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Abstract: Different types of subsidence lakes formed by underground coal mining are severely pol-
luted by mine-production wastewater, domestic sewage, and agricultural irrigation water. Microbial
communities perform a crucial role in biogeochemical cycling processes and responses to natural and
anthropogenic disturbances in lake waters. Therefore, it is important to investigate the characteristics
of microbial community diversity in subsidence lakes for the utilization of water resources in mining
areas. In this study, we collected water samples from open and closed subsidence lakes and explored
the bacterial communities based on Illumina amplicon high-throughput sequencing. Results showed
that bacterial diversity and community and functional composition in open and closed lakes differed
greatly, and the bacterial diversity in open lakes was significantly higher than that in closed lakes
(p < 0.001). Canonical correspondence analysis found that pH explained 31.73% and 39.98% of the
variation in the bacterial community and functional composition in closed lakes, while NH4

+ and
COD accounted for 29.73% and 26.02% of the changes in the community and functional composition
in open lakes, respectively. Modified stochasticity ratios based on null-model analysis demonstrated
that stochastic processes were the main factor affecting bacterial community assembly in both closed
(MST = 0.58) and open lakes (MST = 0.63). In the closed-lake network, hgcI_clade was inferred to be a
keystone species, while Lactococcus, Acinetobacter, Psychrobacter, and Chryseobacterium were detected as
keystone species in the open-lake network. By way of discussion, we provide evidence regarding the
bacterial community diversity, structure, co-occurrence patterns, and assembly processes in closed
and open subsidence lakes. This study contributes to providing a reference for the utilization of
subsidence water resources.

Keywords: subsidence lakes; aquatic bacterial community; community diversity; assembly process;
co-occurrence pattern

1. Introduction

As a primary resource in China’s economy, the exploitation and utilization of coal on a
large scale have brought enormous economic and social benefits and provided a fundamen-
tal guarantee for the development of the economy [1,2]. However, reliance on coal resources
has created a number of environmental problems [3]. For example, long-term large-scale
coal mining causes land subsidence, ground fissures, landslides, and soil erosion [4,5].
It is estimated that every 1000 tons of coal mined in China results in about 0.002–0.0033
km2 of land subsidence and increases the subsidence area by about 700 km2 each year [6].
Under the action of high phreatic water levels and atmospheric rainfall, different areas of
ponding have been formed in coal-mining subsidence areas [7]. Coal-mining subsidence
soil evolves into aquatic sediment in which heavy metals, nutrients, and microorganisms
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in the soil will be released into the aquatic environment and become potential pollution
sources [8]. At the same time, the area of some subsidence lakes influenced by human
and mining activities has further increased. If these areas gradually connect with adjacent
rivers, different types of subsidence lakes will form, such as open and closed lakes [9]. With
the comprehensive promotion of geological environment management in mining areas, the
subsidence lakes have been developed and utilized as different types of water bodies such
as fish ponds, wetland parks, and plain reservoirs [10], and these water bodies play an
important role in maintaining the ecological balance of mining areas and promoting local
economic development [11]. Therefore, investigating the nutrient status and biodiversity
characteristics of water bodies in coal-mining subsidence areas is important for the rational
development, as well as use of water resources in mining areas.

In aquatic ecosystems, microbial communities participate in various ecosystem func-
tions and services, including organic degradation, nutrient cycling, and regulation of
greenhouse-gas emissions [12,13]. The structure and function of water-body microbial
communities can respond rapidly to natural and anthropogenic disturbances. For exam-
ple, microbial communities can have important broad environmental impacts by regulat-
ing the accumulation and transformation of organic matter and influencing water-body
greenhouse-gas emissions and carbon and nutrient cycling [14]. Given the importance
of microbial communities in water bodies to ecosystem functions and services, it is im-
portant to determine the patterns of microbial community response to changes in the
water environment of mining area caused by mining activities. To date, many researches
have focused on the influence of natural and human factors on microbial communities in
eutrophic lakes [15,16], rivers [17,18], and oceans [19,20] and have observed changes in
community composition and assembly processes. These studies have shown that microbial
communities in water bodies under the influence of various environmental and anthro-
pogenic factors have significant spatial and temporal heterogeneity and that community
co-occurrence patterns and assembly processes are influenced by various environmental
parameters, such as pH, dissolved oxygen, and salinity [21,22]. Previous studies have
investigated the spatial and temporal succession characteristics of microbial community
structure and co-occurrence patterns in open subsidence lakes [23,24], and microbial com-
munity diversity and stability has been found to be higher in summer than in winter
in open subsidence lakes. Is the microbial community succession in closed subsidence
lakes which do not exchange with external natural water bodies consistent with that in
open lakes? The differences in microbial community structure and co-occurrence patterns
between open and closed subsidence lakes under the influence of strong human activities
have not been investigated.

