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Abstract: Floods are one of the most lethal natural disasters. It is crucial to forecast the timing
and evolution of these events and create an advanced warning system to allow for the proper
implementation of preventive measures. This work introduced a new graph-based forecasting model,
namely, graph neural network sample and aggregate (GNN-SAGE), to estimate river flooding. It
then validated the proposed model in the Humber River watershed in Ontario, Canada. Using past
precipitation and stage data from reference and neighboring stations, the proposed GNN-SAGE
model could estimate the river stage for flooding events up to 24 h ahead, improving its forecasting
performance by an average of 18% compared with the persistence model and 9% compared with the
graph-based model residual gated graph convolutional network (GNN-ResGated), which were used
as baselines. Furthermore, GNN-SAGE generated smaller errors than those reported in the current
literature. The Shapley additive explanations (SHAP) revealed that prior data from the reference
station was the most significant factor for all prediction intervals, with seasonality and precipitation
being more influential for longer-range forecasts. The findings positioned the proposed GNN-SAGE
model as a cutting-edge solution for flood forecasting and a valuable resource for devising early
flood-warning systems.

Keywords: flooding; Humber River; forecasting; machine learning; graph neural networks; SHAP analysis

1. Introduction

One of global warming’s adverse effects is the increase in the frequency and severity
of floods [1,2]. Resulting from both anthropologic and weather factors [3–7], floods are
the deadliest natural event [8,9], where they have already affected billions of people
worldwide [10–12], causing huge economic and human losses [13–17]. In Canada, flood
events can happen all year and are caused by snow melting and thunderstorms [18,19].
The frequency and intensity of floods have been increasing in recent years [10,20]; they
were responsible for around 32% of the total natural disasters between 1950 and 2012 [1,21]
and accounted for nearly 75% of the Canadian Disaster Financial Assistance Arrangements
budget [18,22], pressuring municipalities to improve their infrastructure and management
strategies to accommodate these extreme events [12,17,23].

To diminish flood impacts and help decision-making and proper management by
authorities, researchers directed their efforts toward early flood detection models, allowing
for the deployment of pre-emptive countermeasures and mitigating adverse flooding
effects [19]. To this end, many predictive models were developed, which are divided into
two major groups [24]: hydrological and data-driven intelligent models. Hydrological
models rely on physics-based equations to determine future flood occurrences. Even
though this approach achieved good results in previous studies [25–29], it has limitations
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regarding its complex modeling, computational cost, the need for many hydro-geomorphic
input attributes, and high precision of mapping attributes, which may result in large
errors [10,19,30–32].

To overcome the physics-based models’ limitations, data-driven models were em-
ployed using machine learning (ML) approaches. Researchers studied this paradigm
because ML models are simpler, require fewer input parameters, have superior processing
times, can solve non-linear relations, and identify the complex relationships between input
and output parameters [5,24,33,34].

In [35], an ML model based on the autoregressive integrated moving average (ARIMA)
was implemented to assess flooding of the Jhelum River, which is located in the Great
Himalayas region. The authors used 41 years of maximum peak flow data to build the
model and attained satisfactory forecasting results, deeming it suitable for predicting flood
events in the region. In another work [36], the authors used an artificial neural network
(ANN) multilayer perceptron (MLP) model to forecast floods in Southern Thailand. The
researchers fused meteorological, hydrological, geospatial, and big data. The results
showed that their proposed approach attained the best values when compared with other
ML models, achieving 97.83% accuracy for flood forecasting. Another recent ML application
was based on the group method of data handling (GMDH) [37,38]. A flood forecasting
model based on this paradigm was first proposed by [39] for a study set in Iowa, where
the proposed model achieved the best results when compared with traditional models,
reaching a root-mean-squared error (RMSE) of 42.51 m3/s. Later studies acknowledged
this approach’s superior performance when compared against conventional forecasting
paradigms, such as ARIMA [1], with it being suited to forecast riverine flooding events up
to 17 h in advance [10].

Data-driven models can use satellite information to calibrate and model river dis-
charges [40,41] and can be used together with ML techniques for improved forecasting
performance. In [42], a hybrid model using satellite information and ML techniques was
implemented for forecasting floods in the USA. In their work, the authors successfully
corrected faulty satellite measurements, increasing the accuracy for the determination of
future flood events. In another work [43], the authors used geophysical and anthropogenic
inputs to assess flood-susceptible areas in Iran. In their work, flood events were assessed
using random forests (RFs) and a Bayesian generalized model, where the former showed
better accuracy for this task. Another work [44] implemented Markov chains and Monte
Carlo uncertainty analysis over satellite signals to improve flooding forecasting. The results
demonstrated that the author’s proposed approach surpassed the traditional ML models
that were used as benchmarks.

