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Abstract: With the development of industry, the concentration of lead (Pb) in water bodies is grad-
ually increasing, the forms of Pb pollution in water are becoming increasingly diversified, and the
environmental and human health hazards caused by Pb pollution are receiving increasing attention.
A HCO–(Fe3O4)x composite adsorbent prepared by the coprecipitation method of Fe3O4 mixed in
cerium-rich grinding and polishing sludge was used to remove Pb from water. The effects of Ce/Fe
molar ratio, pH, dosing amount, and time on the adsorption of HCO–(Fe3O4)x for Pb removal were
investigated and the adsorption isotherm model, adsorption kinetics, and adsorption mechanism
were studied. The results showed that the maximum adsorption capacity of HCO–(Fe3O4)x on Pb(II)
was 35.93 mg·g−1 at a Ce/Fe molar ratio of 1.5:1, pH 4–5, and temperature of 25 ◦C, and the removal
rate could reach 96.05%; the process of Pb(II) adsorption by HCO–(Fe3O4)x was in accordance with
the Langmuir isothermal adsorption model and the pseudo-second-order reaction kinetic model;
chemisorption was dominant. Characterization results, such as EDS, XRD, and XPS, showed that
the composite preparation of HCO with Fe3O4 increased the specific surface area of HCO–(Fe3O4)x

and generated amorphous iron oxides, such as FeCe2O4, FeOOH, Fe3O4, and Fe2O3, which provided
conditions for the formation of Fe-O-Pb and Ce-O-Pb complexes during the adsorption process, thus
facilitating the adsorption removal of Pb(II).

Keywords: HCO–(Fe3O4)x adsorbent; Pb(II); Ce/Fe molar ratio; adsorption mechanism

1. Introduction

In recent years, the adverse health effects of the heavy metal lead (Pb) have attracted
widespread attention from scholars at home and abroad [1,2]. Acute Pb poisoning or
long-term chronic Pb exposure can harm all systems of the body [3–5]. As a result, Pb
poisoning has become a recognized and important health problem [2,3,6,7]. Pb is widely
used in the production of lead–acid batteries, electroplating, construction, paper making,
textiles, guns, and other materials, and is also emitted in the nonferrous metal smelting,
extractive, and chemical industry [8–12]. This led the Pb(II) concentration in nearby bodies
of water to rise gradually, and the situation of Pb pollution in the water environment is now
very serious. Therefore, Pb emission control should be taken seriously and removing Pb
from aqueous solutions should be considered as an important part of wastewater treatment
in heavy industries [4,8,13–16].

The current methods for the removal of Pb(II) from solution mainly include chemical
precipitation [17–19], electrolysis [20], biotechnology [21,22], electrodialysis [23,24], and
adsorption [21]. Among these, the adsorption method is the most widely used, owing to
the advantages of low cost, simple operation, and a vast source of raw materials [25,26].
Moreover, Fe3O4 is a commonly used adsorbent for removing Pb(II) [27,28], due to its
advantages such as short adsorption time, low cost, wide pH adaptation range, and high
renewable utilization efficiency [18,29–32]. However, the capacity of conventional Fe3O4 to
adsorb Pb(II) is low. Therefore, the preparation of iron-loaded composite adsorbent with
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high adsorption capacity has become the key for current adsorption technology innovation
and breakthroughs [26,33]. In this study, based on the ideas of resource recycling and
treating waste with waste, Fe3O4 and cerium oxide-rich grinding and polishing sludge
(hydrous ceric oxide: CeO2–nH2O, abbreviated as HCO) were used as raw materials and
the Fe3O4/HCO composite adsorbent was prepared according to the literature [30,32].
HCO–Fe3O4 composite adsorbents with different Ce/Fe molar ratios (abbreviated as: HCO–
(Fe3O4)x) were prepared by a modified coprecipitation method and the influencing factors
(Ce/Fe molar ratio, pH, reaction time and coexisting anions), attachment properties, isother-
mal adsorption model, and adsorption kinetic processes of HCO–(Fe3O4)x adsorption for
the removal of Pb(II) from water were investigated. Meanwhile, the surface morphology,
crystal structure, and Pb(II) valence of HCO–(Fe3O4)x, both before and after Pb(II) ad-
sorption, were characterized by modern testing techniques to elucidate the adsorption
mechanism of Pb(II) by HCO–(Fe3O4)x with different Ce/Fe molar ratios, providing a
technical reference for the adsorption and removal of Pb(II) from bodies of water.

2. Materials and Methods
2.1. Preparation and Characterization of HCO–(Fe3O4)x Composite Adsorbent

The raw material for the production of HCO–(Fe3O4)x is grinding and polishing sludge
(HCO) which was collected from the wastewater treatment plant of LSKJ Co. The sludge
contained some waste impurities; the main components were water (78.10%), cerium oxide
(7.80%), silica (4.50%), alumina (3.80%), and calcium oxide (2.80%), etc. HCO–(Fe3O4)x was
prepared using the coprecipitation method using HCO and Fe3O4 [1,34]; the Ce/Fe molar
ratios were 1:0 (raw sludge), 0:1 (Fe3O4), 1:2 (HCO–(Fe3O4)0.5), 1:1 (HCO–(Fe3O4)1), and
1.5:1 (HCO–(Fe3O4)1.5) by controlling the dosing amount. The details of the preparation
procedure are described in the literature [30,32,35].

