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Abstract: Under pressure from existing and emerging contaminants, lotic ecosystems are becoming
increasingly susceptible to ecological deterioration. Therefore, investigations of the impacts of
persistent organic pollutants (POPs) and heavy metals on riverine fish health, water quality, and
biotic integrity are critical. We examined the effects of 52 POPs and heavy metals on ecological health
and land use, based on the monitoring of fish assemblages and river water quality from 2007 to 2014.
Among the 52 chemical species, 35 were present in water and fish tissues, including eight heavy metals.
The concentrations of these POPs and heavy metals in 12 fish species are presented. Most POPs were
either undetected or present at negligible levels in fish tissues, although a few polycyclic aromatic
hydrocarbons (PAHs) and organochlorine pesticides (OCPs; dichlorodiphenyltrichloroethanes and
heptachlor epoxide) were detected above the screening values (SVs). Hg, As, and Cd were detected in
most water samples and fish species at concentrations above their SVs. Among the fish species in the
investigated trophic guild, heavy metal contents were in the order of Zn < Cr < Cu < Pb < Se, while
trophic levels were in the order of insectivorous < omnivorous < carnivorous. Agricultural cover
showed an association with endosulfan II (R2 = 0.50, r = 0.70), followed by alachlor (R2 = 0.43, r = 0.66).
For PAHs, all detected substances showed significant relationships with forest cover. Ecological
health assessment revealed that most river sites are in poor condition, indicating the direct impacts of
pollutants. In conclusion, of the 28 POPs detected, 16 PAHs and 3 OCPs (hexachlorobenzene, lindane,
and heptachlor epoxide) were of significant concern, such that action is needed to curb their inflow to
the riverine environment. The studied river basin is under substantial threat from harmful POPs that
endanger ecological health and fish biodiversity.

Keywords: heavy metals; pesticides; ecological health; POPs; river; land use; fish tissues

1. Introduction

Inland aquatic ecosystems are becoming increasingly vulnerable to various emerg-
ing pollutants with multifaceted anthropogenic impacts [1–3]. Conventional analyses of
healthy and sustainable freshwater systems are primarily based on physicochemical and
biotic integrity [4,5]. Traditional and simple methods of estimating physical and chemical
parameters have been replaced by more accurate techniques for investigating the type and
extent of disturbance events occurring in freshwater ecosystems over time [6,7]. Notably,
most pesticide residues in aquatic ecosystems go undetected due to their diffusion and
transient nature, with low concentrations below the detection limit (BDL). Nevertheless,
low concentrations of contaminants can still lead to physiological impairment, which is
subsequently detected at the population level [8–10]. Biological monitoring has emerged
as the most reliable technique, providing a snapshot of the transient impacts of various
contaminants present at both detectable and undetectable concentrations.

Ecological degradation has intensified in recent years due to massive increases in
economic activity, rapid expansion of urban populations, and the implementation of pro-
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gressive and intensive farming practices in riverine watersheds worldwide [11–14]. Envi-
ronmental contaminants include a variety of harmful substances that enter the environment
through anthropogenic and natural processes [15,16]. In general, these contaminants en-
compass heavy metals [17,18] and a variety of pesticides [19,20], which severely threaten the
entire ecosystem by hindering its sustainable functions, biological diversity, and ecological
health [21,22]. However, the relationship between environmental health assessment results
and the impacts of various pollutants remains elusive in most parts of the world. There-
fore, research studies targeting the relationships among ecological health, watershed-scale
factors, and the occurrence of hazardous contaminants from the perspective of land use are
essential for elucidating the harmful impacts of existing and emerging contaminants.

Ecological health assessment based on fish assemblages has recently become the most
common method for evaluating river health. This method comprehensively assesses the
functional relationships, species abundance, fish population density, and diverse functions
and structures of fish communities that are affected by ecological disturbances in aquatic
ecosystems [23,24]. Land-use patterns have multiple impacts, including heavy metal
pollution and agricultural intensification, which promote the accumulation of harmful
substances, such as pesticides, in riverine ecosystems [22,25–30]. Therefore, evaluation of
the major links among ecological health assessment, land-use patterns, and various contam-
inants is necessary to elucidate how fish assemblages are impacted by anthropogenic threats.

Despite sophisticated rules governing agricultural and industrial contaminants, sev-
eral field investigations have found associations of their incidence, persistence, and tox-
icological effects in ecosystems, such as rivers, with adverse ecological impacts [9,15,31].
Agricultural pollutant inputs have increased rapidly with the adoption of modern and
intensive farming practices in advanced countries [32]. Due to this shift, modern agricul-
tural activities have emerged as the leading cause of lentic and lotic system contamination
worldwide [9,32]. Excessive application of various chemicals used in crop and livestock
farming, including fertilizers, pesticides, herbicides, and hormones, contributes to the chem-
ical contamination of recipient aquatic ecosystems [33–35]. Such contamination becomes
a priority for treatment when immediate (acute) or delayed (chronic) toxic effects are ob-
served in aquatic biota [8,36]. Such environmental disturbances manifest as changes in the
number of individuals, biodiversity, and species composition in recipient ecosystems [37,38].
In addition, some contaminants, such as heavy metals, can be transported up the food
chain through bioaccumulation, reaching high levels in edible aquatic species, especially
fish, which can ultimately affect multiple non-target species, including humans [39,40].

