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Abstract: The recycling of fly ash for structural fill uses, such as road base materials, is the most
promising avenue to dissipate fly ash. Traditional risk assessment methods do not take into account
the ultra-alkaline nature of new emerging fly ash (NEFA) and may underestimate the risk of long-
term release of heavy metals and contamination of shallow diving when fly ash is utilized as a road
base material. In this study, carbonation experiments are used to reveal the heavy metal release
characteristics of NEFA under natural aging conditions and to assess the environmental risk and
regional variability characteristics of pollutant release to shallow aquifers under the new fly ash road
utilization scenario based on process modeling and Monte Carlo methods. The results showed that
the heavy metal release concentrations in carbonized NEFA increased by a factor of 1.17–114.56 with
natural aging. This would result in a dramatic increase in the shallow aquifer contamination risk
when this material is used as a road base in typical areas. Exposure concentrations of four heavy
metals, Ni, Cu, Zn, and As, increased by 1.27–113.89 times, and Cd concentrations increased from
0 mg/L to 0.055 mg/L. Ground infiltration differences due to regional differences in rainfall and other
factors lead to differences in the shallow aquifer contamination risk in different areas. Heavy metal
exposure concentrations can vary by up to 1.55 times. The results of the study confirm the significant
long-term increase in heavy metal release and risk under NEFA resource utilization conditions and the
shortcomings of traditional methods in characterizing their release and risk dynamics. In response, it
is recommended that attention be paid to the long-term risk of NEFA resource utilization and that a
methodological system for characterizing the heavy metal release potential and risk assessment of
NEFA be developed.

Keywords: incineration; carbonation; leaching concentration; regional differences

1. Introduction

Incineration is one of the fastest-growing methods of municipal waste disposal world-
wide, especially in emerging economies [1,2]. Data from the National Bureau of Statistics of
China show a significant increase in the proportion of waste incinerated for disposal from
50.7% to 62.1% from 2019 to 2020. However, waste incineration generates a considerable
amount of waste incineration residues, of which approximately 3–5% is municipal waste
incineration fly ash [3], with the global production estimated to have exceeded two billion
tons per year [4,5]. Incineration fly ash contains a large number of contaminants, including
heavy metals, soluble salts, and polychlorinated dibenzo-p-dioxins and dibenzofurans,
which may cause adverse effects on human health if not properly disposed of [6,7].

The substantial and continuous generation of fly ash makes sustainable fly ash disposal
a global focal point for solid waste management. The transport infrastructure sector has
great potential for growth and long-term investment over the next decade due to the
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expansion of transport networks and the accelerated decarbonization process [8]. Therefore,
the use of fly ash as a road base fill material is considered to be one of the most promising
means for dissipating it. This is not only because of the potential benefits of the fly ash
itself for improving the performance of the filler [9], but more importantly, the massive
construction demand generated by road networks makes it possible to sustainably consume
large quantities of fly ash [10].

A reasonable characterization and process for contamination release risk control from
fly ash is a prerequisite and basis for using recycled materials for road bases. Pan et al. [11]
and Wang et al. [12] studied the characteristics, leaching behavior, and risks of heavy metals
in fly ash from municipal solid waste incarnation (MSWI) plants and showed that Cd and
Pb leached at the highest concentrations and posed the highest environmental risk. These
were followed by Zn, Cu, Cr, and Ni. Stabilization/curing effectively reduced the toxicity
of municipal solid waste (MSW) incineration fly ash through chemical precipitation, com-
plexation, adsorption, and physical coating and adsorption. Ren et al. [13] summarized the
advantages and disadvantages of cement-based, inorganic chemical, and organic chemical
stabilization, and the stabilization mechanisms and heavy metal immobilization effects
of various stabilization/solidification methods. Zhao et al. [14] compared the environ-
mental impacts of the reuse of incineration fly ash into ceramic pellets using a life cycle
assessment approach. In general, previous studies have covered the release characteristics
of different fly ash [15], the removal and solidification of hazardous constituents in fly
ash [16], the characterization of hazardous constituent release [17], and the entire life cycle
environmental impacts [18]. This has allowed for the formation of a relatively systematic
and complete theoretical and methodological system for pollutant release, environmental
impact evaluation, and the control of fly ash utilized for roads.