2.2. Adsorption and Desorption Experiments
2.2.1. Batch Adsorption Experiments

(1) The effect of Ce/Fe molar ratio: batch adsorption experiments were conducted in
250 mL glass bottles under different conditions. HCO–(Fe3O4)x (2000 mg·L−1) and
Pb(II) (20 mg·L−1) [17,36] were combined in the bottles; the mixture was then shaken at
150 rpm at a constant temperature ((25 ± 1) ◦C) for up to 300 min. Aqueous solutions
of 0.1 mol·L−1 hydrochloric acid or sodium hydroxide were used to adjust the pH
of the solution. During the reaction, the solution was sampled at different times; a
clear solution was obtained by filtration through a 0.45 µm membrane for testing. The
removal performance and adsorption capacity were calculated (Equations (1) and
(2)) [18,29,31]. All tests were performed in three parallel trials. Based on the removal
rate and adsorption capacity of Pb(II), the best Ce/Fe molar ratio HCO–(Fe3O4)x
adsorbent was selected for the following studies.

η = (C0 − Ct)/C0 × 100% (1)

qe = V(C0 − Ct)/m (2)

In the equation, η is the removal rate at adsorption equilibrium, expressed in %; C0, Ct,
and Ce are initial, moment t, and equilibrium concentration of Pb(II), respectively, expressed
in mg·L−1; qe is the adsorption capacity of the adsorbent for Pb(II) at equilibrium, expressed
in mg·g−1; V is the volume of the solution after fixing, expressed in L; and m is the mass of
HCO–(Fe3O4)x, expressed in g.

(2) pH effect experiment: under the conditions of 2000 mg·L−1 of HCO–(Fe3O4)x, 2.0 h of
reaction time, and (25 ± 1) ◦C, the effects of initial solution pH (2.0, 3.0, 4.0, 5.0, 6.0,
7.0, 8.0, and 9.0) on the adsorption of Pb(II) by HCO–(Fe3O4)x were investigated to
determine the optimal pH for adsorption.

(3) Adsorption time effect experiment: under the conditions of 2000 mg·L−1 of HCO–
(Fe3O4)x, the initial pH of 4.0, and temperature of (25± 1) ◦C, the effects of adsorption
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time on the adsorption of Pb(II) by HCO–(Fe3O4)x were investigated to determine the
optimal adsorption time for adsorption.

(4) Experiment on the effect of coexisting anions: the wastewater of lead-zinc ore dressing
often contains a large amount of anions [36,37] such as chloride ions (Cl−), sulphate
ions (SO4

2−), phosphate ions (PO4
3−), and silicate ions (SiO3

2−). Therefore, the
effect of these coexisting anions on the adsorption of Pb(II) by HCO–(Fe3O4)x was
investigated under the conditions of HCO–(Fe3O4)x dosage of 2000 mg·L−1, initial pH
of the solution of 4, and temperature of (25± 1) ◦C. The concentration of all coexisting
anions was 1.0 mol·L−1.

(5) Desorption experiments: according to the conclusion reached in the literature [30,32],
the Pb(II) adsorbed by HCO–(Fe3O4)x was desorbed and regenerated using ultrapure
water (H2O) and 0.1 mol·L−1 hydrochloric acid (HCl), sodium hydroxide (NaOH), and
ethylenediaminetetraacetic acid (EDTA); the desorbed and regenerated HCO–(Fe3O4)x
was filtered and dried, and then Pb(II) adsorption experiments were performed to
determine its optimal desorbent and evaluate its regeneration capacity [32].

2.2.2. Adsorption Isotherm Experiment

After preparing 100 mL of Pb(II) solution with concentrations ranging from 0 to
100 mg·L−1 and adding 0.2 g of HCO–(Fe3O4)x at 25 ◦C with constant temperature shaking
for 6 h, the supernatant was passed over a 0.45 µm membrane to determine the residual
concentration of Pb(II) and calculate its equilibrium adsorption amount. The data were
fitted using Langmuir (Equation (3)), Freundlich (Equation (4)), and Dubinin–Radushkevich
(D–R) (Equations (5)–(7)) adsorption isotherm models [26,31,38].

Ce

qe
=

1
qmaxb

+
Ce

qmax
(3)

lg(qe) =lg
(

K f

)
+

1
n

lg(Ce) (4)

ln
(

qe) =ln(qs)− βε2 (5)

ε = RTln
(

1 +
1

Ce

)
(6)

E = (−2β)−1/2 (7)

In the equation: Ce is the concentration of Pb(II) in solution at adsorption equilibrium,
expressed in mg·L−1; qe and qmax are the equilibrium adsorption capacity and maximum
adsorption capacity, expressed in mg·g−1, respectively; b is the Langmuir adsorption
constant, expressed in L·mg−1; Kf and 1/n are the Freundlich adsorption constants; β is
constant of D–R isotherm, expressed in mol2·kJ−2; qs is the theoretical isothermal saturation
ability, expressed in mg·g−1; ε is polanyi adsorption potential; R is the universal gas
constant of 8.314J.molK−1; T is the absolute temperature, expressed in K; and E is adsorption
energy, expressed in KJ·mol−1.