South Korea is a highly industrialized country with an increasing tendency toward
modern and intensive farming practices. In this study, we investigate the status of phys-
iochemical water quality, and the relationships of agricultural, urban, and forest cover
with relevant water quality factors, including the concentrations of organochlorine pesti-
cides (OCPs), heavy metals, and polycyclic aromatic hydrocarbons (PAHs). Further, we
investigated the loads of eight metals (Cr, Cu, Zn, As, Se, Cd, Hg, and Pb) in fish species
categorized based on trophic and tolerance guilds. We also assessed chemical substances
including OCPs, organic phosphorus pesticides (OPPs), chlorophenoxy herbicides (CPHs),
endocrine-disrupting chemicals (EDCs), and PAHs in fish gill, gut, and muscle tissues.
Furthermore, this study includes a biological health assessment of the study region based
on the index of biotic integrity (IBI), as well as an evaluation of the empirical links among
various fish assemblages and water quality factors.

2. Materials and Methods
2.1. Study Area

We sampled 20 sampling sites along tributaries of the third longest river in South
Korea, the Geum River, over 7 years (2007–2014; Figure 1). The study and reference
streams were selected according to the distribution of 170 study stations of the national
fish biomonitoring network in the Geum River watershed. Three of the 20 sampling points
were designated as reference sites. The remaining 17 sampled streams are the main channel
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of the Geum River, Gap Stream, Noseong Stream, Nonsan Stream, Daegyo Stream, Musim
Stream, Miho Stream, Baekgok Stream, Bocheong Stream (2nd order), Bonghwang Stream,
Sook Stream, Sucheol Stream, Oicheon Stream, Yudeung Stream, Jo Stream, Juwon Stream,
and Chupungryeong Stream. The three reference stream sites are the Cho River (S07),
Yeongdong (S01), and Mujuinamdae (S03). Except where noted, all streams are between
4th and 6th order, based on the classification of Strahler [41].
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Figure 1. Map of the study area showing the sampling sites and boundaries of the watershed, i.e., the
Geum River Basin.

2.2. Land Use and Cover

A preliminary field survey was performed to assess the predominant land use and
cover types around the monitoring sites in the Geum River watershed. Factors that may
affect the aquatic environment were also investigated using a 1:50,000 scale map. Further,
land use and cover were classified as forest, agriculture, or urban depending on the ratios of
forest area, agricultural area, and residential and commercial areas obtained from satellite
images (1:20,000); data freely available from the United States Geological Survey website
were also analyzed. The relative ratios of these areas were calculated for the estimated
locations of each survey site. We used satellite images captured by the National Geographic
Information Institute (NGII) to confirm land cover types. Forest cover dominated the
upstream study sites, while agricultural areas were present in almost all study sites and
became dominant in downstream areas. Urban cover was less than 20%, except at site nine,
where it was 37% (Supplementary Figure S1).

2.3. Analysis of Water Chemistry

The monthly water chemistry dataset was procured from the Korean Water Environ-
ment Information System maintained by the Korean Ministry of Environment (MOE). The



Water 2023, 15, 1845 4 of 23

long-term water chemistry dataset covered the period from January 2007 to December
2014. Of 17 water quality parameters, we evaluated the 7 most crucial, including total phos-
phorous (TP, µg/L), total nitrogen (TN, mg/L), biological oxygen demand (BOD, mg/L),
chemical oxygen demand (COD, mg/L), total suspended solids (TSS, mg/L), electrical
conductivity (EC, mS/cm), and chlorophyll-a (CHL-a, µg/L). Water samples were collected
in standard sampling water bottles from a depth of 50 cm (with exposure to sunlight being
limited), followed by storage in an icebox. EC and CHL-a were assessed in the field using a
multiprobe instrument (YSI 6600 Sonde; YSI, Yellow Springs, OH, USA).

The Eaton and Franson [42] method was used to estimate the TSS, COD, and BOD. TN
was assessed chemically through the second derivative method following sample digestion
in a persulfate solution [42,43], while TP was estimated through the ascorbic acid method
following persulfate oxidation [42,44]. Based on standard procedures, nutrient-related
parameters (TN, TP) were examined in triplicate, while BOD, COD, and TSS were evaluated
in duplicate to ensure the reliability of the resulting data [45,46].