However, the existing methodological system may not apply to the newly generated
fly ash from recent years. Recently, with the increasing global emphasis on air pollution
control, air pollutant emission controls have become increasingly stringent [19]. To meet the
strict air pollutant emission standards, the incineration waste gas treatment process adds a
large amount of alkaline material to absorb acidic pollutant gases [20], and this has led to
some newly emerged fly ash that may have stronger alkalinities. The traditional leaching
standards consist primarily of the “Solid Waste-Extraction Procedure for Leaching Toxicity-
Acetic Acid Buffer Solution Method” (HJ/T 300-2007) [21] and the “Solid Waste-Extraction
Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method” (HJ/T 299-2007) [22].
The leaching solutions in these standards contain fewer hydrogen ions, and these are easily
absorbed by the hydrogen ions in the new emerging fly ash (NEFA) in alkaline substances,
making the leachate system alkaline [23]. In addition, many heavy metals, such as Zn, Cd,
and Ni, are not easily leached [24]. However, under practical utilization conditions, the
alkaline substances in NEFA will eventually be consumed as acidic rainwater and carbon
dioxide in the air and continuously react with alkaline substances [25], and heavy metals in
the NEFA may be gradually released, posing a threat to the shallow aquifer.

In conclusion, existing methods for contaminant release and risk assessment under
resource-based conditions do not take into account the hyperalkaline nature of NEFA and
may underestimate the risk of long-term heavy metal release and groundwater contamina-
tion under resource-based conditions, resulting in NEFA becoming a potential source of
groundwater contamination during its use as a road base. To address these deficiencies,
this study improves the NEFA release characteristics simulation experiment to scientifically
model its long-term heavy metal release, combined with process simulation modeling to
assess the long-term release risk. The specific objectives of this study include the follow-
ing: (1) the study of the long-term release characteristics of heavy metals under NEFA
carbonization conditions and the assessment of the rationality of traditional methods for
characterizing the pollutant release characteristics; (2) the assessment of the impact of the
long-term release of heavy metals on the surrounding environment under NEFA road
use conditions and the provision of technical support to determine the long-term risk of
NEFA road use; and (3) the elucidation of differences in the risk of NEFA road use due to
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regional differences in meteorological conditions, such as precipitation, and the provision
of technical support to determine the regional differentiation of NEFA road use.

2. Materials and Methods
2.1. Sampling and Characterization

The grate furnace is the most widely used furnace type for domestic waste incin-
eration, accounting for more than 86% of the waste treated [26,27]. In addition, the
“semi-dry deacidification + dry lime injection + activated carbon + bag filter” is one of the
common flue gas treatment facilities. The NEFA from an incineration plant with a grate
furnace and a “semi-dry deacidification + dry lime injection + activated carbon + bag filter”
flue gas treatment facility in Guizhou was selected, and the basic information is shown in
Table 1. The pH value of the NEFA samples was 11.8, as measured following the standard
HJ/T 300-2007, which was alkaline. One group of NEFA samples was subjected to direct
leaching experiments to show the short-term release characteristics, and one group was car-
bonated to simulate the long-term release characteristics of NEFA under natural conditions.
The experiment was repeated three times on the same samples under the same conditions,
and the same analytical methods were used to obtain the data. The mean values were used
as data for the study, and a statistical analysis was performed using SPSS 3.0.

Table 1. Basic parameters for domestic waste incineration fly ash enterprises.