Models based on deep neural networks (DNNs) are an improvement over the tra-
ditional ML paradigms [45]. Le et al. [46] used a long short-term memory (LSTM) DNN
model for flooding forecasting in Vietnam up to three days ahead. The best results were
reached when upstream and study stations’ discharge data were used, achieving the opti-
mal RMSE values of 151 m3/s, 373 m3/s, and 594 m3/s for one, two, and three days ahead,
respectively, showing this method to be a reliable tool for flood modeling. Besides LSTM,
convolutional neural networks (CNNs) based models were evaluated by Kabir et al. [47].
In their work, the implemented CNN model was trained with 2D data from a hydraulic
model to forecast floods in the United Kingdom for 2005 and 2015. Compared with the
benchmark model, CNN showed better computational performance and higher precision
for such tasks.

Another viable approach for DNN models is combining them, resulting in a hybrid
model. These models can reach better forecasting results in time-series problems [33,48,49].
A hybrid model was developed by [19], where an attention layer was embedded in the
LSTM model. The proposed model sought to establish a spatiotemporal linkage between
the neighboring stations, resulting in a more accurate model for flooding prediction across
Canada. Their proposed spatiotemporal attention LSTM (STA-LSTM), when compared
against CNN-LSTM and another LSTM-based model, was found to attain improved fore-
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casting results, with the lowest error rate of 3.98%. A CNN-LSTM hybrid approach was
proposed in [50] for river flow forecasting in Germany and possible flooding events. The au-
thors used the hybrid model to process 2D radar imagery, processing spatial and temporal
information using CNN and LSTM, respectively. Their results showed that the CNN-LSTM
model attained overall satisfactory results for high-water and low-water discharge periods,
which are useful for early flooding alert systems.

However, traditional DNN models cannot accurately process multi-dimensional spa-
tiotemporal data information [51,52]. To address this hindrance, graph-based models
were used for spatiotemporal forecasting problems in different time-series studies, such as
weather prediction [51], pollution level estimation [53], and wind speed forecasting [54,55].
The use of a graph-based model for flooding forecasting was analyzed by Feng et al. [56] for
a location in China. In their work, a graph convolutional network (GCN) was implemented
with LSTM to better extract the spatiotemporal information underlying the input data. The
proposed model was compared against six benchmark ML models, and it was found to
achieve the best RMSE results for all forecasting horizons, with an average of 84.76 m3/s.

The literature review given above shows the importance of data-driven models using
DNN and recently graph-based approaches for forecasting flooding events. To deepen the
understanding of flooding prediction, the present work proposed a novel forecasting graph-
based model to determine the flooding occurrence in Humber River, Ontario, Canada. The
model aimed to contribute to the field in the following ways:

1. Develop a new state-of-the-art model for flooding forecasting, allowing for a more
precise and accurate early flooding alert system.

2. Verify the addition of spatiotemporal data for improved flooding forecasting results.
3. Development of a reliable ML model based on graph theory and DL paradigm.

The remainder of this work is divided as follows: in Section 2, the methodology used
is presented, followed by Section 3, where the achieved results are shown. In Section 4,
there is a discussion of the results, and Section 5 closes the work with a conclusion.

2. Proposed Model
2.1. Persistence Model

The persistence model was selected as a benchmark for the present work to compare
the results with the proposed graph-based deep learning model. The persistence model
is widely used as a baseline for forecasting algorithms applied to intermittent and non-
linear time series. This model is a hard contender to be surpassed for short forecasting
horizons [57,58], offering good results by simply stating that the future estimated value
will be the same as the one measured in the present [59,60]. Nevertheless, as the horizon
extends, the persistence model fails to capture the dynamicity of the trends for seasonality
and external factors that may influence the estimated value, reducing its performance [61].

2.2. GNN-SAGE and GNN-ResGated Models

The present work proposed a new graph neural network sample and aggregate (GNN-
SAGE) model for forecasting potential flooding occurrences. This model, as its name
suggests, uses graph theory to retrieve spatiotemporal information from the dataset. The
GNN-SAGE framework extracts spatiotemporal information by equally sampling and
aggregating its nodes, with it being especially efficient in handling large graphs.

During the sampling phase, several neighboring nodes are selected rather than using
all available nodes. This predefined selection improves the computational time at the
expense of reduced information being given to the model. In the following phase, an
aggregator is implemented to collect information from the previously selected neighboring
nodes, resulting in an embedding vector that represents the node of interest that can
generalize unknown information apart from the graph shape [53,62–65].