2.4. Assessment of Harmful Chemicals

We evaluated 52 harmful chemical substances, including 8 selected heavy metals of sig-
nificant concern, in the river water and fish tissues (twice per year from 2007–2014). As men-
tioned, the chemical substances included 8 heavy metals (As, Cd, Cu, Zn, Pb, Cr, Se, and Hg),
along with 6 OPPs (chlorpyrifos, diazinon, disulfoton, ethion, terbufos, and simazine), and
15 OCPs including chlordane (cis and trans), dichlorodiphenyltrichloroethane (DDT) com-
pounds (2,4′-DDD, 4,4′-DDD, 2,4′-DDE, 4,4′-DDE, 2,4′-DDT, 4,4′-DDT), dicofol, dieldrin, en-
dosulfan (I,II), endrin, heptachlor epoxide, hexachlorobenzene, lindane, mirex, toxaphene,
atrazine, alachlor, metolachlor, and carbofuran. In addition, 3 CPHs, including oxyfluorfen,
2,4-D, and MCPA (2-methyl-4-chlorophenoxyacetic acid), 17 PAHs, including acenaph-
thene, acenaphthylene, anthracene, bena(a)anthracene, benzo(a)pyrene, benzo(e)pyrene,
benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(j)fluoranthene, benzo(g,h,i)peryrene,
chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, ineno{1,2,3-cd}pyrene, phenan-
threne, and pyrene, 2 EDCs, bisphenol-A and nonylphenol and 1 polychlorinated biphenyl
(PCB), i.e., arochlor, were investigated. The United States Environmental Protection Agency
(USEPA; 1997) guidelines for assessing chemical contaminants were followed when esti-
mating the levels of these harmful chemical substances and heavy metals in water and fish
tissues. The concentrations of harmful chemicals were calculated based on values extracted
from the water samples collected at each sampling site rather than from organisms. The
latest instrumental methods were used for detection of these chemical substances, including
high-performance liquid chromatography tandem mass spectrometry, gas chromatography
tandem mass spectrometry, gas chromatography with an electron capture detector, and
inductively coupled plasma mass spectrometry. We used the method detection limit (MDL)
and limit of quantification (LOQ) to ensure the quality of the methods and instruments
employed for detection under laboratory conditions, followed by an assessment of the pre-
cision and accuracy of each evaluation. Detailed information on the conditions for the GC
analysis of organic phosphorous and organic chlorine pesticides, oxyfluorfen, and PAHs is
given in Supplementary Table S1. Conditions for PCB GC-ECD analysis and ICP/MS speci-
fications for metal analysis are provided in Supplementary Tables S2 and S3, respectively.

2.5. Fish Sampling and Allotment of Tolerance and Trophic Guilds

Fish data collection was conducted twice per year at all study sites during 2007–2014.
The first annual sampling event took place during the pre-monsoon (May–June) period,
while the second survey was conducted during the post-monsoon (September–October)
season. The sampling times and locations were selected due to their relatively steady
hydrological flow conditions to minimize sampling errors. Each fish sampling event was
50–60 min in duration and covered both upstream and downstream stretches of the sam-
pling site. Each type of microhabitat, including riffles, pools, and runs, was explored to
increase the fish sample size and to maximize the likelihood of capturing all fish species
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present. The fish sampling methods applied in this study include the wading method
(modified from the USEPA method by Barbour et al. [47] and the MOE-approved method de-
scribed by An and Kim [48]. Two fishing gear types, namely a cast net (mesh size 5 × 5 mm)
and kick net (mesh size 4 × 4 mm), were used, and a fyke net was utilized at sites with
greater depths in the main river channel. The fish species were identified using the Korean
fish species identification key in Kim and Park’s book (Freshwater Fish of Korea. Kyohak
Publishing, Seoul, Republic of Korea, 2002).

Furthermore, Nelson’s method was followed for scientific classification. Each individ-
ual fish was carefully observed for structural defects, such as deformities (D), erosions (E),
lesions (L), and tumors (T), collectively known as DELT, to assess the physical health of
each captured individual. Trophic and tolerance guilds provide valuable information about
feeding niches and the ability to tolerate harmful chemical substances in the riverine ecosys-
tem. Therefore, fish species were categorized on the basis of feeding type, i.e., omnivorous,
carnivorous, herbivorous, or insectivorous, and assigned to tolerance guilds comprised of
sensitive, tolerant, or intermediate species (Supplementary Table S4). The allotment of each
species to trophic and tolerance guilds was performed following the methods of Karr [49]
and An and Choi [21].

2.6. Multimetric Fish Model: Index of Biotic Integrity (IBI)

The interactions of fish assemblages, assessed based on habitat availability, number of
individuals, and species diversity, reflect the biological integrity of a riverine environment,
and can be examined using Karr’s IBI. For the IBI evaluation of the sampling locations
along the Geum River, we used a regionally developed and validated IBI [50]. The IBI
comprises eight distinct metrics based on predominant fish assemblages. Categorization is
based on three aspects, namely species richness and composition, trophic and tolerance
guilds, and fish abundance, and provides insight into physical health. Further details about
the IBI were provided by Atique et al. [51]. Scores of 5, 3, and 1 were assigned to each
metric using the maximum species richness line (MSRL) concept based on stream order and
fish abundance. The final scores were calculated by aggregating all scores for individual
metrics to quantify each riverine site’s overall biotic integrity. The final health status of the
study sites was ranked based on the final IBI score as excellent (36–40), good (28–34), fair
(20–26), poor (14–18), or very poor (8–13).

2.7. Statistical Analysis

The whole dataset was assessed for normality using the Kolmogorov–Smirnov nor-
mality test prior to log transformation for empirical modeling and other computations. All
illustrations were prepared using SigmaPlot (ver. 14.5; Systat Software Inc., Chicago, IL,
USA) and Microsoft Excel 2016 (Microsoft Corp., Redmond, WA, USA).