Sample Source Incinerator Type Flue Gas
Treatment Processes

Treatment
Capacity (t/d) Water Content (%) Particle Size

D90 (µm)

Diffusion radius (m) Grate furnace

Semi-dry deacidification
+ dry lime injection
+ activated carbon

+ bag filter

1200 1.18 64.84

2.2. Release Feature Simulation

NEFA is used under conditions where acidic rainwater and CO2 in the air react with
the alkaline substances in NEFA. This reaction leads to the continuous depletion of alkaline
substances in NEFA and the release of heavy metals. To simulate the experimental scenario
of the long-term carbonation of NEFA, we used a concrete carbonation test chamber with
reference to the “Standard for test methods of long-term performance and durability of ordinary
concrete” (GB/T 50082-2009) [28]. The parameters of the carbonation test conditions in
the carbonation test chamber were adjusted for temperature (30 ◦C), humidity (50%), and
CO2 (20%). The moisture content and pH value of the carbonized samples were measured
periodically. The carbonated fly ash samples were collected when the pH value reached a
stable level.

Leaching experiments were conducted on the untreated and carbonated samples
following the standard “Solid waste-Extraction procedure for leaching toxicity-Acetic acid buffer
solution method” (HJ/T 300-2007), as follows: (1) a total of 75–100 g of the fly ash samples
was weighed, and a liquid to solid ratio of L/S (mL/g) = 20:1 was chosen to measure
the corresponding pH value (2.64 ± 0.05) of the acetic acid leaching agent; (2) the mixed
samples were shaken in an overturning shaker at (30 ± 2) r/min for 18 h. The leachate
was filtered through a microporous membrane with a pore size of 0.6–0.8 µm to obtain
the leachate; and (3) the heavy metal concentrations in the leachate were determined
using ICP-MS.

The reagents and primary equipment used for the study are shown in Table 2.
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Table 2. Primary experimental instruments.

Experimental Equipment Company Model Country

Fully automatic tilting oscillator Changzhou Jintan Boke Test Equipment TCLP-08 Changzhou, China

Concrete carbonation test chamber Hebei Yujin Test Instrument
Manufacturing Co., Ltd. TH-2 Changzhou, China

ICP-MS Agilent Technologies Inc. Agilent 7800 Santa Clara, CA, USA

2.3. Pollutant Distribution and Emission Analysis
2.3.1. Exposure Scenario Simulation

The use of NEFA as a road base material is primarily a use scenario located at some
depth below ground. Therefore, direct contact (accidental ingestion, skin contact, or
inhalation of dust) exposure pathways can be ruled out. However, most of the contaminants
detected in NEFA are non-volatile. Hence, the vapor inhalation exposure pathway can
also be pre-empted. By considering the nature of the contaminants in NEFA and the use
scenarios, the exposure model only considered the exposure pathway of contaminant
leaching from fly ash into groundwater, which can be generalized, as shown in Figure 1a.
In addition, the actual road was curved due to topographical or architectural factors, and
to simplify the model, the road was approximated as a line segment, as shown in Figure 1b.

Figure 1. Sketch of the fly ash exposure scenario as a pollutant of roadbed material. (a) Stereograms.
(b) Simplified diagram of a complex road.

2.3.2. Risk Assessment Process

The expected groundwater contaminant concentration at the point of exposure, Cpoc,
depends on the setting of the point of exposure (POC). When the exposure point is directly
above the source, the POC is equal to 0, and when the exposure point is some distance away
from the source, the POC > 0. The expected concentrations under the above conditions
were calculated according to the following equations:

Cpoc = Csource × LF (POC = 0), (1)

Cpoc = Csource ×
LF

DAF
(POC > 0), (2)

where Csource [mg/L] represents the potentially leachable concentration of the contaminant
from the source, and the leaching factor (LF [-]) characterizes the attenuation of the contam-
inant during migration from the source to groundwater. When the exposure point is set at
a certain distance from the source (POC > 0), then the dilution attenuation factor (DAF [-])
in groundwater for that contaminant is to be considered.
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The LF [-] can be calculated as follows:

LF =
SAM
LDF

, (3)

where the leachate dilution factor (LDF [-]) is used to characterize the concentration dilution
that occurs during the migration of leachate-containing contaminants to groundwater. The
LDF [-] can be calculated as follows [29]:

LDF = 1 +
νgw × δgw

Ieff ×W
, (4)

where δgw [m] is the groundwater mixing zone height; νgw [m/a] is the groundwater Darcy
velocity; W [m] is the width of the source area longitudinal to the groundwater flow; and
Ieff [m/a] is the effective water infiltration rate. Ieff can be estimated by multiplying the an-
nual precipitation, P [m/a], by the net infiltration rate, I [-], expected in the considered scenario.