Water microorganisms in natural ecosystems do not exist as isolated individuals but
in complex interaction systems, which determine the composition of microbial communi-
ties [25]. These interactions and the resulting co-existence patterns of different microor-
ganisms can be examined by ecological network analysis [26,27]. Although co-occurrence
network analysis may not always represent real biological interactions, it can help com-
prehend the complexity of the microbiome. How does this complexity vary in response to
environmental factors and how do microbial interactions affect ecosystem functions? [28,29].
In recent years, co-occurrence network analysis has been widely used to study the inter-
actions of microbes in lakes [30,31], rivers [32,33], farmland [26,34], and other habitats, as
well as their relationships with the environment. For example, a study found that microbial
co-occurrence networks in eutrophic lakes undergo significant seasonal changes [35]. In
addition, key taxa are species that perform a key role in the community. Regardless of
their spatial and temporal abundance, they have a significant impact on the structure
and function of the microbiome either alone or in a guild [36]. Research has shown that
the extinction of key taxa might have a negative impact on the stability of the microbial
community and cause great changes in the composition and function of the community [37].
Therefore, to better understand the structure and function of ecosystems, it is important to
determine the co-occurrence patterns of microbial communities and the key groups in the
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communities. However, the co-occurrence relationship of microbial communities between
different types of subsidence lakes (open and closed) and the differences in key groups of
microbial communities have not been studied in depth.

To address these knowledge gaps, we selected coal-mining subsidence lakes in Huainan
as a model ecosystem (closed lakes vs. open lakes) and analysed the microbial community
structure, diversity, co-occurrence patterns, and assembly processes based on 16S rRNA
sequencing, network analysis, and null modelling. The purpose of this study was twofold.
First, this study was designed to determine the overall differences in microbial community
structure, diversity, co-occurrence relationships, and assembly mechanisms between open
and closed subsidence lakes in Huainan, China. Secondly, the study was designed to
investigate the environmental factors driving the variations in the species and functional
composition of microbial communities. The results of this research provided basic data
and a theoretical foundation for the management and utilization of water resources in
coal-mining subsidence areas.

2. Materials and Methods
2.1. Study Area and Sample Collection

The subsidence lakes were located in Huainan, Anhui Province, China (Figure 1).
The open subsidence lakes (116◦45′38′′–116◦55′7′′ E and 32◦44′48′′–32◦49′54′′ N) were
located in the subsidence water area of the Nihe River. The closed subsidence lakes
(116◦33′49.35′′–116◦56′3.65′′ E and 32◦32′47.99′′–N32◦49′58.02′′ N) were located in the sub-
sidence waters of Panji, Guqiao, and Xiejiaji. The open subsidence lakes were connected
with the adjacent Nihe River and greatly affected by river-flow dynamics. The open subsi-
dence lakes covered an area of 4.9 km2. The mine corresponding to the open subsidence
lake was closed and stopped mining in 2015. Therefore, the mining process had no effect
on the microbial community of the water body at the time of sampling in this study. Micro-
bial communities are mainly affected by anthropogenic activities such as seine farming,
agricultural irrigation, and photovoltaic power generation [23].

The closed subsidence lakes did not exchange water with other water bodies, and
these lakes were mainly fed by rainfall, surface runoff, and groundwater. The areas of the
closed subsidence lakes were 3.2 km2, 10.71 km2, and 4.5 km2 [38]. The mine corresponding
to the closed subsidence lake was closed and stopped mining in 2018. Therefore, the
mining process also had no impact on the microbial community of the water body. The
microbial community was mainly influenced by anthropogenic activities (agricultural
irrigation) and the heavy metal content in the open and closed subsidence lakes was low
after environmental treatment. For example, some studies have analyzed the content of
heavy metals such as Cd, Cr, Pb, Ni, and Zn in the subsidence lakes and found that heavy
metal content was lower than the class III standard of China’s Environmental Quality
Standards for Surface Water (GB3838-2002), and there was no heavy metal pollution [39,40].

To compare the differences of bacterial communities in the closed and open subsidence
lakes, 10 sampling points were arranged in the open lakes, and 18 sampling points were
arranged in the closed lakes. In the open subsidence lake, 5 sampling points were arranged
based on the lake area. In order to explore the impact of adjacent rivers on the microbial
community of the subsidence lakes, 5 sampling points were arranged in the rivers. In
the closed subsidence lake, 6 sampling points were arranged in each lake based on the
lake area. Due to the large number of closed lakes in the study area, three typical closed
lakes (Panji, Guqiao, and Xiejiaji) were selected to compare whether there were differences
between different lakes.

Water samples were collected in May 2021. 5 L water samples of lake surface (0.5 m
from the surface) were obtained and stored in pre-rinsed sterile plastic bottles at 4 ◦C
and then taken to the laboratory within 12 h. In the laboratory, a portion of the water
samples was filtered through 0.22 µm pore pre-washed polycarbonate filters. The filters
were stored at −80 ◦C for the next step of DNA extraction. The other part of the samples
was immediately tested for the physical and chemical parameters of the water body.
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Figure 1. The sampling sites in the closed and open subsidence lakes. (A) Sampling points for closed
subsidence lakes. (B) Sampling points for open subsidence lakes. (B) is an enlarged view of the river
indicated by the arrow in (A).

