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Abstract: In order to understand the relative strength of top-down and bottom-up control in lakes
of grazing alien fish, Protosalanx chinensis, investigations were designed in Lake Longhu (Lake L,
P. chinensis introduced in 2013) and Lake Qijia (Lake Q, P. chinensis free). Plankton samples were
collected bimonthly through the whole life cycle of P. chinensis (from February to December in 2018).
A total of 133 phytoplankton and 68 zooplankton species were recorded in the two lakes. The total
density and biomass of phytoplankton and zooplankton were 991.89 × 104 ind/L and 9.2418 mg/L
as well as 5212 ind/L and 20.2646 mg/L, respectively. This study revealed that P. chinensis grazing
did not deplete the zooplankton resources in the lake where it was stocked. Biodiversity in Lake L
was not significantly different from that in Lake Q based on both phytoplankton and zooplankton.
Overall, the over grazing of P. chinensis was not found in Lake L. Nevertheless, compared to Lake
Q, the correlation between phytoplankton and zooplankton was weakened in Lake L, which meant
there were still some effects of stocking P. chinensis on the ecological equilibrium of the plankton
community, although no dramatic influences were found in Lake L yet. We also found that P. chinensis
and Cladocera were significantly correlated, which should account for the top-down influences. Long-
term successive investigations are suggested for sustainable resource utilization and maintaining
biological balance.

Keywords: Cladocera; planktivore; zooplankton; phytoplankton

1. Introduction

Alien fish introduction is increasing globally, and these rising invasions have the
potential to intensify future impacts [1,2]. In particular, the increase in anthropogenic
activities is expected to facilitate new introductions of invasive alien fish species and
subsequent invasions through pathways such as trade (e.g., aquaculture) [3,4]. However,
the ecological risk of freshwater fish introduction varies by species, and the majority of
freshwater fish introductions have not been identified as exerting an ecological impact, and
many have great societal benefits [5]. In fact, ecological impacts of non-native fish remain
largely unknown because most studies reviewed reported potential impacts rather than
actual impact mechanisms, and evidence-based studies of the impacts of non-native species
need to be conducted for the public perception of fish introduction risk [5,6].

In aquaculture, a manager supports naturally fluctuating stocks by stocking fish,
with the assumption that the manager remembers past harvest experiences. Exploiting
a stochastically fluctuating fish population facilitates the emergence of a stocking-based
management panacea over time, and the social benefits of panacea formation involve
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dampening natural population fluctuations and generating stability of user satisfaction [7].
Much research has sought to understand the relative strength of top-down and bottom-
up control in lakes of grazing alien fishes, as sustainably managing fishery resources of
human-assisted alien fishes depends on the nature of trophic control [8].

The proliferation of small-bodied fishes (e.g., obligate zooplanktivores and omnivores)
in lakes often accompanied by deterioration of water quality and ecosystem function have
been overlooked mainly due to their small size, shorter life spans, and lower economic
value [9]. Protosalanx chinensis (Abbott 1901) is a small, semelparous, pelagic, annual fish
that occurs in eastern Asia [10–12]. Zooplankton are the main foods of P. chinensis [13,14].
As a commercially important fish, P. chinensis has become a widely transplanted fish species
in northern China, generating considerable economic benefits.

Lake L and Lake Q are shallow saline–alkali lakes located in the lower reaches of
Nen River in northeastern China. They both served as green aquaculture grounds under
the same management pattern with similar size, and they share the same water source. P.
chinensis entered Lake L with the flood from Lake Dalong in 2013 and resulted in a high
yield of 164t in 2016, and then the population collapsed and there was no output since
2017. Lake Q, on the other hand, has never been transplanted with P. chinensis. It was
hypothesized that overgrazing of P. chinensis depleted the food resources of zooplankton
and the low density of zooplankton fettered the reviving of the P. chinensis population.
This research was designed to evaluate the subsequent effects of the P. chinensis population
outbreak and collapse on the plankton community via comparing the two lakes.

2. Materials and Methods
2.1. Study Area and Sampling Stations

Lake L and Lake Q (46◦50′4.91′′ N, 124◦18′1.88′′ E), two adjacent lakes on the Songnen
Plain, are located in western Heilongjiang Province region in northeastern China (Figure 1).
They have a similar size and environmental conditions. As northern lakes, their ice-free
period is from mid-April through mid-November. The long-term average water level area
of Lake L and Lake Q is about 13 km2 and 10 km2, respectively. Lake L and Lake Q are
shallow alkaline lakes with an average depth of about 2.5 m. They are under the same
fishery management pattern, as they belong to the same company. The two lakes were
stocked with the same species of commercial carp for fisheries. The main difference is
that there was no P. chinensis in Lake Q. The distribution of five sampling stations were
designed in Lake L (L1–L5) and Lake Q (Q1–Q5) (Figure 1).