The groundwater mixing zone thickness, δgw, can be determined as follows [30]:{
δgw =

(
0.01×W2

)0.5
+ da ×

[
1− exp

(
− W×Ieff

νgw×da

)]
, δgw ≤ da

δgw = da
, (5)

where da [m] is the groundwater thickness.
The groundwater Darcy velocity, νgw, is calculated as follows:

νgw =
Ksat × i

θe
, (6)

where Ksat [m/a] is the soil hydraulic conductivity; i [m/m] is the groundwater gradient;
and θe [-] is the effective porosity in the saturated zone.

SAM [-] in Equation (3) is also generally included in the LF of risk assessment tools and
is the soil attenuation model that considers the dilution of constituents from the leachate
into clean soil underlying the affected soil zone [30]. SAM is calculated as follows:

SAM =
d

d + Lf
, (7)

where d [m] is the thickness of the source and Lf [m] is water table depth.
The DAF in Equation (2) considers the dispersive phenomenon in all directions

(x, y, z) and is calculated as follows [31]:

DAF =
1

erf
(

Sw
4
√

xy×POC

)
× erf

(
δgw

4
√

xz×POC

) , (8)

where Sw [m] is the width of the source area orthogonal to the groundwater flow; δgw [m]
is the groundwater mixing zone thickness (Equation (5)); POC [m] is the distance of the
point of compliance from the source; and xx [m], xY [m], and xZ [m] are the longitudinal,
transversal, and vertical dispersivity coefficients, respectively.

xx, xY, and xZ can be calculated using the following equations [32]:

xx = POC/10, (9)

xy = xx/3, (10)

xz = xx/20. (11)
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Csource in Equations (1) and (2) represents the potential leachable concentration of
the contaminant from the source that can be determined from the results of laboratory
leaching experiments. Based on the above assumptions [33], the groundwater concentration
consistent with the point Cpoc can be calculated using the following equations:

Cpoc =
Csource × SAM

LDF
, POC = 0, (12)

Cpoc =
Csource × SAM

LDF×DAF
, POC > 0. (13)

We assumed a horizontal distance of 100 m from the road (exposure source) to the
observation well as per the Water Pollution Prevention and Control Law of the People’s
Republic of China and Design Specifications of Highway Environmental Protection. The
center line of the road is not less than 100 m from the water source as a reference. The
migration and dispersion of contaminants in the envelope and groundwater saturation
zone were assessed, and the potential risk to groundwater resources was calculated by
comparison with the groundwater quality standards. Water intake was assumed to occur
over 30 years as recommended by the American Society for Testing and Materials (ASTM)
standards [29].

2.3.3. Uncertainty Analysis and Exposure Concentration Characterization

Because fly ash can be widely used as a road base material, the national data were
chosen as the values for the calculated parameters. The Monte Carlo method was used to
simulate the probability distribution of the DAF [34]. The primary uncertainty parameters
considered are shown in Table 3. Parameters, such as the soil hydraulic conductivity, the
effective porosity of the saturated zone, the thickness of the air inclusion zone, the soil
water content, and the thickness of the mixing zone, were adopted from the recommended
values in the “Technical Guidelines for Investigation of Soil Contamination Status of Construction
Land”. Furthermore, the thickness of the road subgrade and the width of the road were
selected according to the Chinese traffic standard values of Chinese roads as 0.3–1.2 m and
3.5–30 m, respectively [35,36].