The present study used the GNN-SAGE model to predict future stage levels, employ-
ing spatiotemporal information from neighboring measuring stations in the Humber River.
Each station, which provided both precipitation and stage information, contributed spa-
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tiotemporal data for forecasting the stage level at the reference station, which was located
near the river’s estuary. This information was fed into the GNN-SAGE model as input data,
effectively capturing the spatial and temporal relationships between the measuring stations.
Its inherent capacity to identify and retrieve the underlying spatiotemporal information
within the dataset was an important aspect of the GNN-SAGE model for the present appli-
cation due to both spatial and temporal features being major drivers of flooding occurrence.
The following Figure 1 depicts the GNN-SAGE framework used in this study.
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Figure 1 shows the framework for the GNN-SAGE model: the spatiotemporal data
from the stations (represented as graph nodes) are the input information. After this, there
is a succession of convolutional, activation, dropout, and dense layers, identifying patterns
and extracting local features and spatiotemporal information as the inputs go deeper into
the model.

The graph-based model residual gated graph convolutional network (GNN-ResGated)
was also selected to benchmark the proposed model’s performance. The authors Bresson
and Laurent [66] originally proposed GNN-ResGated as an improvement over the works
of He et al. [67] and Marcheggiani and Titov [68]. The GNN-ResGated combines graph-
based models and long short-term memory (LSTM). It differs from GNN-SAGE in how
it processes its data: while GNN-SAGE operates by sampling and extracting data from
each node, the GNN-ResGated approach considers residual connections and recurrent
information between the graph’s layers [69]. In the GNN-ResGated architecture, the
residuality allows for stacking multiple layers within the model, improving the spatial
data extraction [70], while the LSTM controls the data flow and processes the temporal
aspect of the data, also deciding what information can be kept or discarded. This approach
was found to have superior performance over other graph and recurrent neural network
models [66].

2.3. SHAP Analysis

Despite its attested performance and state-of-the-art results in many research fields,
ML models still lack explainability, not offering a complete understanding of their out-
comes. The Shapley additive explanations (SHAP) (documentation available at https:
//shap.readthedocs.io/en/latest/, accessed on 5 April 2023) uses game theory to provide
further insight into the ML results, relating input variables and the achieved output value
in terms of importance, correlation, and influence of each input variable over the final
prediction [53,71]. The SHAP analysis was found to be a reliable tool for authors to fully
understand their results in multidisciplinary fields, such as pharmaceuticals [72], material
engineering [73], Earth system modeling [74], and social factors driving income [75].

3. Validation and Analysis of Results
3.1. Humber River Description

The Humber River is located in the southern part of the Ontario province in Canada,
with it being Lake Ontario’s most important tributary river. The Humber River drainage
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area is approximately 903 km2, comprising an estimated population of around 850,000.
Its land use is mixed between rural and urban areas in the upstream area but becomes
increasingly urbanized as it approaches Toronto [19,76,77]. The increase in the urbanized
area leads to an increase in the amount of runoff after rains due to the impervious surface,
resulting in a region prone to flooding [76,78]. In past years, this region has suffered from
major floods, causing both economic damage and the loss of human lives.

In the present study, both stage and precipitation data were used to assess the oc-
currence of flooding. The historical data were from the period 8 June 2018 to 17 Septem-
ber 2020, with a time resolution of 15 min for stage data and 5 min for precipitation
data. It was retrieved from The Toronto and Region Conservation Authority (available at
https://backup.trcagauging.ca/, accessed on 30 March 2023). Figure 2 depicts the stations
used using stage data and precipitation data, and the southernmost red symbol represents
the reference station, where we wanted to determine flooding occurrences by forecasting
the river stage at this location.
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3.2. Evaluation Metrics

The results forecasted with GNN-SAGE were compared with the benchmarking mod-
els using the metrics root-mean-squared error (RMSE), mean average error (MAE), mean
absolute percentage error (MAPE), and coefficient of determination (R2). Their equations
can be found in [79] for R2 and [60] for the remainder.

https://backup.trcagauging.ca/
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3.3. Dataset Size Evaluation

The training dataset was tested to verify whether the used dataset size could provide
stable results when the proposed model was used to forecast the river stage. Figure 3
depicts the results without (only stage data) and with precipitation data.
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In Figure 3, the y-axis represents the RMSE error for the target variable stage in meters,
while the x-axis shows the ratio of the used data for evaluating the model. Figure 3 shows
that for each assessed dataset size, increasing the training data size provided better results
in terms of reduced RMSE values, showing convergence when a ratio greater than 10/90
was used for both cases with and without precipitation data. The optimal configuration for
GNN-SAGE without the precipitation information was reached for a ratio of 70/30, where
the model’s RMSE was 0.0291 m. For the case where the dataset considered precipitation
data, the best result was found at 90/10, with an RMSE equal to 0.3057 m. Ultimately, the
data was divided using an 80/20 Pareto ratio, retaining more information than a 70/30
split while avoiding the limited data concerns associated with a 90/10 distribution.