2.2. Sample Collection of Plankton

Phytoplankton and zooplankton samples were collected bimonthly from each sam-
pling site during the hatching, growing, and breeding seasons of P. chinensis (February to
December) in 2018. Therefore, 60 phytoplankton quantitative samples and 60 zooplankton
quantitative samples were obtained throughout the year. Samples (1.0 L) for phytoplankton
analysis were collected in disposable plastic bottles below the surface layer of the lake
(0.5 m) and fixed in Lugol’s solution. Simultaneously, samples (10.0 L) for zooplankton
analysis were filtered through a shallow-water plankton net (length 50 cm, diameter 20 cm,
mesh size 63 µm) and fixed in a 4–5% formalin solution. After collecting the phytoplankton
samples, they were transported to the laboratory and allowed to settle for 48 h. The re-
sulting sediment was then concentrated in a single step to 60 mL before being left to settle
for another 48 h. Finally, the sample was further concentrated to a volume of 30 mL for
identification. The zooplankton samples were also allowed to settle for 48 h after arrival
at the laboratory, and then they were concentrated to a volume of 30 mL before being
identified. The identification of both the phytoplankton and zooplankton samples was
conducted using a Zeiss microscope (model: primostar one). The calculation of density was
converted back to the density of plankton in 1 L of water after sampling and counting by
microscope. The biomass of plankton was calculated by individual average wet weight of
the same genus. Processing phyto- and zooplankton, identification, enumeration, calcula-
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tion of density, and biomass calculations refer to widely recognized and classic professional
reference books [15–17].
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2.3. Sampling and Handling Procedures of Fish

P. chinensis was sampled in the L1 area bimonthly from April through December 2018.
Different sampling gear was used in winter and ice-free seasons to sample fish effectively.
Cone trawler nets (length, 5 m; diameter, 1 m) with different mesh sizes were used for
sampling fish during ice-free months. Mesh size was 1× 1.2 mm, 2× 1.5 mm, 3.0 × 3.0 mm,
and 4.0 × 4.0 mm in April, June, August, and October, respectively. Four gill nets (length,
30 m; height, 1 m; mesh size, 10 mm, 15 mm, 20 mm, and 23 mm between opposite knots)
positioned randomly were deployed in gangs, tied end to end perpendicular to the shore
for 24 h per month during the freeze-up period (December). We chose 50 individuals at
random for further analysis from each sample.

P. chinensis died as it was caught, and the standard body length was measured to the
nearest 1 mm. There was no commercial exploitation in Lake L because the stock collapsed;
therefore, the density of this fish did not change much through the year, and the body
length and biomass increased to some extent.

2.4. Data Analysis

To assess phytoplankton diversity and determine the dominant species (DS), the
Shannon–Wiener diversity index (H’) [18], Margalef diversity index (d) [19], Pielou index
(J) [20], and dominance index (Y) [21] were calculated.

To analyze the similarity of DS in the two lakes, the Jaccard index [22] was applied to
the DS of plankton to indicate the degree of similarity between lakes in different months.
The Jaccard index was given by the equation:

Cj = j/(a + b− j) (1)

where a is the number of all species occurring in community A, b is the number of all
species occurring in community B being compared, and j is the number of species common
to both communities.
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In each survey month, independent-samples t-tests were performed for plankton
composition, density, biomass, H’, J, and d in the two lakes. When the “Sig.” value of
“Levene’s Test for Equality of Variances” is >0.05, select the “sig.” value of “t-test for
Equality of Means” in the row “Equal variances assumed”. Otherwise, select the “sig.”
value of “t-test for Equality of Means” in the row “Equal variances not assumed”. In order
to reveal H’, J, and d between the two lakes, the single sample K–S (Kolmogorov–Smirnov)
test was used to determine whether H’, J, and d had a normal distribution, and then the
paired-samples Wilcoxon signed-rank test was used to compare H’, J, and d between the
two lakes yearly. These statistical analyses were conducted using SPSS Statistics 26.0 (IBM,
Armonk, NY, USA), and p < 0.05 was considered significant.

The statistical analyses were performed in R with the ‘vegan’, ‘corrplot’, and ‘hmisc’
packages. ANOSIM and principal coordinate analysis (PCoA) were analyzed by the package
of ‘vegan’. The R value in ANOSIM analysis is used to indicate whether there is a difference
between different groups, while the p-value is used to indicate whether there is a significant
difference. The closer R is to 1, the greater the difference between groups. Correlation analyzes
were performed using the packages of ‘corrplot’ and ‘hmisc’. The correlation analysis for
density-based plankton correlations in the two lakes was calculated using Spearman’s rank
method. All significant differences were defined as p < 0.05 or p < 0.01.

3. Results
3.1. Plankton Community in the Two Lakes
3.1.1. Phytoplankton Composition, Density, and Biomass

A total of 133 species were recorded in two lakes: 51 Chlorophyta, 48 Bacillariophyta,
16 Cyanobacteria, 11 Euglenophyta, 2 Dinophyta, 2 Cryptophyta, 2 Xanthophyta, and 1
Chrysophyta. Chlorophyta were the most abundant phytoplankton taxa in Lake L, compris-
ing 42.6% of total species. This was followed by Bacillariophyta (29.7%) and Cyanobacteria
(13.9%). Chlorophyta comprised 33.3% of phytoplankton species in Lake Q, while Bacil-
lariophyta was the most abundant phytoplankton taxa (38.2%). Cyanobacteria comprised
13.7% and was similar to Lake L. The mean density was 123.99 ± 149.65 × 104 ind/L, and
the total density was 991.89 × 104 ind/L in the two lakes. Chlorophyta were the most
abundant taxon and contributed 46% of the total phytoplankton density, followed by
Cyanobacteria (17.2%), Bacillariophyta (15.7%), Xanthophyta (12%), Cryptophyta (5.7%),
Euglenophyta (3.1%), Dinophyta (0.2%), and Chrysophyta (0.1%). The mean biomass was
1.1552 ± 1.0437 mg/L, and the total biomass was 9.2418mg/L in the two lakes. Bacillar-
iophyta was the highest in biomass and contributed 33.3% of the total phytoplankton
biomass, followed by Cyanobacteria (21%), Euglenophyta (15.1%), Chlorophyta (13.7%),
Cryptophyta (13%), Xanthophyta (2.8%), Dinophyta (1%), and Chrysophyta (0.1%).