2.2.3. Adsorption Kinetics Experiments

A 100 mL solution of Pb(II) at a concentration of 100 mg·L−1 was prepared [17,36],
0.2 g of adsorbent was added and shaken in a constant temperature shaker at 25 ◦C, and
the residual concentration of Pb(II) was measured after taking the supernatant of different
reaction times over a 0.45 µm membrane; the removal rate and adsorption amount of Pb(II)
were calculated. Then, the data were fitted using a pseudo-first-order model (Equation (8)),
pseudo-second-order model (Equation (9)), Elovich model (Equation (10)), and intraparticle
diffusion model (Equation (11)) [26,31,38]:

qt = qe(1− exp(k1t)) (8)
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qt = qe − qe(k2qet + 1) (9)

qt =
ln(αβ)

β
+

1
β

lnt (10)

qt = αl + k4it0.5 (11)

In the equation, t is the adsorption time, expressed in min; qt is the adsorption capacity
at time t (min), expressed in mg·g−1; k1 is the pseudo-first-order model rate, expressed
in min−1; k2 is the pseudo-second-order model rate, expressed in g·(mg·min)−1, qe is the
adsorption equilibrium amount at moment t, expressed in mg·g−1; qt is the adsorption
capacity at time t (min), expressed in mg·g−1; α is the adsorption constant of Elovich model,
expressed in mg·mg−1·min−1; β is related to the surface area and chemical activation
energy of the adsorbent, expressed in g·mg−1; k4i is the adsorption rate constant at a
particular stage of adsorption, expressed in mg·g−1·min−0.5; and αi is the intraparticle
diffusion model constant for a particular stage of adsorption.

2.3. Analysis Method

The experimental reagents were all superior purity, and the experimental water was
all deionized water. In the test, 1.5986 g of Pb(NO3)2 was weighed, dissolved in ultrapure
water, transferred to a 1L volumetric flask, fixed, and shaken well to obtain 1.0 g·L−1 of
Pb(II) standard reserve solution; the desired concentration of Pb(II) solution was obtained
by diluting the appropriate amount of Pb standard reserve solution [30]. The concentration
of Pb(II) was measured using a flame atomic absorption spectrometer (AA-7002A, Beijing
East-West Analytical Instruments Co., Ltd., Peking, China) [12,32].

2.4. Characterization Analysis Method

The residues of HCO–(Fe3O4)x before and after the adsorption of Pb(II) were charac-
terized using a scanning electron microscopy (SEM, JSM-6380LV, JEOL Ltd., Tokyo, Japan)
with an operating voltage of 5.0 KV; the elemental species and content of HCO–(Fe3O4)x
before and after Pb adsorption were determined using energy-dispersive spectroscopy
(EDS, Bruker XFlash 5010, Karlsruhe, Germany). Analysis of the compounds involved in
the adsorption process and the remaining compounds after the adsorption of Pb(II) was con-
ducted using X-ray diffraction (XRD, D8 Advance, Brook AXS Ltd., Karlsruhe, Germany)
with a scanning range of 10–90◦ and a scanning speed of 6·min−1. Analysis of the func-
tional groups and bond composition before and after adsorption was conducted using FTIR
(Nicolet 6700, Thermo Fisher, Waltham, MA, USA) with a scan range of 4000–500 cm−1.
The valence states of Fe, Ce, and Pb before and after adsorption were analyzed using X-ray
photoelectron spectroscopy (XPS, Thermo Scientific: Esala 250Xi, Waltham, MA, USA) with
all binding energies (B.E) using the carbon peak C1s at 285.1 eV as a reference value and
the analysis software XPS Peak.

3. Results and Discussion
3.1. The Influence of Ce/Fe Molar Ratio

The Ce/Fe molar ratio affects the structure and properties of HCO–(Fe3O4)x [26,30,32],
which, in turn, affect its effect on Pb(II) adsorption. The removal of Pb(II) by adsorption
of HCO–(Fe3O4)x with Ce/Fe molar ratios of 1:0 (HCO), 0:1 (Fe3O4), 1:2, 1:1, and 1.5:1,
respectively, is provided in Figure 1. The adsorption of HCO–(Fe3O4)x for the removal of
Pb(II) was better than that of pure HCO or Fe3O4, indicating that the composite preparation
of HCO–(Fe3O4)x can improve the removal of Pb(II) ions from aqueous solutions. As shown
in Figure 1, the removal rate of Pb(II) increased from 32.84% to 96.45% when the Ce/Fe
molar ratio increased from 0:1 to 1.5:1, and its removal rate increased with the increase in the
Ce/Fe molar ratio. This occurred because Fe3O4 loaded onto HCO formed HCO–(Fe3O4)x
adsorbent with porous and multiple active sites, which was also supported by the specific
surface area (SBET) parameters determined by the nitrogen adsorption–desorption method



