means it is
more capable of providing reliable predictions when climate patterns change. However, the
performance of the UEB model was found to be affected by biases in the input precipitation.
It was necessary to adjust the UEB model’s drift factor based on the SNOW-17 model’s SCF
values to resolve low flow underestimation caused by the precipitation input bias in the
Blue River watershed. Without the reference SCF value, it may be challenging to estimate
the data bias and calibrate the UEB model parameters, demanding more simulation time
and computing resources than the SNOW-17 model for automatic calibration.

Additional work would help further understand the UEB model performance for
operational water supply forecasts. One direction is to conduct model validation with the
two model configurations and evaluate their performances. In this research, we utilized
all the available historical datasets for model calibration to achieve reliable simulation
results. This is an initial exploration of the feasibility of applying the UEB model in the
RDHM framework and the proposed direction will provide more insights into the UEB
model’s performance. Another direction is to evaluate model performance when running
the UEB model at higher spatial resolutions. It is assumed that the energy-balance model
will provide a better performance at finer resolution because of the better representation of
the spatial variation in topographic and vegetation features. However, a higher model reso-
lution will require more computing resources and a longer simulation time. Balancing the
trade-offs between model performance and the computational demand of model operation
is an important issue for operational water supply forecasts.
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