As shown in Figure 2, the total phytoplankton composition was almost the same
in the two lakes, with a difference of only 1%. Compared with Lake L, Lake Q had a
slightly higher total phytoplankton density by 28%. The total phytoplankton biomass was
significantly higher in Lake Q by 88% (Figure 2).

3.1.2. Zooplankton Composition, Density, and Biomass

A total of 68 species were recorded in two lakes: 25 Rotifera, 16 Protozoa, 14 Copepoda,
and 13 Cladocera. Rotifera was the most abundant zooplankton taxa in Lake L, comprising
29.5% of total species. This was followed by Protozoa (23.5%), Copepoda (23.5%), and
Cladocera (23.5%). Protozoa comprised 26.1% of zooplankton species in Lake Q, while
Rotifera was the most abundant zooplankton taxa (45.7%), Copepoda comprised 15.2%,
and Cladocera comprised 13.0%. The mean density was 1303 ± 1215.23 ind/L, and the
total density was 5212 ind/L in the two lakes. Protozoa were the most abundant taxon
and contributed 59% of the total zooplankton density. This was followed by Rotifera
(21.3%), Copepoda (10.4%), and Cladocera (9.3%). The average zooplankton biomass was
5.0661 ± 4.6396 mg/L, and the total biomass was 20.2646 mg/L in the two lakes. Cladocera
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was the highest in biomass and contributed 53.1% of the total zooplankton biomass. This
was followed by Copepoda (32.6%), Rotifera (13.9%), and Protozoa (0.4%).
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Compared with Lake Q, the total zooplankton composition was higher in Lake L
by 10%, with Copepoda and Cladocera contributing the most. Lake L had a higher total
zooplankton density by 29%, with Protozoa and Copepoda contributing the most. The total
zooplankton biomass was higher in Lake L by 17%, with Copepoda contributing the most
to the higher biomass (Figure 2).

In each survey month, the composition, density, and biomass of plankton in Lake L and
Q were compared using independent-samples t-tests to investigate significant differences.
The results showed that significant differences existed in phytoplankton composition in
the two lakes in October; in phytoplankton density in the two lakes in April, October,
and December; and in phytoplankton biomass in August and October. The zooplankton
composition differed significantly in the two lakes in April, August, October, and December,
while zooplankton density exhibited significant differences in April, October, and December.
Furthermore, zooplankton biomass differed significantly in April and August between the
two lakes (Table 1).
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Table 1. Independent-samples t-test of plankton composition, density, and biomass.

Item Month

Phytoplankton Zooplankton

Mean ± Std. Deviation
Sig.

Mean ± Std. Deviation
Sig.

Lake L Lake Q Lake L Lake Q

Composition

Feb. 19.6 ± 6.269 19.4 ± 5.32 0.958 11.4 ± 2.51 12.4 ± 2.074 0.512
Apr. 8.6 ± 0.894 8.6 ± 3.647 1 10.6 ± 1.14 13.2 ± 1.789 0.025 *
Jun. 8.4 ± 1.817 9 ± 3.808 0.759 12.6 ± 2.302 10.4 ± 1.14 0.092
Aug. 24.8 ± 6.907 29.8 ± 8.167 0.326 20.6 ± 0.894 14.6 ± 1.817 0.001 *
Oct. 19 ± 2.55 26.4 ± 2.966 0.003 * 11.4 ± 2.302 4.8 ± 1.304 0.001 *
Dec. 15.8 ± 9.176 9.8 ± 3.633 0.23 8 ± 3.536 3.4 ± 1.14 0.024 *

Density

Feb. 209.33 ± 65.0327 235.44 ± 93.822 0.623 2285.4 ± 1670.583 1042.2 ± 474.183 0.175
Apr. 114.46 ± 15.226 65.26 ± 43.763 0.045 * 483.6 ± 184.621 1046.4 ± 369.307 0.016 *
Jun. 70.28 ± 12.424 82.83 ± 47.292 0.593 773.4 ± 330.132 1512.6 ± 651.93 0.054
Aug. 344.87 ± 210.59 520.07 ± 213.405 0.228 1353.6 ± 1211.018 1331.4 ± 938.673 0.975
Oct. 160.14 ± 27.973 306.72 ± 59.646 0.001 * 1806 ± 1077.785 177.6 ± 147.861 0.027 *
Dec. 201.3 ± 43.993 148.09 ± 25.225 0.047 * 616.2 ± 397.727 80.4 ± 144.63 0.022 *

Biomass

Feb. 1.7192 ± 0.875 2.6403 ± 1.427 0.253 2.3445 ± 1.49 0.7977 ± 0.424 0.08
Apr. 0.4977 ± 0.175 0.4293 ± 0.339 0.699 3.9683 ± 0.802 2.5178 ± 1.008 0.036 *
Jun. 0.2405 ± 0.109 0.5084 ± 0.379 0.193 10.6277 ± 5.563 14.4863 ± 8.003 0.402
Aug. 2.8504 ± 1.849 6.9566 ± 2.514 0.019 * 7.7738 ± 1.102 3.0207 ± 1.194 0.0002 *
Oct. 1.8548 ± 0.862 3.5296 ± 0.772 0.012 * 0.7236 ± 0.432 0.9079 ± 0.334 0.472
Dec. 0.5706 ± 0.439 0.4042 ± 0.227 0.473 1.1819 ± 1.139 0.2846 ± 0.206 0.121

Notes: The unit of measurement for the phytoplankton density was 104 ind/L, and the unit for the zooplankton
density was ind/L. The asterisk (*) indicates that the associated significance level was <0.05.