Water 2023, 15, 1857 5 of 17

(Table A1). For example, the SBET at the Ce/Fe molar ratio of 1:2 is 104.64 m2·g−1, which
is 3.5 times higher than that of the Ce/Fe molar ratio 1:0 sample (29.63 m2·g−1)—which is
close to 132.2 m2·g−1 of the maximum specific surface area (SBET) obtained by Qi et al. [39]
using cerium-doped Fe3O4—. The specific surface area (SBET) increased from 104.64 m2·g−1

to 108.57 m2·g−1 when the Ce/Fe molar ratio increased from 1:2 to 1.5:1, implying that the
specific surface area of HCO–(Fe3O4)x increased with the increase in the x value. This is in
agreement with the conclusion of Qi et al. [39] that when increasing the molar ratio of Ce,
the increase in the specific surface area of HCO–(Fe3O4)x provides more active sites [39],
which provides a good basis for the adsorption of Pb(II). Overall, HCO–(Fe3O4)x with a
Ce/Fe molar ratio of 1.5:1 had the best adsorption and removal effect on Pb(II). Therefore,
follow–up studies were conducted with HCO–(Fe3O4)x adsorbent with the Ce/Fe molar
ratio of 1.5:1.
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Figure 1. Removal rates of HCO–(Fe3O4)x with different Ce/Fe molar ratios on Pb(II): initial concen-
tration Pb(II) = 20 mg·L−1, adsorbent dosage = 2.0 g·L−1, pH = 5 ± 0.1, reaction time = 4.0 h.

3.2. The Influence of pH

The effects of initial pH on the adsorption of Pb(II) onto HCO–(Fe3O4)x are shown
in Figure 2a. As shown in Figure 2a, when the pH increased from 2 to 4, the Pb(II)
removal rate increased rapidly from 59.74% to 96.05% and reached the maximum; when
the pH continued to increase to 9, the rate decreased slowly to 86.41%. Therefore, the
adsorption efficiency increased first and then slightly decreased with the increase in pH.
When pH < 4, Pb(II) in the solution are mainly present as Pb2+ and Pb(OH)2+ [40], and
the large amount of H+ present in the solution at this time adheres to the surface of
HCO–(Fe3O4)x and protonates it, resulting in few available heavy active sites for Pb(II).
However, the adsorption efficiency increased significantly with the initial pH of 4–5 and
became stable at pH = 4.0~5.0. This implies that the increased pH greatly weakened the
competition of H+ and increased the adsorption efficiency. To further explain this result, the
point of zero charge (pHpzc) was tested (Figure 2b). When pH > pHpzc, the HCO–(Fe3O4)x
was negatively charged; otherwise, it was positively charged. The pHpzc of HCO–(Fe3O4)x
was 4.08, which is consistent with previous studies [39,41]. At pH < 4.08, the positively
charged surface of HCO–(Fe3O4)x will electrostatically repulse with cations. This result
is not conducive to the adsorption of Pb(II). At pH > 4.08, the surface of HCO–(Fe3O4)x
is dominated by negative charge, which provides more active sites and promotes the
adsorption of Pb(II). Therefore, a large amount of Pb(II) was adsorbed onto the surface of
HCO–(Fe3O4)x at high pH, which is consistent with previous studies [17]. When the pH
increases to 6–9, Pb ions in solution mainly exist in various forms, such as Pb2+, Pb(OH)+,
and Pb(OH)2 [42], and some Pb(II) is removed by Pb(OH)2 precipitation. Overall, the
suitable pH values for Pb(II) adsorption by HCO–(Fe3O4)x are 4–5.
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Figure 2. The influence of pH on adsorption efficiency (a) and pHpzc (b): initial concentration
Pb(II) = 20 mg·L−1, Ce:Fe molar ratio = 1.5:1, adsorbent dosage = 2.0 g·L−1, reaction time = 4.0 h.

3.3. The Influence of Adsorption Time

Different adsorption times will directly affect the adsorption effect, and the adsorption
equilibrium time can reflect the performance of the adsorbent to a certain extent [18,29,31].
As can be seen from the black line in Figure 3, the reaction of HCO–(Fe3O4)x on the
removal of Pb(II) reached 90.07% removal of Pb(II) by 240 min, and the reaction continued
until 480 min, when the removal rate only increased to 92.00%. Therefore, the reaction
equilibrium time for the adsorption of Pb(II) was 4 h. In addition, the red line in Figure 3
shows that in the initial stage of adsorption, there are a large number of active sites on the
adsorbent surface and the reaction can proceed rapidly; after 20 min, as time passes, the
active sites are gradually occupied by Pb(II) ions until the adsorption is saturated and the
reaction gradually declines and stops.
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Figure 3. Influence of adsorption time on adsorption of Pb(II): the initial concentration Pb(II) = 20 mg·L−1,
Ce:Fe molar ratio = 1.5:1, adsorbent dosage = 2.0 g·L−1, reaction time = 4.0 h, pH = 5 ± 0.1.