The parameter uncertainty analysis process was conducted for 5000 iterations to
ensure the stability of the data analysis [37]. Realistic worst-case scenarios were charac-
terized using the relatively high percentile (90–95th) of the frequency distribution of the
contaminant concentrations in the material as input values for the environmental exposure
calculations. In this study, a 95% upper confidence limit was used for the risk assessment
of the contaminant concentrations at the point of exposure.

Table 3. Distribution range of the uncertain parameters.

Parameter Symbol [Unit] Input Values Probability Distribution

pH pH [–] 6.46–8.79 [38]

Uniform

Soil hydraulic conductivity Ksat [m/a] 8.24–153.46
Effective soil porosity θe [–] 0.156–0.463

Groundwater thickness da [m] 70–80 [39]
Water table depth Lf [m] 10–50 [40]
Width of the road W [m] 3.5–30

Roadbed thickness d [m] 0.3–1.2
Fly ash dry bulk density ρmat [g/cm3] 1.5–2.1

Width of orthogonal to groundwater flow Sw [m] 3.5–30
Water surface slope of the gradient J [–] 0.001–0.05
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Table 3. Cont.

Parameter Symbol [Unit] Input Values Probability Distribution

Precipitation P [mm/y] µ = 889; σ = 23.06 Lognormal
Water net infiltration I [%] µ = 6%; σ = 0.2

Note: (1) The national precipitation was estimated by combining the HELP model with the SCS curve number
method to calculate the precipitation at 323 meteorological stations. (2) The precipitation and infiltration of
323 weather stations combined with the equation: I = Infiltration/Precipitation was used to calculate the net
infiltration rate.

3. Results and Discussion
3.1. Release of Hazardous Components from Fly Ash

Leaching experiments with untreated and carbonized NEFA allowed for the characteri-
zation of the current and long-term release of heavy metals, respectively. The concentrations
of heavy metals in the leachate are shown in Table 4. Under the status quo conditions,
the concentrations of Cr, Ni, Cu, Zn, As, and Pb in the leachate were 0.024, 0.027, 0.12,
0.027, 0.019, and 0.90 mg/L, respectively, and Cd was not detected. The concentrations of
As and Pb exceeded the groundwater Class III water quality limits by a factor of 1.9 and
90, respectively.

Table 4. Contaminant leaching concentrations before and after the carbonation of NEFA (mg/L).

Type of Pollutant pH Cr Ni Cu Zn As Cd Pb

Unprocessed NEFA 11.8 0.024 0.027 0.12 0.27 0.019 / 0.90
NEFA after carbonation 6.5 0.0034 0.26 0.14 30.93 0.041 4.19 0.10

Class III groundwater limit - 0.05 0.05 1 1 0.01 0.01 0.01

After carbonation, the concentrations of Ni, Cu, Zn, and As increased by 9.63, 1.17,
114.56, and 2.16 times to 0.26, 0.14, 30.93, and 0.041 mg/L, respectively, in addition to
Cd being released to 4.19 mg/L. The concentrations of Cr and Pb decreased by 0.14 and
0.11 times to 0.0034 mg/L and 0.10 mg/L. The concentrations of Ni, Zn, As, Cd, and Pb
exceeded the groundwater Class III water quality limits by a factor of 5.20, 30.93, 4.10, 419,
and 10, respectively.

The above results indicated that the release of most heavy metals from fly ash gradually
increases under the conditions of use as a road substrate due to the carbonation process.
This is similar to the findings of Yitian Wang et al. [41], who used an acidic leachate to
simulate the long-term leaching of cured fly ash and found that the heavy metals in the
leachate gradually increased with time. Cured fly ash is similar to NEFA in that the pH
appears alkaline. In contrast, acidic leachate has a similar effect to carbon dioxide, depleting
the alkaline component of the cured body or NEFA, making the fly ash leachate acidic,
and heavy metals are more readily released under acidic conditions. Hence, the leaching
concentration of heavy metals from carbonated fly ash becomes greater [42]. It can also be
seen from the experimental results in Table 4 that the pH of the NEFA samples all decreased
as the carbonation experiment proceeded, eventually decreasing from an initial value of
11.8 and stabilizing at 6.5.