3.1.3. Dominant Species (DS)

The DS are shown in Table 2. Phytoplankton was dominated by Chlorophyta (15) and
Cyanobacteria (9), followed by Bacillariophyta (7), Euglenophyta (2), Cryptophyta (2), and
Xanthophyta (1). Zooplankton was dominated by Rotifera (13) and Protozoa (13), followed
by Cladocera (7) and Copepoda (6) (Figure 3).
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for the months of February, April, June, August, October, and December, respectively. L and Q
represent Lake L and Lake Q, respectively. See Table 2 for the numbers representing the DS.
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Table 2. Dominant plankton species list.

No. Dominant Species No. Dominant Species No. Dominant Species

Zooplankton 26 Vorticella sp. 51 Navicula rhynchocephala
1 Asplanchna brightwelli 27 Bosmina longirostris 52 Navicula sp.
2 Asplanchna priodonta 28 Bosminopsis deitersi 53 Rhizosolenia longiseta
3 Brachionus angularis 29 Daphnia cristata 54 Surirellia ovate var. pinnata
4 Brachionus calyciflorus 30 Daphnia pulex 55 Synedra acus
5 Brachionus urceus 31 Diaphanosoma branchyurum 56 Euglena acus
6 Chromogaster ovalis 32 Moina micrur 57 Euglena geniculate
7 Conochilus dossnarius 33 Simocephlus vetulus 58 Chroomonas acuta
8 Conochilus unicornis 34 Cyclops strenuus 59 Cryptomonas erosa
9 Filinia longiseta 35 Cyclops vicinus 60 Tribonema minus
10 Keratella quadrata 36 Mesocyclops leuckarti 61 Chlorella ellipsoidea
11 Platyias quadricornis 37 Nauplii 62 Chlorella pyrenoidosa
12 Polyarthra trigla 38 Paracyclops affinis 63 Chlorella vulgaris
13 Synchaeta longipes 39 Schmackeria inopinus 64 Cosmarium nastutum
14 Acanthocustis sp. Phytoplankton 65 Golenkinia radiate
15 Askenasia sp. 40 Anabaena circinalis 66 Scenedesmus bijuga
16 Difflugia globulosa 41 Anabaena oscillarioides 67 Scenedesmus obliquus
17 Difflugia oblonga 42 Chroococcus minor 68 Scenedesmus quadricauda
18 Dileptus sp. 43 Chroococcus tenax 69 Tetraēdron tumidulum
19 Heterophrys sp. 44 Dactylococcopsis irregularis 70 Actinastrum hantzschii
20 Strobilidium sp. 45 Dactylococcopsis rhaphidioides 71 Ankistrodesmus falcatus

21 Tintinnidium entzii 46 Dactylococcopsis rhaphidioides
f. falciformis 72 Ankistrodesmus falcatus var.

mirabilis
22 Tintinnidium fluviatile 47 Oscillatoria sp. 73 Crucigenia tetrapedia
23 Tintinnidium pusillum 48 Phormidium tenue 74 Crucigenia puadrata
24 Tintionnopsis sinensis 49 Cyclotella comta 75 Pediastrum boryanum

25 Tintionnopsis wangi 50 Melosira granulate var.
angustissima

In Lake L, DS of Rotifera occurred from February to December, and the total dominance
(TD) was relatively high in April (0.33), June (0.22), and August (0.13) and relatively low in
February (0.04), October (0.03), and December (0.03). DS of Protozoa also occurred from
February to December, and the DS was relatively high in October (0.86), February (0.46),
and December (0.43), and it was relatively low in August (0.16), April (0.02), and June (0.02).
DS of Copepoda occurred from April to August and December, and the TD decreased
gradually in April (0.49), June (0.26), August (0.17), and December (0.11). DS of Cladocera
occurred in June and August, and the TD in June (0.26) was higher than that in August
(0.05). In Lake Q, DS of Protozoa occurred from February to December, and the TD was
relatively high in February (0.26), August (0.23), October (0.14), and December (0.15) and
relatively low in April (0.05) and June (0.03). DS of Copepoda also occurred from February
to December, and the TD was relatively high in October (0.15), April (0.09), December (0.09),
August (0.05), and June (0.04) and relatively low in February (0.02). DS of Rotifera occurred
from February to August, and the TD was relatively high in April (0.75) and June (0.49),
and it was relatively low in August (0.14) and February (0.07). DS of Cladocera occurred
from June to December, and the TD was relatively high in June (0.37) and relatively low in
October (0.13), August (0.05), and December (0.05) (Figure 3).