2.2. Physicochemical Analysis

At each sampling point, pH, temperature (T), dissolved oxygen (DO), oxidation-
reduction potential (ORP), and electrical conductivity (EC) were measured using a multipa-
rameter water quality sonde (YSI 6600 V2; Yellow Springs, OH, USA). Based on standard
methods, total nitrogen (TN), total phosphorus (TP), nitrite (NO2

−-N), ammonia nitrogen
(NH4

+-N), chemical oxygen demand (COD), chlorophyll-a (Chl-a), nitrate (NO3
−-N), and

biochemical oxygen demand (BOD) were measured [41].

2.3. DNA Extraction, PCR Amplification, and Sequence Analyses

Using a Fast DNA Spin Kit for Soil (MP Biomedical, Irvine, CA, USA) to extract the
total DNA of the bacterial community, based on manufacturer’s protocols, the V3–V4
regions genes of bacterial community 16S rRNA were amplified using the universal primer
pair of 338F/806R. The detailed procedure of PCR amplification is described in the study of
Zhang et al. [42]. PCR products were pool-purified with equimolar solution and then sent
to Personal Biotechnology Co., Ltd., (Shanghai, China) for sequencing on the MiSeq PE300
platform (Illumina, San Diego, CA, USA) and generation of paired-end reads (2 × 300 bp).

Based on the previous study, bioinformatic analysis, including quality control; merging
of paired sequences; removal of chimeric sequences; and clustering of amplicon sequence
variant (ASV) was conducted [43]. The ASVs from chloroplasts and mitochondria were
excluded from downstream analysis.

2.4. Statistical Analyses

Chao1, Shannon, and phylogenetic diversity indices for each sample were calculated
using normalized sequencing depth and the package “vegan”. Principal coordinate analy-
sis (PCoA) was used to calculate the beta-diversity of bacterial community based on the
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Bray–Curtis distance. A comparison of microbial communities in different sampling types
was performed by an adonis() function in the vegan package. Canonical correspondence
analysis (CCA) was used to explore the relationships of bacterial community composi-
tion, functional composition, and significant environmental variables because detrended
correspondence analysis (DCA) showed the length of the first axis > 4 [44]. To avoid
collinearity among significant factors, we calculated the variance inflation factors (VIFs),
and removed factors with a VIF > 10. Finally, a mantel test with 999 permutations was
performed to remove factors with insignificant (p > 0.05) effects, and the contribution of
different physicochemical parameters was assessed using the “rdacca.hp” package [45].
Functional annotation of the bacterial community was performed by using the package of
FAPROTAX [46]. The difference in community diversity, community composition, func-
tional composition, and physicochemical parameters between the closed and open lakes
was determined by using the software of STAMP v2.1.3 [47]. The Kruskal–Wallis test was
used to explore the differences in community diversity, community composition, functional
composition, and physicochemical parameters between different closed subsidence lakes.
The relationships of geographic distance, physicochemical parameters, and community
similarity were calculated based on the mantel permutation test using “vegan” and “linkET”
packages [48].

Modified stochasticity ratio (MST) based on the null model was calculated to explore
the bacterial community assembly process. Bacterial community structure was influenced
by stochastic process if MST > 0.5, while bacterial community structure was influenced
by deterministic process if MST < 0.5. The value of MST was calculated based on Jaccard
similarity metrics and MST package in R [49].

To compare the difference in bacterial community co-occurrence patterns, networks
analyses was performed in R based on the “psych” package. Before calculating Spearman’s
correlation, the relative abundance of ASVs > 0.05% was selected to simplify the set. When
constructing networks, p-values (adjusted) < 0.01 and correlation coefficient |r| > 0.8 was
selected. The “igraph” package was used to calculate topological properties and random
networks in R [50]. The greedy modularity optimization method was used for the modular
division of ecological networks [22] and the software of Gephi was used to visualize
networks. The nodes of the network were classified into connectors, peripheral nodes,
module hubs, and network hubs based on the method of within-module connectivity (Zi)
and among-module connectivity (Pi) [51]. The network and module hubs and connectors
are generally proposed as keystone module members [52].

3. Results
3.1. Alpha and Beta Diversity of Bacterial Communities

A total of 45,360 ASVs were detected from 2,106,424 high-quality sequences of 28 water
samples. Rarefaction curves approached an asymptote after 43,000 reads, and the good’s
coverage for individual samples ranged from 97 to 99%, indicating that the sequencing
depth was sufficient and recovered most of the local species (Figure S1; Table S1). Alpha
diversity analysis suggested that the Chao 1, Shannon, and phylogenetic diversity indices
in the open lakes (3609 ± 303, 5.1 ± 0.08, and 132.1 ± 6.8, respectively), were higher than
those in the closed lakes (1234 ± 388, 2.8 ± 0.9, and 101 ± 19.2) (Figure 2a; Wilcoxon test,
p < 0.001).