3.2. Exposure Risk and Evolution

Leachate concentrations of untreated and carbonized fly ash were used as contaminant
source concentrations to predict exposure concentrations according to the methodology
in Section 2.3 to represent the current and long-term risk of NEFA as a road base material.
The results are shown in Figure 2. Due to the uncertainty of the parameters, the Monte
Carlo uncertainty analysis framework was used for multiple sampling calculations, and
the concentrations of each contaminant component at the exposure points were ranked
from low to high. The cumulative frequencies were then obtained, and the cumulative
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frequency distribution of the pollution component concentrations was produced, as shown
in Figure 3.

Figure 2. Contaminant concentrations at exposure points before and after the carbonation of NEFA.

Figure 3. Cumulative frequency distribution of the pollution component concentrations. (a) Unpro-
cessed NEFA. (b) NEFA after carbonation.

Figure 3 shows that under the current conditions, Cr, Ni, Cu, Zn, and As are not likely
to exceed the standard. Only Pb is likely to exceed the standard, with a probability of 7.98%.
Under long-term conditions, Cu, Cr, Ni, As, and Pb do not have the possibility of exceeding
the standard, while Zn and Cd have the possibility of exceeding the standard, with the
probability of exceeding the standard by 0.02% and 68.4%, respectively.

Figure 2 shows different contaminant concentration values for NEFA as a road base
material under the status quo and long-term at the exposure point with the maximum,
minimum, expected (50%), and 95th percentile values. The 95th percentile value usually
indicates the exposure level under the most reasonable unfavorable conditions. Hence, it
was used as an example for the illustration [43]. As can be seen in Figure 2, the exposure
concentrations of Cr, Ni, Cu, Zn, As, and Pb under the status quo conditions are 0.32× 10−3,
0.35 × 10−3, 0.15 × 10−2, 0.36 × 10−2, 0.25 × 10−3, and 0.009 mg/L. Cr, Ni, Cu, Zn, As,
and Pb are only 0.64% of the corresponding Class III groundwater. Cr, Ni, Cu, Zn, As, and
Pb are only 0.64%, 0.70%, 0.15%, 0.36%, 2.5%, and 90% of the corresponding groundwater
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Class III standards, which do not exceed the standard limits and are not considered to be
at risk.

As carbonation proceeds, the release of some heavy metal concentrations in the fly
ash increases, and the long-term risk increases and may exceed the risk-acceptable level.
In terms of exposure concentrations, Cr, Ni, Cu, Zn, As, Cd, and Pb were 0.45 × 10−4,
0.34 × 10−2, 0.19 × 10−2, 0.41, 0.54 × 10−3, 0.055, and 0.13 × 10−3 mg/L, respectively,
and Cr, Ni, Cu, Zn, As, and Pb were only 0.09%, 6.8%, 0.19%, 41%, and 5.4% of the
corresponding Class III groundwater index standards. The concentrations of Cr, Ni, Cu,
Zn, As, and Pb were only 0.09%, 6.8%, 0.19%, 41%, 5.4%, and 1.3% of the corresponding
Class III groundwater index standards, which did not exceed the standard limits. However,
the concentration of Cd was 5.5 times the standard limit of the Class III groundwater index.
Relative to untreated NEFA, the concentrations of Ni, Cu, Zn, As, and Cd increased, with
Ni, Cu, Zn, and As being 9.71, 1.27, 113.89, and 2.16 times higher, respectively, and the
concentration of Cd increasing from 0 mg/L to 0.55 mg/L. This is consistent with the
study of Tang et al. [44], where the carbonation experiment resulted in higher leaching
concentrations of heavy metals. Hu’s [45] study showed that the release rate of Ni and
Pb in the reduced phase of raw slag was greater than that of aged slag, while the release
efficiency of this phase of raw slag for Zn was lower than that of aged slag. In addition, the
leaching rate of all three heavy metals decreased as the intensity of rainfall increased. In
the process of solid waste resourcing, long-term differences in the release of pollutants may
be caused by carbonization or aging, suggesting that we should pay attention to long-term
risks and conduct long-term risk monitoring in the process of resourcing road solid waste.