In Lake L, DS of Chlorophyta occurred from February to December, and the TD of was
relatively high in April (0.78), June (0.76), August (0.46), and October (0.3) and relatively
low in February (0.09) and December (0.04). DS of Cyanobacteria occurred in February and
from August to December, and Bacillariophyta occurred in February, August, and October.
Cryptophyta occurred in February and December, Euglenophyta occurred in October, and
Xanthophyta occurred in August. In Lake Q, DS of Chlorophyta occurred from February
to December, and the TD was relatively high in February (0.45), June (0.28), and October
(0.25), and it was relatively low in April (0.12), August (0.18), and December (0.02). DS of
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Bacillariophyta occurred in February and from June to October, and the TD was high in
October (0.24). DS of Cyanobacteria occurred in February and from August to December,
and the highest TD was in December (0.68). DS of Xanthophyta occurred in April, June,
and December, and the highest total dominance was in June (0.21). DS of Cryptophyta
occurred in February and December, Euglenophyta occurred in February, and neither of
the TD values were high (Figure 3).

The Cj values of phytoplankton and zooplankton between the two lakes were not
high (index values below 0.50 indicate low similarity; values above 0.50 indicate high
similarity), with annual averages of 0.26 and 0.18, respectively. Phytoplankton had the
highest similarity in December with a Cj of 0.38 and the lowest similarity in April with
a Cj of 0.1. The Cj was 0.2, 0.33, 0.32, and 0.25 in February, June, August, and October,
respectively. For zooplankton, the similarity was the highest in April with a Cj of 0.38, and
the similarity was the lowest in August with Cj of 0.12. The Cj was 0.15, 0.13, 0.14, and 0.14
in February, June, October, and December, respectively.

In Lake L, Protozoa and Rotifera were dominant in every survey month, especially
when the total dominance of the dominant species of Protozoa suddenly rose to 0.86.
Cladocera dominated in June and August, and the total dominance of dominant species
decreased. Copepoda dominated from April to August, and the total dominance of the
dominant species gradually decreased. After not being dominant in October, Copepoda
dominated again in December (Table 3). In Lake Q, Rotifera were dominant from February
to August, and Protozoa were dominant in every survey month. Compared with L, the total
dominance of the dominant species of Protozoa did not increase or decrease significantly. In
Lake Q, Cladocera dominated from June to December. Copepoda were dominant in every
survey month, and the total dominance of dominant species did not increase or decrease
significantly (Table 3).

Table 3. Numbers and total dominance of zooplankton DS in the survey months.

Month/Lake
Rotifera Protozoa Cladocera Copepoda

NDS TDS NDS TDS NDS TDS NDS TDS

Feb./L 2 0.04 4 0.46 0 0 0 0
Apr./L 3 0.33 1 0.02 0 0 4 0.49
Jun./L 3 0.22 1 0.02 5 0.26 2 0.26
Aug./L 5 0.13 1 0.16 2 0.05 2 0.17
Oct./L 1 0.03 2 0.86 0 0 0 0
Dec./L 1 0.03 2 0.43 0 0 1 0.11
Feb./Q 3 0.07 5 0.26 0 0 1 0.02
Apr./Q 7 0.75 1 0.05 0 0 2 0.09
Jun./Q 3 0.49 1 0.03 1 0.37 1 0.04
Aug./Q 4 0.14 3 0.23 1 0.05 1 0.05
Oct./Q 0 0 2 0.14 1 0.13 2 0.15
Dec./Q 0 0 1 0.15 2 0.05 1 0.09

Note: NDS: numbers of DS. TDS: total dominance of DS in the survey month.

In Lake L, Chlorophyta dominated in every survey month, and the total dominance of
dominant species was higher from April to August and gradually decreased. Cyanobacteria
dominated in February and August–December. Bacillariophyta dominated in February
and August–October. Other phytoplankton had a certain degree of dominance in differ-
ent months (Table 4). In Lake Q, Chlorophyta dominated in every survey month, and
the total dominance of dominant species was the highest in February, and there was no
obvious increase or decrease in other months. Cyanobacteria dominated in February and
August–December, and the total dominance of dominant species was higher in December.
Bacillariophyta dominated in February and June–October. Other phytoplankton had a
certain degree of dominance in different months (Table 4).
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Table 4. Numbers and total dominance of phytoplankton DS in the survey months.

Month/Lake
Cyanobacteria Bacillariophyta Euglenophyta Cryptophyta Xanthophyta Chlorophyta

NDS TDS NDS TDS NDS TDS NDS TDS NDS TDS NDS TDS

Feb./L 3 0.07 1 0.07 0 0 1 0.14 0 0 2 0.09
Apr./L 0 0 0 0 0 0 0 0 0 0 6 0.78
Jun./L 0 0 0 0 0 0 0 0 0 0 6 0.76
Aug./L 2 0.13 2 0.07 0 0 0 0 1 0.06 8 0.46
Oct./L 2 0.05 3 0.16 1 0.04 0 0 0 0 7 0.3
Dec./L 2 0.06 0 0 0 0 1 0.27 0 0 2 0.04
Feb./Q 1 0.02 3 0.12 2 0.08 2 0.09 0 0 3 0.45
Apr./Q 0 0 0 0 0 0 0 0 1 0.06 4 0.12
Jun./Q 0 0 1 0.07 0 0 0 0 1 0.21 4 0.28
Aug./Q 2 0.08 4 0.11 0 0 0 0 0 0 6 0.18
Oct./Q 2 0.11 4 0.24 0 0 0 0 0 0 6 0.25
Dec./Q 3 0.68 0 0 0 0 1 0.02 1 0.04 1 0.02

Note: NDS: numbers of DS. TDS: total dominance of DS in the survey month.