The PCoA was performed to reveal the spatial differences in the bacterial community.
The results showed that bacterial communities in the open lakes were distinctly different
from those in the closed lakes (p < 0.001). Each group formed a distinct cluster among
all samples, and samples from open lakes were separated from closed lakes (Figure 2b).
Overall, the alpha diversity indices and the difference in bacterial community composition
between the open lakes and closed lakes were statistically significant.
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3.2. Composition of Bacterial Communities

The results also showed that bacterial community composition in different types
of subsidence lakes was different (Figure 3a). At the phylum level, bacterial communi-
ties were dominated by Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and
Cyanobacteria. Dominant species in different sampling types of lakes show significant
differences (Figure 3b). The closed lakes were significantly enriched in Proteobacteria,
Actinobacteria, and Cyanobacteria. Conversely, Firmicutes and Bacteroidetes were signifi-
cantly more abundant in the open lakes (Figure 3b, Wilcoxon test, p < 0.001). At the genus
level, Sphingomonas, Bacteroides, ZOR0006, Lactococcus, hgcI_clade, and Cyanobium_PCC-6307
were the most abundant genera in the open and closed lakes’ water samples (Figure S2).
Sphingomonas, hgcI_clade, and Cyanobium_PCC-6307 were significantly enriched in the
closed lakes. Conversely, Bacteroides, ZOR0006, and Lactococcus were significantly higher in
the open lakes than that in closed lakes (Figure 3c, Wilcoxon test, p < 0.001).

The predicted metabolic functional groups were further revealed using FAPROTAX
(Figure S3). A total of 63 functional groups were obtained in open lakes and closed lakes,
which involved the nitrogen cycle, sulfur cycle, carbon cycle, energy source, and other
functions. PCoA of functional groups suggested a clear separation between open lakes
and closed lakes, and the functional variation in closed lakes was much higher than that
in open lakes (Figure 4a). Among the predicted functions, aerobic chemoheterotrophy,
chemoheterotrophy, photoautotrophy, photosynthetic cyanobacteria, oxygenic photoau-
totrophy, and phototrophy were the most abundant groups in closed lakes. However, the
communities in open lakes had a high percentage of functional groups with fermentation,
nitrate reduction, nitrate respiration, nitrogen respiration, and plant pathogens (Figure 4b).
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3.3. Relationship between Environmental Factors and the Bacterial Community

Physicochemical properties in open lakes and closed lakes indicated strong spatial
variations (Table S3). Overall, the EC values and contents of NO2

−, DO, COD, BOD, TP, and
Chla in open lakes were higher (Wilcoxon test, p < 0.05), but T and ORP were significantly
higher in closed lakes (Wilcoxon test, p < 0.05). However, there was no significant difference
in physical and chemical indicators between open subsidence lakes and adjacent rivers
(Wilcoxon test, p > 0.05), as well as between different closed subsidence lakes (Kruskal–
Wallis test, p > 0.05).

The results of canonical correspondence analysis (CCA) showed that the variations in
the bacterial community and function were related to six environmental factors in closed
lakes: pH, NO3

−, ORP, TN, NH4
+, and EC (Figure 5a,b), which together explained 68.48%

and 98.14% of the total bacterial community and functional variation, respectively. Among
them, pH was the most crucial factor driving bacterial community and function. In open
lakes, the bacterial community was influenced by five factors: TN, NO3

−, NO2
−, NH4

+,
and COD (Figure 5c), which together explained 94.12% of the total community change.
NH4

+ was the most crucial environmental factor. In contrast, COD, TN, Chla, and NO2
−

together explained 57.68% of the community function variation in open lakes (Figure 5d).
Among them, COD was the most crucial factor shaping bacterial community function.

The Mantel test showed that the bacterial community similarity was significantly
correlated with geographic factors (r = 0.34, p = 0.002) and physicochemical parameters
(r = 0.21, p = 0.033) in closed lakes, suggesting that there was a strong interaction of the
bacterial community with spatial and environmental variables (Figure S4a,b). In contrast,
the bacterial community showed slight negative correlations with geographic factors
(r = −0.18, p = 0.76) and physicochemical parameters (r = −0.19, p = 0.76) in open lakes
(Figure S4c,d).

3.4. Assembly Processes of Bacterial Community

MST results showed that the bacterial community in both closed (MST = 0.58 ± 0.25)
and open lakes (MST = 0.63 ± 0.1) was governed by stochastic processes (MST > 0.5), and
the influence of stochastic processes in open lakes was higher than in closed lakes (Figure 6).
Niche analysis showed that the community niche width in closed lakes (9.5 ± 4.1) was
higher than in open lakes (8.8 ± 2.3).