3. Results and Discussion
3.1. Presence of Harmful Chemical Substances in Fish Bodies

Of the 44 harmful chemical substances investigated, 28 were detected during this
study. One targeted PCB was absent from the study. Of the 28 chemicals detected,
16 PAH species and 3 OCPs (hexachlorobenzene, lindane, and heptachlor epoxide) were
of grave concern, such that future action is required to control their levels in the riverine
ecosystem. The toxic inorganic substances tested herein include an extensive list derived
via recently developed sophisticated detection methods. The flow of such harmful chem-
icals is generally unidirectional, and they persist after entering aquatic ecosystems [2].
However, the cycling of such toxic substances is relatively low in flowing waters compared
to stagnant water bodies, with the exception of metals that can settle and then become
resuspended on faster currents in downstream areas (thereby intensifying their impact
on fish and other aquatic organisms) [18,52]. Among the metals, highly toxic Hg was
associated with agricultural land cover, and Se showed relationships with both urban
and agrarian areas. Mercury can accumulate rapidly in the bodies of fish and undergo
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conversion to the more toxic substance methylmercury. Moreover, it is excreted very slowly,
making it problematic for both fish and their consumers. In contrast, Se is a typical example
of a nutritional paradox, as it can function as a toxin or nutrient at similar levels in various
fish species. Fish species show varying responses to heavy metal pollution, with salmonids
being more sensitive than cyprinids [53]. Pesticides are generally more likely to be fatal,
and are intrinsically biocidal and particularly important pollutants of flowing waters [54].

The presence of harmful chemicals in fish bodies is illustrated in Figure 2. These results
indicate that among the OCPs, mirex and dicofol were present only at site 11 in Zacco
platypus; however, their concentrations were below the level designated as harmful to fish.
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The screening value (SV) is used to determine whether a chemical substance is present
above the concentration designated as safe. Heptachlor epoxide was detected at seven
sites, with only one site exceeding the SV (0.54 µg/kg). Similarly, DDT was observed
at high levels in four distinct locations and three fish species, namely Carassius carassius,
Erythroculter erythropterus, and Micropterus salmoides. Similarly, among the tested OPPs,
all three chemicals were present at levels below the critical SV; therefore, they appear to
pose no serious threat to fish species (Supplementary Figure S2). Similarly, all tested PAHs
were abundant at nearly all study sites and were regularly detected at high levels in most
fish species (Figure 3). Furthermore, we investigated the presence of PAHs and BPA in the
three organs of selected fish species. The results indicated that fish guts bioaccumulated
the most harmful chemical substances, followed by fish muscles. In contrast, fish gills did
not possess substantial loads of these chemicals (Figure 4).
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represented by bisphenol-A (BPA) in various organs of selected fish collected in the Geum River (O:
omnivore, C: carnivore, I: insectivore).

The spatial distributions of OCPs and OPPs in the surface water samples are shown
in Supplementary Figure S4. The variations in EDCs and CPHs are shown in Supple-
mentary Figure S5. Spatial biomonitoring revealed the concentrations of PAHs in surface
water, which are presented in Supplementary Figure S6. The environmental impacts of
these harmful chemicals are many fold, including rapid induction of death; moreover,
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they are persistent due to low solubility in water, and high solubility in lipids and fatty
tissues (strong bioaccumulation), which can be extremely detrimental to the fish and their
environment [36,55].

3.2. Metal and Pollutant Loads in Various Fish Species and Vital Organs

In the fish species investigated during this study, we identified a link between the mode
of fish feeding (trophic guild) and tolerance to excessive levels of environmental pollutants
(tolerance guild) based on the levels of targeted metals observed in the vital organs of
selected fish species; the results are presented in Figure 5. The concentrations of harmful
substances (excluding metals) in 12 fish species, namely Micropterus salmoides, Carassius
auratus, Coreoperca herzi, Erythroculter erythropterus, Hemiculter eigenmanni, Odontobutis
platycephala, Odontobutis interrupta, Opsariichthys uncirostris amurensis, Pungtungia herzi,
Silurus asotus, Siniperca scherzeri and Zacco platypus, are presented. The trophic and tolerance
guild assessment results indicated that insectivorous fish (Pungtungia herzi), followed by
omnivorous fish (Zacco platypus), showed the highest levels of Zn in the gills, followed by
the guts and edible muscle tissues. Among the species in these trophic guilds, the sequence
of heavy metals was in the order of Zn < Cr < Cu < Pb < Se, while metal contents were in
the order of insectivorous < omnivorous < carnivorous among trophic levels.
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The tolerance guilds (tolerant < intermediate < sensitive) and fish organs (gills < guts
< muscles) showed similar sequences of metal concentrations. Strikingly, the order of heavy
metals was identical to the loads of metals, as was also observed for trophic guilds. After
Zn, the metal with the second highest level was Cr, followed by Cu and Pb, corroborating
the impact of agricultural activities in the riverine watershed. The spatial variations of
concentrations for the most significant metals in surface water (Cr, As, Se, and Hg) are
presented in Supplementary Figure S3. Hg, As, and Cd were detected at most study sites
and in most fish species with concentrations above their SVs (Figure 6). We also presented
the concentrations of these eight metals in the whole fish body of the omnivorous fish
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Zacco platypus, which was one of the most abundant fish species in this riverine watershed
(Figure 7, Supplementary Table S5).
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The presence of heavy metals in the environment and fish may have beneficial or harmful
effects, depending upon the form and concentration of metals and the type of organism [56].
Therefore, investigating the loads of metals in vital organs, and the relative levels among fish
species and vital tissues, including edible parts, is an important research topic.