3.1.4. Plankton Diversity in the Two Lakes

The complete 6-month data for plankton diversity in the two lakes are shown in
Figure 4. Over the course of 6 months, the total phytoplankton diversity index value in the
two lakes (Feb.: 24.22, Apr.: 14.53, Jun.: 15.02, Aug.: 29.16, Oct.: 28.32, Dec.: 16.85, and total:
128.1) was higher than that of zooplankton (Feb.: 11.93, Apr.: 14.5, Jun.: 13.45, Aug.: 18.38,
Oct.: 8.72, Dec.: 8.03, and total:75.01). Plankton diversity in August was higher than other
months (Figure 4), which was caused by both phytoplankton and zooplankton. Diversity
in Lake L slightly outnumbered Lake Q regardless of phytoplankton (Lake L: 64.14 and
Lake Q: 63.96) and zooplankton (Lake L: 39.29 and Lake Q: 35.72) (Figure 4).
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Figure 4. Plankton diversity in the two lakes. The length of the color-coded bars represented the
magnitude of the value. This figure was divided into three layers. The top layer shows the sum of
three diversity indices (H’, J, and d) for phytoplankton and zooplankton. The bottom layer shows the
sum of the three diversity index values for plankton in the lakes L and Q, respectively. The middle
layer shows the monthly variation in the sum of the three diversity index values.
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Table 5 shows the significance analysis of the three diversity indices of plankton in the
two lakes in each survey month based on the independent-samples t-test. The H’ and J of
phytoplankton were significantly different in October. The J of phytoplankton in August
was significantly different. Zooplankton H’ was significantly different in April. J was
significantly different in April and December. d was significantly different from June to
October (Table 5).

Table 5. Independent-samples t-test of H’, J, and d in the survey months.

Index Month

Phytoplankton Zooplankton

Mean ± Std. Deviation
Sig.

Mean ± Std. Deviation
Sig.

Lake L Lake Q Lake L Lake Q

H′

Feb. 3.668 ± 0.486 3.172 ± 0.537 0.164 1.782 ± 0.644 1.986 ± 0.312 0.541
Apr. 2.504 ± 0.269 2.472 ± 0.56 0.912 2.432 ± 0.1 2.884 ± 0.237 0.004 *
Jun. 2.648 ± 0.343 2.476 ± 0.425 0.502 2.536 ± 0.547 2.344 ± 0.313 0.515
Aug. 3.934 ± 0.495 3.508 ± 0.507 0.216 3.194 ± 0.599 2.518 ± 0.559 0.102
Oct. 3.898 ± 0.148 4.218 ± 0.203 0.022 * 1.274 ± 0.36 1.36 ± 0.656 0.804
Dec. 2.722 ± 1.239 2.308 ± 0.461 0.515 1.306 ± 0.707 1.27 ± 0.49 0.928

J

Feb. 0.864 ± 0.047 0.75 ± 0.126 0.094 0.502 ± 0.153 0.548 ± 0.07 0.564
Apr. 0.81 ± 0.093 0.824 ± 0.061 0.786 0.716 ± 0.032 0.778 ± 0.036 0.021 *
Jun. 0.868 ± 0.029 0.824 ± 0.082 0.29 0.694 ± 0.117 0.664 ± 0.068 0.633
Aug. 0.858 ± 0.044 0.722 ± 0.055 0.003 * 0.732 ± 0.142 0.638 ± 0.135 0.316
Oct. 0.92 ± 0.014 0.894 ± 0.015 0.023 * 0.364 ± 0.099 0.606 ± 0.248 0.096
Dec. 0.69 ± 0.175 0.728 ± 0.018 0.654 0.43 ± 0.152 0.792 ± 0.279 0.035 *

d

Feb. 7.996 ± 2.301 7.77 ± 1.744 0.865 3.276 ± 0.975 3.834 ± 0.622 0.312
Apr. 3.698 ± 0.406 4.23 ± 1.54 0.492 3.602 ± 0.281 4.088 ± 0.744 0.209
Jun. 3.998 ± 0.856 4.2 ± 1.54 0.804 4.048 ± 0.687 3.168 ± 0.363 0.035 *
Aug. 9.516 ± 2.085 10.618 ± 2.299 0.45 6.562 ± 0.673 4.742 ± 0.83 0.005 *
Oct. 8.174 ± 1.044 10.222 ± 0.874 0.01 * 3.256 ± 0.633 1.862 ± 0.718 0.012 *
Dec. 6.37 ± 3.718 4.028 ± 1.601 0.232 2.592 ± 1.265 1.638 ± 0.434 0.149

Note: The asterisk (*) indicates that the associated significance level was <0.05.

Paired-samples Wilcoxon signed-rank tests to H’, J, and d between lakes were summa-
rized in Table 6. The results showed that most of the plankton diversity indices were not
significantly different between the two lakes, except that phytoplankton J and zooplankton
d were relatively higher in lake L (Table 6).

Table 6. Differences of H’, J, and d between the two lakes yearly.