3.4. Results for a 1 h Forecast Horizon

Multiple time lag values were evaluated for predicting floods 1 h in advance. To
compare the proposed GNN-SAGE model, its results were analyzed against persistence
and GNN-ResGated models. The results are presented in Figure 4, where the x-axis
represents the time lag in hours.

Figure 4 shows that for 1 h forecasting, the GNN-ResGated model had no improvement
over its performance for time lags greater than 6 h, while for GNN-SAGE, it improved
the overall model’s performance consistently by a slight margin after a 3 h time lag. The
proposed GNN-SAGE achieved the best results for all time lags used, improving the
flooding forecasting by up to 9.95% when compared with the persistence model and
18.93% on average when compared with GNN-ResGated. Conversely, GNN-ResGated did
not achieve satisfactory results, with it being surpassed by the other two models for all
considered time lags, and it was not able to capture the spatiotemporal characteristics of
the dataset satisfactorily. For GNN-SAGE, it was deemed that a 6 h time lag was sufficient
for the model’s prediction performance since it showed convergence after a 3 h time lag.
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(day of year, hour of day, precipitation, and stage level).
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Figure 5 demonstrates that, in terms of understanding the hydrological response, the
best performance for both models was achieved when using 6 h of past data solely for
the input variable “Stage”, with errors equal to 0.02466 m (40.36% improvement over the
persistence model) and 0.02574 m (37.76% improvement over the persistence model) for
GNN-SAGE and GNN-ResGated, respectively. This result indicates that the DoY, HoD,
and precipitation data from neighboring upstream stations did not provide meaningful
information for the model, and thus, did not exert a positive impact over its forecasting for
a 1 h horizon using past data from up to 6 h.
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Figure 6 depicts the accuracy of the GNN-SAGE model forecasting compared with the
real measured stage values for the Humber River validation dataset.
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From Figure 6, it is possible to see that the predicted stage values closely followed 
the real ones. It is important to highlight that GNN-SAGE managed to identify all the 
peaks for the assessed period, though slightly underestimating them. This is critical in 
identifying possible flooding events where the stage levels of the river surpass the safety 
limits for a location. The exceptional correlation between the predicted and actual stage 
values was evident in the regression line for the model, as illustrated in Figure 7. The 

Figure 6. Comparison between the forecasted stage values using GNN-SAGE and real measured
stage values for Humber River for a 1 h forecasting horizon.

From Figure 6, it is possible to see that the predicted stage values closely followed
the real ones. It is important to highlight that GNN-SAGE managed to identify all the
peaks for the assessed period, though slightly underestimating them. This is critical in
identifying possible flooding events where the stage levels of the river surpass the safety
limits for a location. The exceptional correlation between the predicted and actual stage
values was evident in the regression line for the model, as illustrated in Figure 7. The
associated histograms display the frequency of the statistical probability distribution for
the stage values.
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Figure 7 confirms the concurrence between the predicted and actual stage values, as 
demonstrated by the clustering of points around the regression line, with a higher con-
centration between 1.25 m and 1.75 m for both the forecasted and real values. For this 
scenario, R2 reached an excellent value of 96.45%.  

  

Figure 7. Scatter plot (a) with the marginal distribution for the measured (b) and forecasted (c) level
values using GNN-SAGE for 1 h ahead.

Figure 7 confirms the concurrence between the predicted and actual stage values,
as demonstrated by the clustering of points around the regression line, with a higher
concentration between 1.25 m and 1.75 m for both the forecasted and real values. For this
scenario, R2 reached an excellent value of 96.45%.

3.5. Results for a 3 h Forecast Horizon

The following results refer to flood forecasting 3 h in advance. Figure 8 shows the
effects of different time lags on the models’ performances.



Water 2023, 15, 1827 10 of 31

Water 2023, 15, 1827 10 of 33 
 

 

3.5. Results for a 3 h Forecast Horizon 
The following results refer to flood forecasting 3 h in advance. Figure 8 shows the 

effects of different time lags on the models’ performances. 