The persistence of heavy metals is always controversial, and they can remain after sev-
eral decades due to sinking into the sediments before becoming available again after certain
processes occur in the flowing water body [18,57]. Bio-enrichment was observed here; the con-
centrations of heavy metals followed the order of insectivorous < omnivorous < carnivorous,
indicating stepwise transfer of heavy metals through the fish food chain of the riverine
ecosystem [58]. With increasing trophic levels of fish species, loads of heavy metals exhib-
ited a gradual increase that could have resulted from biogenic amplification [59].
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Heavy metals and other pollutants in freshwater ecosystems originate from natural
sources (e.g., soil erosion, rock weathering) and a variety of harmful anthropogenic activi-
ties, including the release of untreated industrial wastes, wastewater inflow mixed with
rainfall currents, mining, the usage of chemicals (pesticides and insecticides) in livestock
and crop farming, fossil fuel combustion, transportation, and atmospheric deposition [60].
Most of these pollutants are persistent and complex, and thus can be detected several
decades after their usage was banned (e.g., DDTs). Furthermore, investigation of their
loads and changes in fish and water is essential to understanding their health risks, stability,
origins, and bioaccumulative tendencies in aquatic organisms, especially fish [61].

Exceptionally high levels of Zn were observed, followed in magnitude by Cu; aquatic
organisms, including fish and crustaceans, are notably more sensitive to these metals than
humans [62]. Therefore, these metals may pose a large risk to fish species, and in-depth
investigations into Zn and Cu in this river system may be needed for the conservation of
endangered fish species. Furthermore, the results of this study suggest that investigations into
the links between Zn, Cu, and agricultural practices in this riverine watershed are warranted.

3.3. Relationships of Trophic and Tolerance Guilds with Water Quality

The abundance of a trophic guild is closely related to the levels of nutrients, organic
matter, and algal chlorophyll in the watershed (Figure 8). In this study, the highest abun-
dance of omnivores was found with 433 µgL−1 TP; on the other hand, the lowest abundance
of insectivores was observed with 433 µgL−1 TP. Notably, omnivore richness showed posi-
tive functional relationships with TP (R2 = 0.32, r = 0.56) and TN (R2 = 0.16, r = 0.40); thus,
omnivores were abundant in the watershed. Similar patterns were observed for omnivores
in relation to BOD (R2 = 0.33, r = 0.57), COD (R2 = 0.32, r = 0.57), and CHL-a (R2 = 0.23,
r = 0.48). Insectivores exhibited negative functional relationships with TP (R2 = 0.35,
r = −0.59), TN (R2 = 0.12, r = −0.34), BOD (R2 = 0.30, r =−0.55), COD (R2 = 0.27, r = −0.51),
and CHL-a (R2 = 0.15, r = −0.38) in this watershed.
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The tolerance guilds of the Geum River watershed are strongly influenced by nutrients
(TN and TP), organic matter (BOD and COD), and chlorophyll (Figure 9). As a result,
the abundance of sensitive species was low in the Geum River watershed, and they were
associated with minimum concentrations of TP, TN, BOD, COD, and CHL-a. However,
sensitive species respond strongly to increasing levels of nutrients, organic matter, and
eutrophication in the watershed. As a result, sensitive species exhibited negative functional
relationships with TP (R2 = 0.17, r = −0.41), TN (R2 = 0.18, r = −0.42), BOD (R2 = 0.24,
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r = −0.50), COD (R2 = 0.47, r = −0.69), and CHL-a (R2 = 0.27, r = −0.52). In contrast, the
abundance of tolerant species displayed positive linear functional relationships with TP
(R2 = 0.50, r = 0.70), TN (R2 = 0.25, r = 0.50), COD (R2 = 0.51, r = 0.72), BOD (R2 = 0.50,
r = 0.71), and CHL-a (R2 = 0.33, r = 0.57).
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biological oxygen demand, COD: chemical oxygen demand), and primary productivity (CHL-a:
chlorophyll-a) on tolerance guilds (n = 20).

Nutrients, organic matter, and algal chlorophyll can affect trophic and tolerance
guilds in aquatic systems, especially streams and rivers [63–65]. Previous research into the
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relationships of trophic and tolerance guilds with nutrients, organic matter, and CHL-a
has shown that the relative abundances of tolerant and omnivorous species are positively
related to water quality factors, but these relationships are negative for sensitive and
insectivorous species [63,66,67].

High proportions of tolerant and omnivorous species in streams or rivers indicate
that nutrient enrichment and organic pollution severely affect the water body, leading to
reduced abundance of sensitive and insectivorous species [68,69]. The present findings
strongly support previous ecological health assessment results in the stream [66,70]. Due
to the excessive loading of nutrients and organic matter from agricultural and urban
sources, algal growth in streams and rivers is high, posing a severe threat to sensitive and
insectivorous fish species [47,71]. Increasing CHL-a has a negative impact on sensitive and
insectivorous species in streams.

3.4. Assessment of Integrity Based on IBI

The Korean index of biotic integrity (IBIKR) model based on fish assemblages was
used to assess the ecological health of the Geum River watershed (Table 1). The average
IBI value in the watershed was 19.10, indicating that it was in poor condition. Among the
20 sites sampled, 15% were in good condition, 20% were in fair condition, 45% were in
poor condition, and 20% were in very poor condition. The upstream part of the watershed
was in good to fair condition but became degraded in the downstream direction due to
the higher abundances of tolerant and omnivorous fish species, as well as lower amounts
of sensitive and insectivorous species. The biological health of the watershed is closely
related to water quality parameters (Figure 10). IBI showed linearly decreasing trends with
increasing TP (R2 = 0.21, r = −0.46), TN (R2 = 0.16, r = −0.40), BOD (R2 = 0.26, r = −0.51),
COD (R2 = 0.41, r = −0.64), and CHL-a (R2 = 0.31, r = −0.56) concentrations. This result
indicates that water quality parameters affect the biological health of this river.