3.3. Regional Differences

Precipitation, as one of the most important elements of climate, directly affects the
liquid/solid ratio of hazardous substances precipitated from roadbed fill materials [46].
Therefore, this paper utilized precipitation as the basis of zoning and selected seven
geographical zones in China with average annual rainfalls from the largest to the smallest,
namely south China, southwest China, east China, central China, northeast China, north
China, and northwest China. We used different average annual rainfall amounts for these
seven regions. The regional variability in the risk of groundwater contamination from fly
ash as a road base fill material was then discussed. The average annual precipitation and
net annual infiltration were calculated using data from 323 stations across China.

The model simulations yielded the resulting pollutant occupancy rates shown in
Figure 4. In terms of the occupancy rates of different pollutants, the Cr, Cu, As, Ni, Zn,
and Pb occupancy rates were 0.0011–0.0016, 0.013–0.02, 0.037–0.058, 0.047–0.073, 0.28–0.44,
and 0.093–0.14, respectively, with no exceedances in the seven regions. The risk was within
the control range. Cd accounted for 3.80–5.91, with risk of exceeding the standard in
all seven areas. From the seven different subregions, the occupancy rate of pollutants
increased with increasing rainfall, with the lowest pollutant exposure concentration in
northwest China and the highest pollutant exposure concentration in south China, where
the concentration of Cr increased by 1.33 times and the concentrations of Cu, As, Ni, Pb, Zn,
and Cd all increased by 1.55 times. This indicated that rainfall had a strong influence on
the concentrations of different pollutants at the exposure point. Sun et al. [47] showed that
there was a significant difference in risk between arid and semi-arid/humid/semi-humid
regions under the fly ash road base material utilization scenario, with only the Cd exposure
concentration in the arid/semi-arid region being close to the limit value standard in the
semi-arid region. However, there was a slight exceedance of the Cd exposure concentration
in the humid/semi-humid region. This indicated that the exposure concentration and
environmental risk were positively correlated with the rainfall in the solid waste road use
scenario and both increased with rainfall. This agrees with the pattern of this study, as
rainfall varies from region to region and leads to differences in infiltration, meaning the risk
in different regions should be reasonably assessed, and different control measures should
be provided.
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Figure 4. Ratio of pollutant concentrations to the standards in different areas. (a) Cr, Cu, As, Ni, Zn,
and Pb; (b) Cd.

4. Conclusions

The heavy metal release characteristics after the carbonation of NEFA were elucidated.
The concentrations of Ni, Cu, Zn, and As increased by 1.17–114.56 times after the car-
bonation of NEFA, and the concentration of Cd increased from 0 mg/L to 0.055 mg/L.
The long-term release of heavy metals increased with the carbonation of fly ash, which
was different from the traditional leaching release characteristics, and the method of its
evaluation needs to be improved to consider carbonation after leaching again.

The changes in the status quo and long-term risk of NEFA as a road base material after
model simulations were revealed. Only Pb exceeded the Class III groundwater quality
standard under the status quo conditions. As carbonation proceeded, although most
heavy metals were not at risk at the point of exposure, the concentrations increased, with
Cd showing the greatest increase in risk at 5.5 times the Class III groundwater indicator
standard. This is not negligible in the long term. Therefore, long-term monitoring of the
resource use of NEFA as a roadbed material is required, not just short-term monitoring.

After model simulation of different provinces, the exposure point pollutant concen-
trations were different, and rainfall and groundwater risk were positively correlated. The
risk of shallow diving pollution in different areas varied greatly, and exposure risk reached
the maximum difference of 1.55 times. Therefore, different control measures should be
adopted for the road use of NEFA in different regions.
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