Diversity Indices Z Value p Value
Mean Value

Lake L Lake Q

H’
Phytoplankton −1.399 >0.05 3.229 ± 0.8348 3.026 ± 0.8132
Zooplankton −0.257 >0.05 2.087 ± 0.8590 2.060 ± 0.7283

J Phytoplankton −1.982 <0.05 * 0.835 ± 0.1075 0.790 ± 0.0901
Zooplankton 1.72 >0.05 0.573 ± 0.1869 0.671 ± 0.1768

d
Phytoplankton 1.224 >0.05 6.625 ± 2.8928 6.845 ± 3.2532
Zooplankton −2.551 <0.05 * 3.889 ± 1.4899 3.222 ± 1.2978

Note: The asterisk (*) indicates that the associated significance level was <0.05.

3.2. Plankton Community Similarity between the Two Lakes

A similarity analysis of plankton density obtained in the principal coordinate analysis
(PCoA) and the experimental parameters showed that lake- and month-related differences
aligned along coordinate 2 in phytoplankton and zooplankton, explaining 16.62% and
16.12% of the total variation, respectively (Figure 5a,b). The two scatterplots generated by
PCoA analysis showed that the phytoplankton in Lake L clustered in one area in April
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and June, while they were more scattered in other months (Figure 5a). In contrast, the
phytoplankton in Lake Q were more scattered overall and did not exhibit similar clustering
patterns as those in Lake L in certain months (Figure 5a). For zooplankton, those in Lake
L clustered in one area in October, while they were relatively scattered in other months
(Figure 5b). The zooplankton in Lake Q were also relatively scattered, which contrasted
with the clustering pattern of those in Lake L in October (Figure 5b).
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Lake Q.

Plankton density differences between lakes were tested with the use of one-way
ANOSIM, and the significance was computed by permutation of group membership set
to 9999 replicates. The statistical testing led to its statistical confirmation at the level of
5% (Table 7). According to ANOSIM analysis, the differences between the plankton of the
two lakes in most months were significant or extremely significant, except for zooplankton
with p-values greater than 0.05 in February (Table 7). Specifically, the differences in phyto-
plankton between the two lakes were greater in December and October, while the greatest
difference in zooplankton was observed in April (Table 7). Additionally, it was noted that
the R value for zooplankton was relatively high when the R value for phytoplankton was
relatively low, suggesting some correlation or association between the two lakes.

Table 7. ANOSIM randomization test to confirm statistically significant differences between lakes of months.

Pairwise Comparisons
between Lakes of Months

Zooplankton Phytoplankton
R Value p Value R Value p Value

February 0.072 0.317 0.608 0.006
April 0.964 0.006 0.524 0.011
June 0.872 0.012 0.384 0.008

August 0.72 0.01 0.872 0.008
October 0.82 0.009 0.948 0.015

December 0.74 0.009 1 0.013
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3.3. Correlations among Phytoplankton, Zooplankton, and P. chinensis

The correlations among categories of phytoplankton and zooplankton are shown in
Figure 6. The proportion of significant correlations among categories of phytoplankton
and zooplankton was higher in Lake Q (32.1%) than in Lake L (10.7%). Furthermore, 17.9%
of the correlations among categories of phytoplankton and zooplankton were negatively
significant in Lake Q, and the corresponding proportion was 7.1% in Lake L. Additionally,
14.3% of the correlations among the categories of phytoplankton and zooplankton were
positively significant in Lake Q, and the corresponding proportion was 3.6% in Lake L.
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The categories of phytoplankton showed significant positive correlations only, and
the significant proportion in Lake Q (28.6%) was slightly lower than in Lake L (33.3%).
Moreover, the proportion of significant correlations among categories of zooplankton were
also lower in Lake Q (33.3%) than in Lake L (66.7%). Furthermore, 50.0% of the correlations
among categories of zooplankton were positively significant in Lake L, and the corre-
sponding proportion was 33.3% in Lake Q. Additionally, 16.7% of the correlations among
the categories of zooplankton were negatively significant in Lake L, while no negative
correlation was found in Lake Q. These results suggested that there were differences in the
correlation of plankton between the two lakes and that the introduction of fish might have
triggered changes in the correlation of plankton.

The correlations between P. chinensis body length and the densities of phytoplankton
categories were all not significant. In other words, it could not be confirmed that there
was any significant relationship between P. chinensis growth and phytoplankton density
(Figure 7). However, the results indicated that there was a significant positive correlation
between P. chinensis body length and the density of Cladocera, suggesting P. chinensis
grazing could be a factor affecting the zooplankton community in Lake L.



Water 2023, 15, 1854 13 of 16

Water 2023, 15, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 6. Density-based plankton correlations in the two lakes. The lower triangle represents the 
correlation of plankton in Lake Q, and the upper triangle represents the correlation of plankton in 
Lake L. The green area emphasized the correlation between phytoplankton and zooplankton. 

  
Figure 7. The correlations of zooplankton density with phytoplankton density and body length of 
P. chinensis. Significance: * p < 0.05. 

Figure 7. The correlations of zooplankton density with phytoplankton density and body length of P.
chinensis. Significance: * p < 0.05.