Table 1. Site-based biological health assessment (BHA) based on the Korean multimetric index of
biotic integrity (IBIKR) using fish assemblages.

Sampling
Site

Species Richness and Tolerance Trophic Composition Fish Abundance and
Health

M1: Total
Number of
Native Fish

Species

M2:
Number of

Riffle
Benthic
Species

M3:
Number of
Sensitive
Species

M4:
Proportion of
Individuals

Belonging to
Tolerant
Species

M5:
Proportion of
Individuals

Belonging to
Omnivorous

Species

M6:
Proportion of
Individuals

Belonging to
Native

Insectivorous
Species

M7: Total
Number of
Native In-
dividuals

M8:
Percent of
Individu-
als with

Anomalies

Overall IBI
Score (Health

Status)

S1 12(3) 3(3) 5(3) 14.8(3) 19.07(5) 69.02(5) 63(1) 0(5) 28 (good)
S2 10(3) 2(1) 3(1) 9.17(3) 45.14(1) 48.63(5) 237(3) 0(5) 22 (fair)
S3 15(5) 4(3) 7(5) 18.79(3) 39.19(3) 57.95(5) 84(1) 0(5) 30 (good)
S4 14(3) 1(1) 3(1) 29.76(1) 42.06(3) 34.13(3) 76(1) 0(5) 18 (poor)
S5 14(3) 3(3) 4(3) 26.80(1) 32.15(3) 58.33(5) 62(1) 0(5) 24 (fair)
S6 11(3) 0(1) 5(3) 26.36(1) 70.97(1) 27.63(3) 51(1) 0(5) 18 (poor)
S7 15(5) 3(3) 4(3) 9.64(3) 10.75(5) 73.98(5) 102(3) 0(5) 32 (good)
S8 13(3) 1(1) 1(1) 32.34(1) 21.47(3) 69.84(5) 57(1) 0.05(3) 18 (poor)
S9 10(3) 1(1) 1(1) 44.33(1) 53.22(1) 45.00(3) 45(1) 0(5) 16 (poor)
S10 5(1) 1(1) 1(1) 44.82(1) 44.99(3) 54.32(5) 47(1) 0(5) 18 (poor)
S11 5(1) 1(1) 1(1) 66.28(1) 44.82(3) 48.11(5) 45(1) 0(5) 18 (poor)
S12 10(3) 2(1) 0(1) 47.61(1) 69.47(1) 21.44(3) 37(1) 0(5) 16 (poor)
S13 10(3) 0(1) 0(1) 86.05(1) 67.27(1) 4.65(1) 130(1) 0.03(3) 12 (very poor)
S14 8(3) 1(1) 0(1) 41.96(1) 54.46(1) 45.54(5) 44(1) 0(5) 18 (poor)
S15 7(3) 1(1) 4(3) 22.96(1) 22.96(3) 56.91(5) 67(1) 0(5) 22 (Fair)
S16 15(3) 2(1) 2(1) 48.71(1) 59.03(1) 30.97(3) 167(3) 0.001(3) 16 (poor)
S17 9(3) 0(1) 0(1) 100.00(1) 100.00(1) 0.00(1) 46(1) 0.001(3) 12 (very poor)
S18 5(1) 0(1) 0(1) 98.61(1) 87.13(1) 1.39(1) 44(1) 0(5) 12 (very poor)
S19 5(1) 2(1) 0(1) 77.98(1) 66.44(1) 19.64(1) 17(1) 0(5) 12 (very poor)
S20 7(3) 2(1) 3(1) 17.95(3) 35.63(3) 63.47(5) 85(1) 0(5) 20 (fair)
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Figure 10. Effects of nutrients (TP: total phosphorus, TN: total nitrogen), organic matter (BOD:
biological oxygen demand, COD: chemical oxygen demand), and primary productivity (CHL-a:
chlorophyll-a) on the ecological health of the Geum River Basin (n = 20).

The IBI is flexible in its application and can be modified according to the species and
size of the target water body. The IBI reflects the overall health status of an ecosystem
based on standard values and cumulative scores. Ecological health assessment of rivers
and streams using fish as a bioindicator species is a widely accepted method of estimating
the impacts of various disturbances in aquatic ecosystems. As this investigation included
the assessment of 52 harmful chemicals, including 8 heavy metals, in fish and water,
determining the ecological health status of the study sites was essential. Previous research
suggested that the abundances of native, riffle benthic, and sensitive fish species decreased
with increasing levels of nutrients, organic matter, and non-algal turbidity [48,63]. The
USEPA [65] reported higher abundances of omnivores, tolerant species, and carnivores
in degraded systems. This accords with the poorer ecological health status seen at sites
where harmful pollutants and metals are present at high concentrations, which may lead to
the displacement of fish species due to unfavorable conditions for feeding and breeding in
their natural ranges.
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3.5. River Water Quality and Nutrients