 
Figure 8. Influence of the different time lags for the GNN-SAGE and GNN-ResGated models for a 
3 h forecasting horizon compared with the persistence model. 

For a 3 h forecasting horizon, again, GNN-SAGE achieved the best results, outper-
forming both the persistence model and GNN-ResGated for all assessed time lag win-
dows. This time, both models benefited from previous information, showing a decreasing 
error trend: GNN-ResGated improved its forecasting by 8.11% compared with the persis-
tence model for a 48 h time lag, with an RMSE equal to 0.07451 m. Furthermore, GNN-
SAGE managed to improve the flooding forecasting by up to 15.87% and 14.36% when 
compared with the persistence and GNN-ResGated models, respectively, for the optimal 
time lag of 60 h and with an RMSE equal to 0.06822 m. Concerning GNN-SAGE, after a 60 
h time lag, the model showed convergence in its results, thus deeming this number 
enough to return satisfactory results for stage forecasting. 

Figure 9 shows the results for different input variables.  

Figure 8. Influence of the different time lags for the GNN-SAGE and GNN-ResGated models for a
3 h forecasting horizon compared with the persistence model.

For a 3 h forecasting horizon, again, GNN-SAGE achieved the best results, outper-
forming both the persistence model and GNN-ResGated for all assessed time lag windows.
This time, both models benefited from previous information, showing a decreasing error
trend: GNN-ResGated improved its forecasting by 8.11% compared with the persistence
model for a 48 h time lag, with an RMSE equal to 0.07451 m. Furthermore, GNN-SAGE
managed to improve the flooding forecasting by up to 15.87% and 14.36% when compared
with the persistence and GNN-ResGated models, respectively, for the optimal time lag of
60 h and with an RMSE equal to 0.06822 m. Concerning GNN-SAGE, after a 60 h time lag,
the model showed convergence in its results, thus deeming this number enough to return
satisfactory results for stage forecasting.

Figure 9 shows the results for different input variables.
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Figure 9. Influence of the different input variables for the GNN-SAGE and GNN-ResGated models 
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The best performance for the 3 h forecasting horizon for the proposed GNN-SAGE 
was achieved using past information from all input variables and DoY/HoD. For this in-
put data configuration, the GNN-SAGE RMSE was equal to 0.06822 m, achieving im-
provements of 15.87% over the persistence model and 14.36% over GNN-ResGated. Fig-
ure 9 indicates that the 3 h forecasting horizon benefits from the DoY, HoD, and precipi-
tation information that reached the reference station positively influenced the model’s 
performance by adding significant temporal information from neighboring stations. 

Since precipitation data was used for a 3 h forecasting configuration, verifying the 
precipitation influence over the model’s performance was important. To do so, the pre-
cipitation summing window, which indicated previous accumulated precipitation levels, 
was assessed for different sizes, ranging from 1 h to 24 h in the past, as presented in Figure 
10. 
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The best performance for the 3 h forecasting horizon for the proposed GNN-SAGE was
achieved using past information from all input variables and DoY/HoD. For this input data
configuration, the GNN-SAGE RMSE was equal to 0.06822 m, achieving improvements
of 15.87% over the persistence model and 14.36% over GNN-ResGated. Figure 9 indicates
that the 3 h forecasting horizon benefits from the DoY, HoD, and precipitation information
that reached the reference station positively influenced the model’s performance by adding
significant temporal information from neighboring stations.

Since precipitation data was used for a 3 h forecasting configuration, verifying the
precipitation influence over the model’s performance was important. To do so, the precipi-
tation summing window, which indicated previous accumulated precipitation levels, was
assessed for different sizes, ranging from 1 h to 24 h in the past, as presented in Figure 10.

Water 2023, 15, 1827 11 of 33 
 

 

 
Figure 9. Influence of the different input variables for the GNN-SAGE and GNN-ResGated models 
for a 3 h forecasting horizon. 

The best performance for the 3 h forecasting horizon for the proposed GNN-SAGE 
was achieved using past information from all input variables and DoY/HoD. For this in-
put data configuration, the GNN-SAGE RMSE was equal to 0.06822 m, achieving im-
provements of 15.87% over the persistence model and 14.36% over GNN-ResGated. Fig-
ure 9 indicates that the 3 h forecasting horizon benefits from the DoY, HoD, and precipi-
tation information that reached the reference station positively influenced the model’s 
performance by adding significant temporal information from neighboring stations. 