3.5. Network Analysis

Co-occurrence networks of the bacterial communities in closed and open lakes were
conducted based on correlation analysis. Bacterial communities in closed and open lakes
displayed distinctly different co-occurrence patterns (Figure 7). The resulting network was
composed of 102 nodes with 95 edges in closed lakes, and 752 nodes with 900 edges in
open lakes (Table S4). In addition, we recorded a higher proportion of negative edges and
a lower modularity in the open-lake network (70.4% and 0.83, respectively), than in the
closed-lake network (33.7% and 0.85, respectively). Moreover, the number of keystone
species in open lakes was higher than in closed lakes (Figure 7e,f). These discoveries
indicated that the bacterial communities in open lakes were more stable than those in closed
lakes. In the closed-lake network, hgcI_clade (Sporichthyaceae) was inferred to be keystone
species. In the open-lake network, Lactococcus (Streptococcaceae), Acinetobacter (Moraxellaceae),
Psychrobacter (Moraxellaceae), Chryseobacterium (Weeksellaceae), Myroides (Flavobacteriaceae),
Cetobacterium (Fusobacteriaceae), Reyranella (Reyranellaceae), Aeromonas (Aeromonadaceae),
Bacteroides (Bacteroidaceae), Sediminibacterium (Chitinophagaceae), and Vibrio (Vibrionaceae)
were inferred to be keystone species (Figure 7e,f).



Water 2023, 15, 1829 9 of 17Water 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

 

Figure 5. Canonical correspondence analysis (CCA) showing the physicochemical parameters influ-

ence the bacterial community composition (a,c) and bacterial functional composition (b,d) in closed 

lakes (a,b) and open lakes (c,d). 

The Mantel test showed that the bacterial community similarity was significantly cor-

related with geographic factors (r = 0.34, p = 0.002) and physicochemical parameters (r = 

0.21, p = 0.033) in closed lakes, suggesting that there was a strong interaction of the bacte-

rial community with spatial and environmental variables (Figure S4a,b). In contrast, the 

bacterial community showed slight negative correlations with geographic factors (r = 

−0.18, p = 0.76) and physicochemical parameters (r = −0.19, p = 0.76) in open lakes (Figure 

S4c,d). 

3.4. Assembly Processes of Bacterial Community 

MST results showed that the bacterial community in both closed (MST = 0.58 ± 0.25) 

and open lakes (MST = 0.63 ± 0.1) was governed by stochastic processes (MST > 0.5), and 

the influence of stochastic processes in open lakes was higher than in closed lakes (Figure 

6). Niche analysis showed that the community niche width in closed lakes (9.5 ± 4.1) was 

higher than in open lakes (8.8 ± 2.3). 

Figure 5. Canonical correspondence analysis (CCA) showing the physicochemical parameters influ-
ence the bacterial community composition (a,c) and bacterial functional composition (b,d) in closed
lakes (a,b) and open lakes (c,d).

Water 2023, 15, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 6. Community niche width (a) and community assembly processes (b) based on modified 

stochasticity ratio (MST). 

3.5. Network Analysis 

Co-occurrence networks of the bacterial communities in closed and open lakes were 

conducted based on correlation analysis. Bacterial communities in closed and open lakes 

displayed distinctly different co-occurrence patterns (Figure 7). The resulting network 

was composed of 102 nodes with 95 edges in closed lakes, and 752 nodes with 900 edges 

in open lakes (Table S4). In addition, we recorded a higher proportion of negative edges 

and a lower modularity in the open-lake network (70.4% and 0.83, respectively), than in 

the closed-lake network (33.7% and 0.85, respectively). Moreover, the number of keystone 

species in open lakes was higher than in closed lakes (Figure 7e,f). These discoveries indi-

cated that the bacterial communities in open lakes were more stable than those in closed 

lakes. In the closed-lake network, hgcI_clade (Sporichthyaceae) was inferred to be keystone 

species. In the open-lake network, Lactococcus (Streptococcaceae), Acinetobacter (Moraxel-

laceae), Psychrobacter (Moraxellaceae), Chryseobacterium (Weeksellaceae), Myroides (Flavobacte-

riaceae), Cetobacterium (Fusobacteriaceae), Reyranella (Reyranellaceae), Aeromonas (Aeromona-

daceae), Bacteroides (Bacteroidaceae), Sediminibacterium (Chitinophagaceae), and Vibrio (Vibri-

onaceae) were inferred to be keystone species (Figure 7e,f). 

The closed- and open-lake networks could be divided into four major modules. Mod-

ule I accounted for 12.4% of the network and module II accounted for 9.8% of the closed-

lake network, and module I and module II accounted for 6.65% and 6.52%, respectively, 

of the open-lake network (Figure 7c,d). In the closed-lake network, Actinobacteria, Prote-

obacteria, Cyanobacteria, and Bacteroidetes had a higher abundance in Module I, while 

Firmicutes and Proteobacteria were the dominant species in Module I in the open-lake 

network. 

Figure 6. Community niche width (a) and community assembly processes (b) based on modified
stochasticity ratio (MST).