We evaluated water quality at the river sites based on nutrients (TN, TP), organic
matter (BOD, COD), volatile solids and ionic content (TSS, EC), and algal CHL-a productiv-
ity; the results are presented in Figure 11. Based on nutrients and CHL-a, heterogeneous
sites showed tendencies toward nutrient enrichment. TP showed its highest concentration
(433 µg/L) at S18, which is located near the estuarine area and is highly eutrophic, while
the lowest TP values were observed at S1 (7 µg/L) near the Yeongdam dam, which exhibits
ultra-oligotrophic conditions. In contrast, the same site (S18) showed an oligo-mesotrophic
algal CHL-a level based on similar criteria. All except one of the river sites sampled showed
mesotrophic to meso-eutrophic phosphorus loads.
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Figure 11. Variations in selected water quality parameters and classification of study sites along the
Geum River based on individual parameters and nutrient enrichment status.

The general loads of TN indicated eutrophic conditions that steadily increased from up-
stream to downstream sites. For algal CHL-a, we observed a consistent increase after every
two sites between Sites 11 and 17, with a steep decline observed near the estuarine area. Ac-
cording to the tested organic matter indicators (BOD, COD), most study sites had “average”
water quality based on the criteria of the Korean Ministry of Environment. Most of the study
sites showed ”good” water quality based on BOD, and ”average” quality based on COD.

Heterogeneous variations among the study sites were observed for TSS and EC. As
most of the study sites are impacted by varying degrees of agricultural activities, as deter-
mined based on the predominance of agricultural land cover, the water quality status of
downstream sites determined from TP, TN, and CHL-a reflected a tendency toward eutroph-
ication. In addition, such high levels of nutrient enrichment indicate the increasing use of
pesticides and other agricultural chemicals, worsening riverine water quality. Furthermore,
the application of large amounts of mineral fertilizers for intensive crop production and
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municipal waste inputs is detrimental to river water quality [33,72,73]. Nutrient levels
are relatively low in the upstream stretches of rivers, and increase continuously after the
rivers pass through intensive crop and animal production zones, industrial areas, and
urban settings [38,51,74].

3.6. Impact of Land Use Patterns on Riverine Water Quality

We performed linear regression analysis on three land-use types (agricultural, urban,
and forest) and the most significant river water quality indicators (TP, TN, BOD, COD,
TSS, and EC) in the Geum River, as presented in Figure 12. The maximum impact of land
use was observed, with urban cover (%) as a contributing factor, which led to decreased
river water quality, followed by agricultural zones. Forest cover, in contrast, showed
negative associations, indicating a positive effect on river water quality. TP showed a
weak positive relationship (R2 = 0.33, r = 0.57) with agricultural land use. In contrast, a
negative association was observed between TP and forest cover (R2 = 0.38, r = −0.61).
Agricultural cover (%) exhibited strong positive relationships (R2 = 0.51, r = 0.71) with TSS
and COD (R2 = 0.40, r = 0.63), while the strongest links with urban cover were observed for
TN (R2 = 0.64, r = 0.80), EC (R2 = 0.56, r = 0.74), and COD (R2 = 0.51, r = 0.71). In contrast,
we observed moderate to strong negative impacts of forest cover on COD (R2 = 0.63,
r = −0.80) and TS (R2 = 0.54, r = −0.73) and a similar negative relationship between BOD
and EC (R2 = 0.45, r = −0.67).

Significant landscape changes, land surface cover, and land use patterns critically influ-
ence the hydrological regime and pollutant cycling of the recipient freshwater ecosystem [75].
Therefore, understanding water quality degradation factors and nonpoint sources (NPS),
as well as the allocation of pollutant sources, is essential for the effective implementation of
water resource management practices. Changes in landscape composition and land cover
result in strong fluctuations in NPS loadings, which affect the nutrient regime, surface
erosion, and sedimentation [76].

Runoff currents from urban and agricultural landscapes transport large amounts of
nutrient pollutants, dissolved organic matter, and sediments, which may degrade down-
stream riverine water quality [77,78]. Therefore, unhealthy environments with major
changes in land use and cover lead to water quality degradation, which is clearly evident
in this study. Thus, the type, size, quantity, and land cover distribution of a riverine water-
shed are essential determinants of the ecosystem’s habitat availability, ecological features,
and species [79].

3.7. Empirical Links between Land Use and Riverine Pollutants

The observed empirical link between land cover and hazardous chemical substances
(OCPs, metals, and PAHs) illustrated the dominant role of agricultural activities in the
riverine watershed (Figure 13). For OCPs, agricultural land cover showed the strongest
link with endosulfan II (R2 = 0.50, r = 0.70), followed by alachlor (R2 = 0.43, r = 0.66), and
metolachlor (R2 = 0.33, r = 0.57). With the exception of endosulfan I (R2 = 0.30, r = 0.54), all
pesticides displayed relationships with agricultural land cover, suggesting their utilization
in agricultural activities. Other types of pesticides showed no significant links with land
use in the riverine watershed. However, most metals showed very weak relationships
(R2 < 0.30) with all types of land cover; the exception was Se, which showed a weak
relationship with urban cover (R2 = 0.32, r = 0.57). In contrast, for PAHs, all measured
substances showed significant relationships with forest cover.