Since precipitation data was used for a 3 h forecasting configuration, verifying the 
precipitation influence over the model’s performance was important. To do so, the pre-
cipitation summing window, which indicated previous accumulated precipitation levels, 
was assessed for different sizes, ranging from 1 h to 24 h in the past, as presented in Figure 
10. 

 
Figure 10. Influence of the different precipitation summing window sizes for a 3 h forecasting hori-
zon. 
Figure 10. Influence of the different precipitation summing window sizes for a 3 h forecasting
horizon.

The best error value was reached using a window size of 1 h, with an RMSE equal to
0.06721 m, indicating improvements of 17.11% and 12.51% over the persistence model and
GNN-ResGated, respectively. This means that the total accumulated rain from the past 1 h
was enough to provide information for the GNN-SAGE model regarding the stage level
prediction. Figure 11 shows the forecasted stage values obtained using the proposed model,
comparing them with the real measured values over a reference period.

Similarly to Figure 6, the proposed graph model followed the real stage values but
was less accurate than before. Concerning the level peaks for the reference period, the
model underestimated them, especially the highest peak over 3 m, which occurred between
1 July and 15 July. As expected, this reflected an inferior performance compared with the
previous 1 h forecasting horizon, as illustrated in Figure 12.
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Similarly to Figure 6, the proposed graph model followed the real stage values but 
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Figure 11. Comparison between forecasted stage values using GNN-SAGE and real measured stage
values for Humber River for a 3 h forecasting horizon.

For a 3 h forecasting horizon, there was still a good agreement between the forecasted
and real data. There was more scattering around the regression line, even though the
GNN-SAGE model still returned good forecasting values. The measured values were
located within the same interval of 1.25 m and 1.75 m, and the forecasted data were located
between 1.20 m and 1.80 m, resulting in a variance higher than for the 1 h forecasting
horizon situation. The resultant R2 for this case was 75.49%.
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Figure 12. Scatter plot (a) with a marginal distribution for the measured (b) and forecasted (c) level 
values using GNN-SAGE for 3 h ahead. 
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Figure 12. Scatter plot (a) with a marginal distribution for the measured (b) and forecasted (c) level
values using GNN-SAGE for 3 h ahead.

3.6. Results for a 6 h Forecast Horizon

Considering a forecasting horizon of 6 h, the results found for the effect of different
time lags over the models’ performances are shown in Figure 13.
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Figure 13. Influence of the different time lags for the GNN-SAGE and GNN-ResGated models for a 
6 h forecasting horizon compared with the persistence model. 

For the 6 h forecasting horizon, both GNN-SAGE and GNN-ResGated managed to 
surpass the reference model for all studied time lags: the former attained the best overall 
results for a 60 h time lag with an RMSE of 0.09103 m; meanwhile, the latter achieved 
better results for a 48 h time lag with an RMSE equal to 0.09227 m. Again, GNN-SAGE 
was the best model for the analyzed time lag interval, improving the stage forecasting by 
up to 17.97% compared with the persistence model and 5.19% compared with GNN-Res-
Gated. Figure 14 presents the results for different input variables. 

 
Figure 14. Influence of the different input variables for the GNN-SAGE and GNN-ResGated models 
for a 6 h forecasting horizon. 

As expected, due to the large time lag value of 60 h, all input variables contributed 
positively to GNN-SAGE performance since there was time for them to reach the reference 

Figure 13. Influence of the different time lags for the GNN-SAGE and GNN-ResGated models for a
6 h forecasting horizon compared with the persistence model.

For the 6 h forecasting horizon, both GNN-SAGE and GNN-ResGated managed to
surpass the reference model for all studied time lags: the former attained the best overall
results for a 60 h time lag with an RMSE of 0.09103 m; meanwhile, the latter achieved better
results for a 48 h time lag with an RMSE equal to 0.09227 m. Again, GNN-SAGE was the
best model for the analyzed time lag interval, improving the stage forecasting by up to
17.97% compared with the persistence model and 5.19% compared with GNN-ResGated.
Figure 14 presents the results for different input variables.
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Figure 14. Influence of the different input variables for the GNN-SAGE and GNN-ResGated models
for a 6 h forecasting horizon.