Water 2023, 15, 1829 10 of 17Water 2023, 15, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 7. Co-occurrence networks of microorganism colored by (a,b) phylum and (c,d) modularity 

in closed lakes (a,c) and open lakes (b,d). Identified keystone species in closed lakes (e) and open 

lakes (f). The edge suggests a strong (|r| > 0.8) and significant (p < 0.01) correlation. The size of node 

is the proportion to the number of connections (i.e., degree). 

4. Discussion 

4.1. Community and Functional Diversity of Bacteria in Closed and Open Lakes 

Analysis of community properties showed that bacterial communities in open and 

closed lakes exhibited significant differences in community diversity and structure. This 

is consistent with the finding that microbial biodiversity is distributed heterogeneously 

among different habitat types [35]. Habitat heterogeneity is considered one of the main 

determinants affecting biodiversity [53]. The α-diversity of bacterial communities in open 

lakes was higher than those in closed lakes (Figure 2). A similar study reported on the 

Figure 7. Co-occurrence networks of microorganism colored by (a,b) phylum and (c,d) modularity in
closed lakes (a,c) and open lakes (b,d). Identified keystone species in closed lakes (e) and open lakes
(f). The edge suggests a strong (|r| > 0.8) and significant (p < 0.01) correlation. The size of node is
the proportion to the number of connections (i.e., degree).

The closed- and open-lake networks could be divided into four major modules. Mod-
ule I accounted for 12.4% of the network and module II accounted for 9.8% of the closed-lake
network, and module I and module II accounted for 6.65% and 6.52%, respectively, of the
open-lake network (Figure 7c,d). In the closed-lake network, Actinobacteria, Proteobacteria,
Cyanobacteria, and Bacteroidetes had a higher abundance in Module I, while Firmicutes
and Proteobacteria were the dominant species in Module I in the open-lake network.
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4. Discussion
4.1. Community and Functional Diversity of Bacteria in Closed and Open Lakes

Analysis of community properties showed that bacterial communities in open and
closed lakes exhibited significant differences in community diversity and structure. This
is consistent with the finding that microbial biodiversity is distributed heterogeneously
among different habitat types [35]. Habitat heterogeneity is considered one of the main
determinants affecting biodiversity [53]. The α-diversity of bacterial communities in open
lakes was higher than those in closed lakes (Figure 2). A similar study reported on the
phytoplankton community in closed and semi-closed lakes in the northern area of Wen-
zhou City [54]. Compared with open lakes, closed lakes exhibited lower nutrient contents
but higher oxidation potential, indicating an oligotrophic and distinctive hydrochemistry
environment. The results also found a significant positive correlation between diversity
index and pH and ORP in closed lakes (Table S2). A previous study found that nitrogen
and phosphorus were important environmental factors affecting the growth of the micro-
bial community [24]. The low nutrient content in the closed lakes may have limited the
growth of other low-abundance bacterial communities, forming a community structure
with Proteobacteria as the dominant bacteria (77.4%), and thus reducing the community
diversity. In contrast, as open lakes can exchange water with rivers, upstream rivers import
large amounts of nutrients to lakes. The open lakes are used for fish-farming, and artificial
baiting will also increase the content of nutrients in the water body. Adequate nutrients
provide a good environment for the growth of bacterial communities in open lakes, and
some rare species are able to proliferate, which increases species diversity. This is consistent
with the finding that the diversity index was significantly positively correlated with COD
and NH4

+ in this study (Table S2). Furthermore, terrestrial soils are known to typically
contain a high diversity of microorganisms that can enter rivers in response to surface
runoff [55]. The exotic species in rivers are further imported into lakes through water
exchange, which also increases community diversity in open lakes.

Functional annotation indicated enrichment of metabolic functional groups in bacte-
rial communities in closed and open lakes, which showed spatial heterogeneity (Figure 4).
In closed lakes, the metabolic functional groups of aerobic chemoheterotrophy, chemo-
heterotrophy, and photoautotrophy (contributed by the genera Sphingomonas and
Cyanobium_PCC-6307) were enriched. In comparison, the metabolic functional groups
of nitrate reduction, nitrate respiration, and nitrogen respiration (contributed by the genus
of Shewanella) were enriched in open lakes (Figure 4b), and the CCA results showed that
TN and NO2

− explained 13.51% and 6.02% of the functional changes in bacterial com-
munities, respectively (Figure 5d). A significant enrichment of genes associated with
nitrogen metabolism was found in open lakes, which may have been due to the higher
content of NO2

- This result is in line with previous studies, which demonstrated that
genes related to nitrate reduction had a higher abundance when nitrate was enriched [56].
However, the lack of various nutrients for bacterial growth in closed lakes means that
bacteria can only maintain normal growth through intercommunity heterotrophy and
autotrophy. Therefore, the expression of aerobic chemoheterotrophy, chemoheterotrophy,
and photoautotrophy genes was increased in the closed lakes. This was also confirmed by
the results that Cyanobacteria was the dominant species in the closed lakes (5.8%), while it
was not observed in open lakes.