4. Discussion
4.1. Zooplankton Resources Not Limitting P. chinensis Revival in Lake L

Zooplanktivorous fish mainly feed on small zooplankton at the larvae and early
juvenile stage, such as Rotifera, Cyclopoida, and Bosmina, and then they gradually transition
to feeding on large zooplankton such as Cladocera [23]. Previous studies on the likely
effects of stocking planktivorous fish presented an overall ambiguous picture [24]. Some
researchers suggested that stocked planktivorous fish could help stabilize phytoplankton
density and diversity in shallow lakes by filtering phytoplankton, while others held the
complete opposite opinion that fish predation reduced zooplankton and boosted small-
sized algae, which would affect the plankton community stability of lakes [25–29]. This
study revealed that the zooplankton density and biomass were not less in Lake L (P.
chinensis stocked) than in Lake Q (P. chinensis free) in each month (Table 1, Figure 2). Based
on phytoplankton or zooplankton, the biodiversity of Lake L was slightly higher than
that of Lake Q (Figure 4), and there was no significant difference in the phytoplankton
biodiversity of Lake L and Lake Q in most months (Table 5). Hence, the zooplankton
resources were still abundant and the community structure was also stable after the P.
chinensis population collapse, and zooplankton resources should not be a limiting factor
of P. chinensis population recovery in Lake L. Overall, the outbreak of the P. chinensis
population either did not deplete the zooplankton in Lake L or the zooplankton have strong
resilience after being overgrazed.

Therefore, the zooplankton community should be investigated during the explosion
and collapse of the P. chinensis population to determine whether P. chinensis had a signifi-
cant effect on the zooplankton resources and to understand the relationship between the
dynamics of zooplankton resources and the population of P. chinensis.
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4.2. Influnces of Stocking P. chinensis on the Plankton Community

The phytoplankton and zooplankton communities are crucial components of fresh-
water ecosystems [30], playing essential roles in maintaining biological balance in aquatic
environments [31]. Several studies have demonstrated that planktivorous fish predation
caused a decrease in abundance of big Cladocera (e.g Daphnia) while favoring small Clado-
cera (e.g Bosmina and Chydorus), Copepoda, and Rotifera [32–34]. Short-term planktivorous
fish predation could result in the destruction of the resilience of zooplankton communi-
ties and hinder the recovery of phytoplankton controlled by zooplankton grazing [35].
Fish predation could also have indirect effects on phytoplankton communities through
trophic cascades [36–38] or nutrient recycling [39–41]. Specifically, Cladocera were the
most important planktonic herbivores in freshwater lakes and could consume as much
as 80–100% of the phytoplankton biomass. Higher predation risk, mostly from fish, was
the key factor for the dominance of particularly small-sized zooplankton. Fish had an
indirect effect on the lower trophic levels by reducing the overall zooplankton biomass and
grazing pressure on the phytoplankton community. Fish could increase nutrient loading to
phytoplankton in several ways, including through excreta and feces, increased nutrient
excretion by zooplankton, and fish mortality and decay of fish carcasses [35]. This implied
a positive or negative correlation between phytoplankton and zooplankton.

In this research, the correlation among phytoplankton and zooplankton was weaker in
Lake L than in Lake Q, which should be a result of top-down influences. P. chinensis mainly
preys on Copepoda and Cladocera [14,42]. The top-down effect was stronger than the
bottom-up effect in October and December, possibly due to the low temperature. In October
and December, the zooplankton composition and density were significantly different in
Lake L compared to Lake Q. The small zooplankton of Rotifera and Protozoa became
predominant in Lake L, while both Copepoda and Cladocera were not predominant. In
particular, the reduction in big zooplankton predominance caused the predominance of
protozoa to increase drastically from 0.16 in August to 0.86 in October. The top-down effect
also caused significant differences in phytoplankton resources, including composition,
density, biomass, and the three diversity indices, between the two lakes in October. How-
ever, these effects were not sustained over time, and the differences vanished in December.
As the large zooplankton decreased in dominance, the total dominance of Protozoa and
Rotifera suddenly increased in October and December, which was very different from
the dynamics in Lake Q (P. chinensis free). The higher declining rate of Cladocera density
and biomass from June to August was attributed to P. chinensis transitioning to feed on
Cladocera in June [42].

4.3. Sustainable Fishery Management

As we have previously discussed, the low population density of P. chinensis could not
be attributed to the insufficiency of zooplankton resources, and we need to identify critical
factors that could enhance the population and yield. It has been reported that the high
population density of P. chinensis led to delayed female maturation in the winter of 2016,
with limited availability of males for mating leading to inefficient natural reproduction [43].
The delay in female maturation could be attributed to the inadequacy of food resources.
However, the current research indicated that the zooplankton density could recover quickly
in Lake L. Therefore, to develop the population and recover the yield of P. chinensis in
Lake L, we need to focus on the bottleneck of P. chinensis reproduction and recruitment.
Although the effects of P. chinensis stocking on the ecological equilibrium of the plankton
community in Lake L were detected, long-term and successive investigations are necessary
to ensure sustainable resource use and maintain biological balance.

5. Conclusions

The results of this research provided evidence that the zooplankton resources in Lake L
were more resilient than expected despite being depleted by the stocking of P. chinensis. The
results suggested that P. chinensis could recover from low abundance based on the current
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zooplankton resources in the lake. However, the stocking of P. chinensis had some impact
on the biological balance in the lake, and therefore, long-term and successive investigations
are recommended to monitor the effects not only in Lake L but in all lakes stocked with P.
chinensis. In conclusion, the P. chinensis stock could recover in Lake L based on the current
zooplankton resources, but ongoing monitoring is necessary.
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