3.4. The Influence of Coexisting Anions

In natural waters, a wide variety of anions are usually present, which affect the removal
of heavy metals by adsorption through physicochemical reactions such as competition,
promotion, and complexation [11,18,19,43]. The effects of four anions, Cl−, SO4

2−, PO4
3−,

and SiO3
2−, on the removal of Pb(II) by adsorption of HCO–(Fe3O4)x are provided in

Figure 4. As can be seen from Figure 4, the removal rates of Pb(II) were 73.85% and 75.23%
when the concentrations of Cl− and SiO3

2− were 1 mol·L−1, respectively, which were lower
than those of the blank experimental group (96.05%). It can be seen that Cl− and SiO3

2−

had a negative effect on the adsorption and removal of Pb(II); the reason for this needs to
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be studied further. When the concentration of PO4
3− was 1 mol·L−1, the removal rate of

Pb(II) was 99.77%, which was higher than that of the blank experimental group (96.05%),
indicating that PO4

3− could promote the adsorption of Pb(II) by HCO–(Fe3O4)x. It may be
that PO4

3− and Pb(II) generate precipitates with very low solubility, leading to the increase
in the removal rate of Pb(II) [44]. In addition, SO4

2− had no effect on the adsorption of
HCO–(Fe3O4)x onto the Pb(II) group.
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tion Pb(II) = 20 mg·L−1, Ce:Fe molar ratio = 1.5:1, adsorbent dosage = 2.0 g·L−1, reaction time = 4.0 h,
pH = 5 ± 0.1.

3.5. Regeneration of Adsorbent

The effects of four eluents, pure water (H2O), and 0.1 mol·L−1 HCl, NaOH, and
EDTA on the desorption and readsorption of Pb(II) from HCO–(Fe3O4)x are provided in
Figure 5. As shown in Figure 5a, the highest efficiency (80.41%) of Pb(II) adsorption by
HCO–(Fe3O4)x was obtained after 2 desorptions of NaOH solution, which shows that
NaOH solution is the best eluent; this is consistent with the findings of Deng et al. [32,35].
As shown in Figure 4b, the adsorption and removal of Pb(II) by HCO–(Fe3O4)x can still
reach 70.08% after 5 adsorption/desorptions by NaOH solution, which is close to the
regenerative use performance of Ce–Fe3O4, reflecting the good regeneration performance
and laying a good foundation for the reuse of HCO–(Fe3O4)x and the recovery of Pb, with
potential economic use value.
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3.6. Adsorption Isotherm

The adsorption isothermal model was used to fit the process of Pb(II) adsorption on
HCO–(Fe3O4)x. The results are shown in Figure 6 and Table 1. As shown in Tables 1 and 2,
the correlation coefficient R2 of Pb(II) adsorption by the Freundlich model at each tempera-
ture is higher than that of the Langmuir model and the D–R model, which indicates that the
Freundlich model can better describe the process of Pb(II) adsorption on HCO–(Fe3O4)x.
Considering the empirical adsorption model, in which the Freundlich model assumes
whether its ion-binding sites are occupied or not, the adsorption of Pb(II) by HCO–(Fe3O4)x
is introduced as mainly multilayer adsorption [45]. The Kf constant of the Freundlich model
gradually increases and 1/n gradually decreases as the temperature increases (Table 1),
which indicates that the adsorption process of HCO–(Fe3O4)x for Pb(II) is a heat absorption
reaction [46], and 1/n is between 0.1 and 0.5 (Table 1), implying that Pb(II) is easily adsorbed
by HCO–(Fe3O4)x [9]. Furthermore, the correlation coefficient R2 for Pb(II) adsorption
by the Langmuir model at temperature is only slightly lower than that of the Freundlich
model, implying that the process of Pb(II) adsorption by HCO–(Fe3O4)1.5 contains both
monolayer (chemical) and multilayer (physical) adsorption [46]. Moreover, whether the
adsorption of Pb(II) on HCO–(Fe3O4)x belongs to a physical adsorption process or a chemi-
cal adsorption process can be determined based on the E value of the D–R model. When
the E value is between 1–8 KJ·mo−1, it belongs to physical adsorption; when the E value
is between 9–16 KJ·mo−1 it belongs to ion exchange; when the E value is greater than
16 KJ·mo−1, it belongs to chemical adsorption [30,47]. As shown in Table 1, the E value is
between 20.926 and 28.845 KJ·mo−1; therefore, HCO–(Fe3O4)x adsorption Pb(II) belongs to
chemical adsorption.
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Figure 6. Adsorption isothermal model of Pb(II) on HCO–(Fe3O4)x:(a) Langmuir and Freundlich
model, (b) D–R model.

Table 1. Parameters of adsorption isothermal model of Pb(II).

Model Langmuir Freundlich D–R

Temperature ◦C qm b R2 Kf 1/n R2 β qs E R2

20 33.93 0.051 0.947 3.824 0.482 0.973 −1.1 × 10–8 20.926 68.810 0.889
25 28.27 0.169 0.965 6.632 0.371 0.991 −9.9 × 10–9 26.154 70.992 0.966
30 35.93 0.174 0.963 8.667 0.376 0.985 −7.54 × 10–9 28.845 81.417 0.947



Water 2023, 15, 1857 9 of 17

Table 2. Dynamics model parameter of HCO–(Fe3O4)x adsorption of Pb(II).