4.2. Differences in Bacterial Community Composition and Assembly Processes

In this study, we found that stochastic processes (i.e., ecological drift, random specia-
tion, death, and dispersal events) are essential mechanisms impacting community variation
in closed and open lakes (Figure 6). In open lakes, distance-decay patterns were observed
in the bacterial community, suggesting dispersal limitation (Figure S4). Since the water
flow was directional, microorganisms in subsidence waters in the midstream and down-
stream rivers were difficult to transfer back upstream, resulting in limited dispersion [57].
Higher nutrient levels in open lakes promote microbial colonization, and large proliferation
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of microbial communities may enhance stochastic processes (e.g., births, deaths), which
in turn lead to stochastic changes in the abundance of microbial communities [58]. The
large proliferation of microbial communities will further increase the community diversity,
which is supported by the fact that the diversity of bacterial communities in open lakes
is higher than that in closed lakes. In closed lakes, while stochastic processes were the
main influencing mechanism, we found that deterministic processes partly influenced the
community variation (Figure 6). This finding is consistent with the result that community
similarity was significantly correlated with physicochemical parameters (r = 0.21, p = 0.033)
in closed lakes. pH may be a major deterministic process affecting bacterial communities
in closed lakes, which explained 31.73% of the bacterial community structure variation
(Figure 5). Studies showed that changes in pH in the environment affected the properties
of microbial nucleic acids, extracellular polymerases, and other substances, and thus their
activity [59].

Proteobacteria (77.4%), specifically Alphaproteobacteria and Gammaproteobacteria, were the
dominant bacteria in the closed lakes. This is consistent with the finding that Proteobacteria
was the dominant bacteria in other shallow lakes [24]. It supports that Alphaproteobacteria are
widespread in aquatic ecosystems and participate in the biogeochemical cycles of C, N,
and S [60]. Gammaproteobacteria was found to be widely distributed in oligotrophic lake
waters, and its community structure was influenced by pH and nutrient concentration [61].
Sphingomonas (71.6%) (Alphaproteobacteria) was the dominant genus in the closed lakes.
Sphingomonas is a heterotrophic Gram-negative bacterium that was previously found to
have good degradation capacity for a variety of aromatic organic compounds in water [62].
The high relative abundance of members of Proteobacteria in closed lakes may be due to the
low nutrient content. Sphingomonas, for example, provides for its own growth by degrading
aromatic compounds and microcystins into small-molecule organic matter. Moreover,
we found Cyanobacteria in closed lakes, while no observations were made in open lakes
(Figure 3). Previous research found that the gas vesicles contained in some cyanobacterial
cells can provide buoyancy for cells in water environments, and gives them advantages in
the competition for light and carbon dioxide [63]. Consequently, cyanobacterial blooms
usually occur in lakes and reservoirs with stagnant water bodies, little wind-mixing, and
low water-level fluctuations [64]. Closed lakes are unable to exchange water with the
outside environment, which may lead to the appearance of cyanobacterial in closed lakes.

In open lakes, Bacteroidetes (Bacteroides), Firmicutes (ZOR0006, Lactococcus), and their
corresponding genera were significantly enriched (Figure 3). Bacteroidetes and Firmicutes
were considered indicator organisms for assessing faecal pollution and exogenous pollution
input in water bodies [65,66]. Bacteroides were a group of pathogenic bacteria that were
commonly abundant in humans and animals and participated in a complex cycle of carbon
and protein-rich substances [67]. ZOR0006 and Lactococcus were also dominant species in
fish intestines [68,69]. These genera were significantly enriched in the open lakes which
may be attributed to the fact that part of the open lakes was being exploited for seine
farming and the other part was being exploited for photovoltaic power generation. In
addition, the terrestrial ecosystem was transformed into a composite water–land ecosystem
during the formation of subsidence waters. Large amounts of plant and animal residues
and soil organic matter enter water bodies, together with exogenous substances imported
from rivers, so Bacteroidetes may be enriched in open lakes.

However, the results found no significant differences in microbial community structure
and physicochemical factors between the open lakes and the adjacent river (Figure 3;
Table S3). This is probably due to the higher flow and velocity of the rivers in summer,
combined with the fact that open lakes and rivers allow for frequent water exchange,
resulting in homogenization of water bodies between rivers and lakes. Therefore, there is
no significant difference in microbial community structure between rivers and open lakes.
The results indicate that there were also no significant differences in microbial community
structure between the different closed lakes (Figure 3). This is due to the similar type of use
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of the closed lakes, mainly for agricultural irrigation. Similar utilization types in closed
lakes lead to similar microbial community structures [70].