As expected, due to the large time lag value of 60 h, all input variables contributed
positively to GNN-SAGE performance since there was time for them to reach the reference
station downstream. For this configuration, the best error value for the proposed model was
0.09103 m. Interestingly, both graph-based models achieved the same error values when
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DoY, HoD, and stage were used together as input variables, indicating that using these data
together did not contribute to improving the models’ performance. In this situation, adding
precipitation data was fundamental for the GNN-SAGE performance and was achieved by
supplementing extra spatiotemporal information to the model. For GNN-ResGated, the
model presented almost the same error values for all assessed cases, indicating that the
model could not correctly extract spatiotemporal information from the data, which did not
improve its forecasting capacity. Figure 15 presents the models’ behavior regarding the
accumulated precipitation data for different intervals in terms of the window size in hours.
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Concerning 6 h forecasting, the total accumulated precipitation in the past 6 h pro-
vided sufficient information for the GNN-SAGE model. For this time window, the pro-
posed model error was 0.09103 m, the same as that presented in Figure 13, and this model 
achieved the same improvements compared with the other two models. In Figure 16, a 
comparison between the forecasted and validation values is presented. 

Figure 15. Influence of the different precipitation summing window sizes for a 6 h forecasting
horizon.

Concerning 6 h forecasting, the total accumulated precipitation in the past 6 h provided
sufficient information for the GNN-SAGE model. For this time window, the proposed
model error was 0.09103 m, the same as that presented in Figure 13, and this model achieved
the same improvements compared with the other two models. In Figure 16, a comparison
between the forecasted and validation values is presented.

For the 6 h forecasting horizon, the model somewhat followed the actual data trend,
though it significantly missed the peaks. This behavior is typical for predictive models
that forecast values too far into the future, thus losing the connection between the data,
resulting in averaged forecasted values [53]. For this scenario, the peaks were significantly
underestimated, resulting in an inferior performance, as pictured in Figure 17.

Figure 17 shows more scattering than the previous scatter plots for 1 h and 3 h
forecasting horizons. The forecasted values were located more sparsely between 1.20 m
and 1.80 m. This higher variance around the regression line reflected the proposed model’s
performance, resulting in a reduced R2 with a value of 59.07%.
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Figure 16. Comparison between the forecasted stage values using GNN-SAGE and the measured 
stage values for Humber River for a 6 h forecasting horizon. 
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Figure 16. Comparison between the forecasted stage values using GNN-SAGE and the measured
stage values for Humber River for a 6 h forecasting horizon.

3.7. Results for a 12 h Forecast Horizon

Considering a forecasting horizon of 12 h, the results found for the effects of different
time lags on the models’ performances are shown in Figure 18.

Figure 18 points out that both models could improve their forecasting performances
when data from further past was added, surpassing the persistence model for all tested
time lags. For GNN-SAGE, the model started to present convergent behavior after a 66 h
time lag and had the best configuration for the 12 h forecasting horizon situation among all
models, with the minimum error value of 0.12293 m. Compared with the persistence model
and GNN-ResGated, for the same time lag, the proposed model improved the forecasting
performance by 13.33% and 6.69%, respectively. The following Figure 19 shows the different
input data used for each model.



Water 2023, 15, 1827 17 of 31Water 2023, 15, 1827 17 of 33 
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Figure 17 shows more scattering than the previous scatter plots for 1 h and 3 h fore-
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Figure 17. Scatter plot (a) with a marginal distribution for the measured (b) and forecasted (c) level
values using GNN-SAGE for 6 h ahead.

Again, for a 12 h forecast, using all variables information was found to increase GNN-
SAGE’s performance, resulting in the lowest RMSE value of 0.12293 m. Using the variable
stage alone resulted in similar errors for both models, and the case using DoY, HoD, and
stage. Similar to the 6 h forecasting horizon scenario, the addition of extra precipitation
information could improve GNN-SAGE’s performance. Figure 20 shows the accumulated
precipitation data for different time intervals in the past.
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Figure 19. Influence of the different input variables for the GNN-SAGE and GNN-ResGated models
for a 12 h forecasting horizon.

For the assessed case forecasted 12 h in advance, accumulated rain from the last 3 h
sufficed for the model forecasting performance. Using this summing window size, the
RMSE was equal to 0.12227 m, providing an increase of 13.79% over the persistence model
and a 6.97% increase over the remaining GNN-ResGated model. Figure 21 illustrates how
well the forecasted values followed the measured values’ trend over the reference period.
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Figure 21. Comparison between the forecasted stage values using GNN-SAGE and the real meas-
ured stage values for Humber River for a 12 h forecasting horizon. 

As expected, the model’s performance deteriorated for an increased forecasting hori-
zon of 12 h. Although GNN-SAGE still followed the data trend, most of the peaks were 
missed by its predictions. This reduced performance is better visualized in the following 
Figure 22. 