Parameters qe/(mg·g−1) k1/(min−1) R2

Pseudo-first-order 30.85 0.018 0.946
Pseudo-second-order 35.34 0.001 0.962

Parameters a/( mg·mg−1·min−1) β/(g·mg−1) R2

Elovich 2.103 0.159 0.928

3.7. Adsorption Dynamical Model

The pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion
dynamics models were used to fit the experimental data (Figure 7) and the relevant data
parameters were listed in Tables 2 and 3. The fitting coefficient of the pseudo-second-order
model (R2 = 0.962) is larger than that of the other three models. Moreover, the qe value
(35.34 mg·g−1) calculated by the pseudo-second-order model is close to the experimental
value (35.93 mg·g−1), further supporting that the kinetic process of Pb(II) adsorption
by HCO–(Fe3O4)x follows the pseudo-second-order kinetic model [21]. The result also
implied that the whole process of Pb(II) adsorption by HCO–(Fe3O4)x is controlled by
the chemical reaction at the solid–liquid interface [48]. In a word, the kinetic process of
HCO–(Fe3O4)x adsorption of Pb(II) is appropriate for fitting by the pseudo-second-order
model, which suggests that electron sharing or electron transfer is the main source of
adsorption kinetics [48,49] and chemisorption is dominant, which is also consistent with
the results of Deng [35] and Zhu [9,50] et al. The limiting factor in the adsorption process
was further studied by using the intraparticle diffusion model and the results are shown
in Figure 7b and Table 3. As shown in Figure 7b, the adsorption process is divided into
two parts: the first stage is the fast diffusion process on the surface and the second stage
is the slow diffusion process inside the particle [17]. The two stages have the following
relationship: k41 > k42, which is because the adsorption sites on HCO–(Fe3O4)x decrease
with the increase in reaction time [17,30]. Meanwhile, the value of k42 becomes lower, which
also reflects the decrease of the diffusion rate and the equilibrium of chemical adsorption.
Moreover, the larger the liquid film thickness constant ai, the greater the boundary layer
effect of the diffusion process [17,30].
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Figure 7. Kinetic model of Pb(II) adsorption on HCO–(Fe3O4)x: (a) pseudo-first-order, pseudo-
second-order, Elovich model, (b) intraparticle diffusion model.

Table 3. Intraparticle diffusion dynamics model parameter.

Parameters
Intraparticle Diffusion

a1/(mg·g−1) k1/(mg g−1.h−0.5) R2 a2/(mg/g) k2/(mg g−1.h−0.5) R2

Pb(II) 4.086 1.950 0.959 30.398 0.0361 0.858
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3.8. Adsorption Mechanism
3.8.1. Apparent Morphological Analysis of the Sample

The SEM was used to characterize the morphological structure of HCO–(Fe3O4)x
before and after the adsorption of Pb(II) (Figure 8).The surface of the unmodified treated
polished sludge was relatively smooth and demonstrated large porosity [28,36,51] (Figure 8a),
whereas the HCO–(Fe3O4)x prepared with different Ce/Fe moles had a rough surface and
showed many very small pores (Figure 8b,c) with a significantly higher specific surface
area (Appendix A, Table A1). At the same time, irregular spherical particles appeared on
the surface of the adsorbent and, possibly, amorphous iron oxide crystals such as FeCe2O4,
FeOOH, Fe3O4, and Fe2O3 [30,39,52]. This provides a large number of active sites for the
adsorptive removal of Pb(II). Figure 8c shows an increase in surface spherical particles and
roughness compared to Figure 8b, indicating that the prepared HCO–(Fe3O4)x composite
adsorbent increases in specific surface area with the increase in Ce/Fe molar ratio, which
facilitates the adsorption and removal of Pb(II) [53]. After the adsorption of Pb(II) by HCO–
(Fe3O4)x (Figure 8d), a large number of smaller particles were added around HCO–(Fe3O4)x
and the porosity was obviously reduced, which indicates that Pb(II) occupied the active
sites on the adsorbent surface.
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(d) after adsorption of Pb(II).

3.8.2. EDS Energy Spectra of HCO–(Fe3O4)x before and after Adsorption

The chemical elements in the polished sludge and HCO–(Fe3O4)x were analyzed by
EDS, resulting in Table 4. The elements and their contents, before and after the adsorption
of HCO–(Fe3O4)x, can be seen in Table 3. The main components in the polished sludge
were Ce ((31.92 ± 1.65) %) and O ((27.26 ± 1.34)%). HCO–(Fe3O4)x is mainly composed of
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Ce ((38.47 ± 1.87)%), O ((29.95 ± 2.34)%), and Fe ((26.14 ± 2.41)%), in that order. Before
adsorption, the content of elemental Pb in HCO–(Fe3O4)x was (0.21 ± 0.02)%, which
was found to be due to the small amount of elemental Pb in the HCO polished sludge.
After adsorption, the content of Pb increased to (3.74 ± 0.94)%, further confirming the
feasibility of Pb adsorption by HCO–(Fe3O4)x. In addition, the content of Fe changed from
(26.14 ± 2.41)% to (22.8 ± 1.67)% and Ce from (38.47 ± 1.87)% to (36.32 ± 1.79)% after
adsorption, probably due to the hydrolysis of Fe and Ce, resulting in a decrease in their
content, while other elements also showed slight changes of varying degrees.

Table 4. Element content of HCO–(Fe3O4)x before and after adsorption Pb(II) (%).