4.3. Differences in Co-Occurrence Patterns of Bacterial Communities in Closed and Open Lakes

Network analysis provides deep insight into the complex interactions of bacterial
communities in different types of subsidence lakes. The open-lake network in this study
exhibited more species (nodes) and ecological connections (links) than the closed-lake
network, indicating more densely connected and complex network patterns (Figure 7).
This may have been due to the fact that open lakes receive more input from external
substances, and the abundant nutrients in the lakes promote competition and cooperation
among species, thus forming a complex ecological network. The closed-lake network was
mainly positively correlated (66.3%), indicating that there was an ecological reciprocity
or cooperation relationship between the microbial communities in the closed lakes, while
the proportion of negative correlations in the open lakes was high (70.4%), indicating
that there was a competitive effect in the open-lake microbial communities. The high
proportion of positive correlations in the closed lakes may have been due to the low content
of nutrients in the water body, as bacterial communities use limited resources through
efficient cooperation [26]. Moreover, the ecological network of closed lakes exhibited lower
mean distances, suggesting a more efficient transfer of information, energy, and material
between species [71]. The nutrient content in the closed lakes was low, which is conducive
to the symbiosis of species using limited resources.

Keystone species represent highly correlated microorganisms that perform a crucial
role in the structure and function of microbial communities and serve as indicator species
of environmental change [28]. Based on the Pi–Zi scatter plots, in closed lakes, hgcI_clade
was inferred to be a keystone species. This is in line with previous research, which observed
that the hgcI_clade may be a persistent keystone species in global oligotrophic aquatic
ecosystems [72]. The hgcI_clade can dissolve organic carbon and matches genes associated
with globally important nitrogen-cycling pathways, including denitrification and nitrogen
fixation [73]. The hgcI_clade in closed lakes increases carbon and nitrogen sources in
the water body through break-down organic carbon and nitrogen fixation, providing
nutrients for the growth of bacterial communities in oligotrophic lakes. By comparison,
Lactococcus, Acinetobacter, Psychrobacter, Chryseobacterium, Myroides, Cetobacterium, Reyranella,
Aeromonas, Bacteroides, Sediminibacterium, and Vibrio were identified as keystone species
in the open-lake network. Keystone species in open lakes are mainly associated with
pathogenic bacteria in fish guts. For example, it was found that Lactococcus, Acinetobacter,
and Cetobacterium were usually significantly enriched in fish intestines and were associated
with pathogenicity in fish [74–76]. In addition, Chryseobacterium and Myroides were the
potential opportunistic pathogen bacteria in water bodies [77,78]. These results indicate
that anthropogenic activities such as seine farming and photovoltaic power generation in
the open lakes are causing serious impacts on lake water bodies. Therefore, the keystone
species in the open-lake network can be used as indicator species reflecting the impact of
anthropogenic activities on the lakes. Moreover, Bacteroides and Sediminibacterium were
found to be involved in the degradation of organic compounds such as aromatic compounds
and perform a crucial role in the carbon cycle of open lakes [67,79]. This is consistent with
the finding that the COD content in open lakes was significantly higher than that in closed
lakes in this study.

5. Conclusions

This study reveals a distinct spatial heterogeneity of microbial community and the
underlying community assembly mechanisms in closed and open subsidence lakes, pro-
viding potential insight into understanding how microbial diversity is generated and
maintained in different types of subsidence lakes. We found that the diversity of the
bacterial community in open lakes was significantly higher than that in closed lakes. The
function of bacterial communities in closed lakes was mainly related to energy sources
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(chemoheterotrophy and photoautotrophy, etc.), while bacterial communities in open lakes
were mainly involved in the nitrogen cycle. Stochastic processes were the main factor
affecting bacterial community assembly in closed and open lakes. In the closed-lake net-
work, the hgcI_clade was inferred to be a keystone species and may have been the key taxa
for increasing the sources of carbon and nitrogen in the water bodies. In the open-lake
network, Lactococcus, Acinetobacter, Psychrobacter, and Chryseobacterium were determined
to be keystone species and could serve as indicators of the impact of human activities on
the lake. In future research, it is necessary to further explore the spatiotemporal succession
patterns of microbial communities in different types of subsidence lakes over a long time
series. In addition, the relative contributions of heterogeneous selection, dispersal limita-
tion, homogenizing dispersal, and drift in the microbial community assembly in different
types of subsidence lakes need to be further explored.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15101829/s1. Figure S1: Rarefaction curves of richness of
samples in closed and open lakes. (a) Closed lake; (b) open lake; Figure S2: Distribution of bacterial
communities at genus levels. (a) Closed lake; (b) open lake; Figure S3: Heatmap representing
the abundance of predicted functions based on FAPROTAX. (a) Closed lake; (b) open lake; Figure
S4: Mantel test between the Bray–Curtis similarity of bacterial communities and geographical
distance (a,c), physicochemical parameters (b,d) in in closed lakes (a,b) and open lakes (c,d); Table S1:
Diversity index and amplicon sequence variants (ASVs) of samples in closed and open lakes; Table
S2: Correlation analysis between diversity index and significant environmental variables in closed
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