For example, fluorene showed the strongest association with forest cover (R2 = 0.40,
r = 0.62), followed by fluoranthene (R2 = 0.29, r = 0.54). One of the most important
findings of this study is that agricultural cover is a major contributor of hazardous chemical
substances to riverine ecosystems that endanger threatened fish species.
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Persistent organic pollutants (POPs) are widely used in agricultural and industrial
activities and eventually reach rivers and streams. POPs are of global concern and may
be produced intentionally or unintentionally. These hazardous chemicals can accumulate
in the tissues of aquatic organisms (particularly fish) and various compartments of the
biosphere. Moreover, they actively resist biochemical and photochemical breakdown,
and may be transported long distances [80,81]. POPs have become pollutants of great
concern due to their strong bioaccumulation tendencies, high toxicity, and exposure risks
for humans and other organisms. These harmful chemicals are readily detected in the
aquatic environments of countries that have undergone rapid industrial growth and have
adopted modern high-yield agriculture technologies [81].

The major sources of POPs and heavy metals for surface waters, especially rivers
and streams, include direct releases of waste and wastewater treatment plant effluent,
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agricultural runoff from adjacent farmlands subjected to modern agricultural practices,
atmospheric deposition, and leaching of pollutants in snowmelt [82]. Intensive rainfall
events during the monsoon season play a critical role in the inflow of pollutants from
surface soils and riverine watersheds, providing direct inputs of harmful pollutants to
rivers and streams [48,51]. Furthermore, the hydrological features of riverine watersheds,
including seasonal modifications of water flow, water residence time, and the disruption of
rivers through the construction of dams and weirs, can greatly impact the spatiotemporal
patterns of POPs and other pollutants in riverine sediments and water [83].

3.8. Recommendations

This study suggests that the Geum River watershed has faced significant environ-
mental challenges due to various anthropogenic activities, including agricultural practices,
urbanization, and industrialization. To mitigate the environmental impacts of these ac-
tivities, there is a need to implement effective measures that focus on prevention and
remediation. Prevention measures could include stricter regulations and enforcement,
public education, and promoting sustainable agricultural practices. Remediation measures
could involve the use of innovative technologies, such as phytoremediation, bioremediation,
and electrokinetic remediation, to reduce the levels of pollutants in water. Furthermore, de-
veloping green infrastructures, such as wetlands and buffer zones, can enhance the natural
capacity of the watershed to absorb and filter pollutants. Life cycle impact assessment [84]
and machine learning tools [85] can also help control aquatic systems’ heavy metals and
organic pollutants. Finally, collaborative efforts between various stakeholders, including
government agencies, industries, and communities, are essential to achieving sustainable
management of the Geum River watershed. In addition, the information obtained from
this study could be helpful for environmental agencies in monitoring aquatic systems for
managing human health practices and evaluating legacy environmental insurance claims.
This study also recommends a continuous bio-monitoring program for organic pollutants
and heavy metals in Korean freshwater systems, especially in the Geum River watershed.

4. Conclusions

The present study investigated water chemistry factors, their impacts on river water
quality, links between land use and water quality, harmful chemical substances, and heavy
metals. The results revealed that 35 toxic chemicals were present, including all investigated
heavy metals, in both the water samples and fish tissues. The study sites displayed spatial
heterogeneity in water quality factors, nutrient enrichment, and the persistence of harmful
chemical substances. Agricultural land cover was the main determinant of river water
quality and hazardous chemical substances (OCPs, metals, and PAHs), followed by urban
cover. Most chemical substances were either not detected or present in negligible amounts,
with the exception of a few PAHs and OCPs (DDTs and heptachlor epoxide) detected above
the designated SVs. Similarly, Hg, As, and Cd were detected in most study sites and fish
species at concentrations exceeding their SVs. In the trophic guild species, heavy metal
contents were in the order of Zn < Cr < Cu < Pb < Se, while trophic levels were in the order
of insectivorous < omnivorous < carnivorous. The fish organs showed a consistent sequence
of metal levels, i.e., gills < guts < muscles. Overall, river health based on the IBI was poor
due to the impacts of increasing levels of toxic pollutants and chemical substances.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15101845/s1, Figure S1: Variations in land use pattern in different
sites of the Geum River during the study period; Figure S2. Organic phosphorus pesticides (OPPs) at
different sites in different fish species (SV: screen value); Figure S3: Variations in metal concentration
of surface water in different sites of the Geum River; Figure S4: Variations in organochlorine and
organic phosphorus pesticides of surface water in different sites of the Geum River; Figure S5:
Variations in endocrine disrupting chemicals and chlorine phenoxy herbicides of surface water in
different sites of the Geum River; Figure S6: Variations in polycyclic aromatic hydrocarbons of
surface water in different sites of the Geum River; Table S1: Conditions for the GC analysis of organic
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phosphorous and organic chlorine pesticides, oxyfluorfen, and PAHs; Table S2: Conditions for PCB
GC-ECD analysis; Table S3: ICP/MS specifications for metal analysis; Table S4: Fish species name
with tolerance and trophic guilds (TS: tolerant species, IS: intermediate species, SS: sensitive species,
O: omnivores, I: insectivores, C: carnivores, and H: herbivores); Table S5: Metal Concentration at
different sites of Zacco platypus. (Cr: Chromium, Cu: Copper, Zn: Zinc, As: Arsenic, Se: Selenium, Cd:
Cadmium, Hg: Mercury, Pb: Lead).
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