Element O Na Mg Al Si Cl Ca Fe Ce Pb

Before
adsorption 29.95 ± 2.34 0.25 ± 0.10 0.1 ± 0.02 0.62 ± 0.23 1.87 ± 0.47 1.54 ± 0.26 0.85 ± 0.31 26.14 ± 2.41 38.47 ± 1.87 0.21 ± 0.02

After
adsorption 30.95 ± 1.58 0.39 ± 0.15 0.06 ± 0.03 1.26 ± 0.18 2.51 ± 0.46 0.82 ± 0.07 0.34 ± 0.16 22.8 ± 1.67 36.32 ± 1.79 3.74 ± 0.94

3.8.3. X-ray Diffraction Analysis

The XRD technique was used to characterize the physical phases of the HCO sludge
and the HCO–(Fe3O4)x composite adsorbent (Figure 9). From the diffraction pattern,
it can be observed that the HCO polished sludge has 9 major peaks, at 28.50◦, 33.03◦,
47.46◦, 56.32◦, 59.07◦, 69.42◦, 76.71◦, 79.11◦, and 88.8◦ [30]. However, in the HCO–(Fe3O4)x
composite adsorbent, the diffraction intensity peaks are all diminished and shifted in
position, indicating that the doping of Fe3O4 alters the crystal structure of cerium squared
in favor of the adsorption of heavy metals [40,54]. It can be assumed from the JADE
software analysis that HCO–(Fe3O4)x underwent a complex reaction between Fe3O4 and
CeO2 in HCO during the preparation process (Equation (12)) which, in turn, produced
FeCe2O4 compounds that contributed to the adsorption of Pb(II) [55].

Fe3O4 + CeO2.nH2O + OH− → FeCe2O4 + H2O (12)
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3.8.4. HCO–(Fe3O4)x before and after Adsorption of XPS Analysis

To further clarify the underlying mechanism of the removal process, XPS analysis was
also used to detect the change of the functional groups involved in heavy metal binding
(Figure 10). As shown in the full scan (Figure 10a), the main components of the HCO–
(Fe3O4)x composite adsorbent were O, Ce and Fe, which were consistent with the EDS
analysis (Table 3). A new Pb(4f) peak clearly exists after adsorption, which indicates that
Pb(II) is adsorbed on the HCO–(Fe3O4)x [56]. As shown in Figure 10b, four characteristic
peaks of the Ce 3d spectrum appeared at 882.45, 890.45, 899.61, and 916.60 eV. Related
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studies concluded that 882.40, 890.40, and 900.00 eV are Ce3+ diffraction peaks [39] and
916.60 eV are Ce4+ diffraction peaks [54], indicating the coexistence of two valence states
of Ce3+ and Ce4+ in HCO–(Fe3O4)x [30,32,35]. Moreover, Ce3+ and Ce4+ ions can be hy-
drolyzed to carry hydroxyl groups, which is beneficial for the adsorption of Pb(II). Before
reaction, characteristic peaks of Fe 2p3/2 appeared at 711.25 (Figure 10c), corresponding to
the –OOH functional group (FeOOH and Fe3O4) [39], and characteristic peaks of Fe 2p1/2
appeared at 724.40 (Figure 10c), corresponding to Fe2O3 [39].Therefore, it is inferred that Fe
in HCO–(Fe3O4)x mainly exists in three forms: FeOOH, Fe3O4, and Fe2O3 [30,32,35,39], all
of which are beneficial for the adsorption of Pb(II). After reaction, the peak area percentage
of Fe2+ and Fe3+ were nearly unchanged providing strong support for a removal mecha-
nism involving complexation without oxidation of Pb(II) [17]. Furthermore, as shown in
Figure 10d, two characteristic peaks of the Pb 4 f spectrum appeared at 138.76 and 143.60 eV,
both of these are diffraction peaks of Pb(II) [17,48]. Therefore, there was no redox reaction
of Pb(II) during the adsorption process.
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Figure 10. XPS analysis of HCO–(Fe3O4)x before and after Pb(II) adsorption: full (a); Ce 3d (b); Fe 2p (c);
Pb 4f (d).

3.8.5. Infrared Spectroscopy of HCO–(Fe3O4)x before and after Adsorption

The results of the infrared spectra (FTIR) analysis before and after the adsorption
of Pb(II) by HCO–(Fe3O4)x are presented in Figure 11. As shown in Figure 11, multiple
characteristic peaks of HCO–(Fe3O4)x changed and shifted before and after the adsorption
of Pb(II). The bending vibration absorption peak of 3400~3200 cm−1 represents the overlap-
ping region of the telescopic vibration absorption peaks of N-H and O-H [41], which moved
from 3203 cm−1 to 3379 cm−1 after the adsorption of Pb(II), indicating that N-H and O-H
in HCO–(Fe3O4)x played a key role in the adsorption of Pb(II) [42]. The absorption peak at
1680–1620 cm−1 is a C=C double bond stretching vibration peak [57], which did not change
significantly after the adsorption of Pb(II), implying that the C=C bond is less likely to play
a role in the adsorption process. After the adsorption of Pb(II) by HCO–(Fe3O4)x, the C=O
stretching vibration peak as well as the skeletal vibration peak of the C-C bond [58] shifted
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from 1402 cm−1 to 1382 cm−1, implying that the C=O bond and the C-C single bond played
an important role in the adsorption of Pb(II), as other studies have shown [58]. The C-O
bond vibration peak at 1200–1000 cm−1 shifted sharply from 1073 cm−1 to 1033 cm−1 after
the adsorption of Pb(II), indicating that the peak plays a larger role in the adsorption of
Pb(II). In summary, the presence of functional groups such as -COOH, -OH, C-C and N-H
on the surface of HCO–(Fe3O4)x forms the main active site for the adsorption of Pb(II), and
these active sites are involved in the Pb(II) adsorption process through ligand exchange
and complexation [52], which is consistent with the findings by Yan et al. [57].
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The above analysis points to the conclusion that the main mechanism for the adsorp-
tion of Pb(II) by HCO–(Fe3O4)x is the following:

(1) Adsorption kinetics and isotherm model analysis indicated that monolayer homoge-
neous adsorption and intraparticle diffusion played dominant roles in the removal
of Pb(II) by HCO–(Fe3O4)x [17]. In addition, some studies in the literature reported
that the kinetic process of antimony adsorption by iron matrix adsorbents can be
fitted with a variety of models, and it is hypothesized that there are different ad-
sorption pathways for Pb(II) adsorption by HCO–(Fe3O4)x [26,30,32]. The Freundlich
model can better describe the adsorption of Pb(II) by HCO–(Fe3O4)x, in comparison
to the Langmuir model, implying that the adsorption process is mainly multilayer
adsorption in a nonhomogeneous system [45]. In addition, the coefficient Kf increases
gradually with increasing temperature, indicating that the process is heat absorption.
Furthermore, HCO–(Fe3O4)x has a large specific surface area, which provides more
adsorption sites and facilitates the removal of Pb(II) by adsorption.

(2) Based on research findings from the literature [17,30,59], ligand exchange and com-
plexation reactions may play a key role in the adsorption process; this possibility
requires further investigation. HCO–(Fe3O4)x synthesis was prepared with the doping
of Fe3O4 to produce the FeCe2O4 compound [35], which carries a more negative charge
than polished sludge (Figure 2b). When HCO–(Fe3O4)x adsorbs Pb(II), FeCe2O4 first
undergoes electron transfer with water molecules during hydrolysis to form a two-
electron layer structure and generates, in situ, an amorphous hydrated iron oxide,
X≡Fe-OH, with a high specific surface area. Then, the iron oxide film generates a
PbFe2O4 precipitate through a ligand exchange reaction (Equation (13)), which results
in the removal of Pb(II). At the same time, Pb is mainly present in the valence state
of Pb(II) under experimental conditions, and it can be complexed with Ce2O3 to
form Ce2Pb2O6 (Equation (14)), thus enhancing the adsorption removal of Pb(II). In
addition, when pH values are over 7, Pb(II) is removed by precipitation with OH- in
solution (Equation (15)):
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H+ + FeOOH + Pb2+ → PbFe2O4 + H2O (13)

Ce2O3 + Pb2+ → Ce2Pb2O6 (14)

Pb2+ + OH− → Pb(OH)2 (15)

In conclusion, the mechanism of Pb(II) adsorption by HCO–(Fe3O4)x mainly includes
chemical reactions such as ligand exchange reaction, complexation reaction, and precipita-
tion reaction on the surface of the adsorbent.

4. Conclusions

In this study, HCO–(Fe3O4)x composite adsorbent prepared from cerium-rich grinding
and polishing sludge was effective for the treatment of water containing Pb, and the follow-
ing conclusions were obtained: 1© the HCO–(Fe3O4)x was prepared by a coprecipitation
method using HCO and Fe3O4. The adsorption effect of Pb (II) onto HCO–(Fe3O4)x is
influenced by the Ce/Fe molar ratio, and the optimal adsorption occurs with a Ce/Fe molar
ratio of 1.5:1. 2© The initial pH of the solution has a significant impact on the adsorption of
Pb(II) by HCO–(Fe3O4)x, and the most suitable pH is 4–5. 3© The maximum adsorption
amount of Pb(II) by HCO–(Fe3O4)x at optimal adsorption conditions was 35.93 mg·g−1.
4© Coexisting anions affect the sorptive removal of Pb(II) through competitive interactions,

promotion, and complexation. PO3
2− and SO4

2− promote the adsorption of Pb(II), while
Cl− and SiO3

2− have an inhibitory effect. 5© The adsorption of Pb(II) by HCO–(Fe3O4)x is
controlled by chemical reactions, and its adsorption mechanism mainly involves ligand
exchange reactions with amorphous hydrated iron oxides X≡Fe–OH and complexation
reactions with CeO2 or Ce2O3, thus removing the Pb. To conclude, HCO–(Fe3O4)x has a
large adsorption capacity and a fast adsorption rate for Pb(II), reflecting better prospects
for future application.
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Appendix A

Table A1. Characterization parameters of the different HCO-(Fe3O4)x adsorbents.

Parameters
Ce/Fe/(mol·mol−1)

1:0 (Polishing Sludge) 1:2 1:1 1.5:1

O (wt%) 27.26 17.28 26.51 26.15
Ce (wt%) 31.92 13.85 23.09 27.64
Fe (wt%) - 45.49 20.22 16.07

SBET (m2/g) 29.63 104.64 105.12 108.57
Vtot (cm3/g) 0.109 0.115 0.123 0.214
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