Figure 21. Comparison between the forecasted stage values using GNN-SAGE and the real measured
stage values for Humber River for a 12 h forecasting horizon.
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As expected, the model’s performance deteriorated for an increased forecasting hori-
zon of 12 h. Although GNN-SAGE still followed the data trend, most of the peaks were
missed by its predictions. This reduced performance is better visualized in the following
Figure 22.
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Figure 22. Scatter plot (a) with a marginal distribution for the measured (b) and forecasted (c) level 
values using GNN-SAGE for 12 h ahead. 

Figure 22 shows the scattered points around the regression line. In this case, the fore-
casted data were mostly within the 1.35 m to 1.80 m interval, resulting in a high variance 
for the model’s prediction, leading to more dispersed points, and thus, again reducing R2 
to a value of 40.12%. 
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Figure 22. Scatter plot (a) with a marginal distribution for the measured (b) and forecasted (c) level
values using GNN-SAGE for 12 h ahead.

Figure 22 shows the scattered points around the regression line. In this case, the
forecasted data were mostly within the 1.35 m to 1.80 m interval, resulting in a high
variance for the model’s prediction, leading to more dispersed points, and thus, again
reducing R2 to a value of 40.12%.
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3.8. Results for a 24 h Forecast Horizon

Considering a forecasting horizon of 24 h, the results found for the effects of different
time lags on the models’ performances are shown in Figure 23.
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Figure 23. Influence of the different time lags for the GNN-SAGE and GNN-ResGated models for a 
24 h forecasting horizon compared with the persistence model. 

For one-day-ahead forecasting, increasing the time lag improved both the GNN-
SAGE and GNN-ResGated predictions: the former, again, reached the best overall perfor-
mance, converging its results for a 60 h time lag, resulting in an RMSE equal to 0.16079 m; 
meanwhile, the latter achieved its best result for an 84 h time lag and an RMSE equal to 
0.16331 m. Interestingly, GNN-ResGated could not outperform the persistence model un-
til a 42 h time lag, requiring more past information to improve its performance. Figure 24 
presents the results of different input variables used for each model. 

 
Figure 24. Influence of the different input variables for the GNN-SAGE and GNN-ResGated models 
for a 24 h forecasting horizon. 

For the 24 h forecasting horizon, additional precipitation data added no significant 
information for the GNN-SAGE model. It reached similar results when compared with 
forecasting using just stage as an input variable, indicating that it may add noise rather 
than relevant information for long forecasting horizons. This may have been due to a com-
bination of both the large time lag and forecasting horizon: due to their extended lengths, 

Figure 23. Influence of the different time lags for the GNN-SAGE and GNN-ResGated models for a
24 h forecasting horizon compared with the persistence model.

For one-day-ahead forecasting, increasing the time lag improved both the GNN-SAGE
and GNN-ResGated predictions: the former, again, reached the best overall performance,
converging its results for a 60 h time lag, resulting in an RMSE equal to 0.16079 m; mean-
while, the latter achieved its best result for an 84 h time lag and an RMSE equal to 0.16331
m. Interestingly, GNN-ResGated could not outperform the persistence model until a 42 h
time lag, requiring more past information to improve its performance. Figure 24 presents
the results of different input variables used for each model.
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For the 24 h forecasting horizon, additional precipitation data added no significant
information for the GNN-SAGE model. It reached similar results when compared with
forecasting using just stage as an input variable, indicating that it may add noise rather
than relevant information for long forecasting horizons. This may have been due to a
combination of both the large time lag and forecasting horizon: due to their extended
lengths, part of the data coming from upstream stations may not get captured by the
predictive model, thus not improving its performance.

Due to the very similar results using just stage and all variables as inputs, there was no
conclusive best configuration for this situation. However, to keep following the previous
results from 3 h to 12 h forecasting horizons, the authors opted to use all independent
variables as input, leading to an error of 0.160 m and an improvement of 4.13% over the
persistence model and 2.28% over GNN-ResGated. Figure 25 shows the results for the
accumulated precipitation from 1 h to 24 h.
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Figure 25. Influence of the different precipitation summing window sizes for a 24 h forecasting
horizon.

Both GNN-SAGE and GNN-ResGated showed low sensitivity for different precipita-
tion window sizes. The proposed GNN-SAGE model managed to achieve the best results
for each one of the windows, with marginal differences between them. The minimum error
of 0.16079 m was reached using a 6 h window. The GNN-SAGE performance was also
evaluated based on how its forecasted results followed the real measured ones, as depicted
in Figure 26.

Unsurprisingly, the 24 h ahead prediction led to the worst results thus far. From
Figure 26, it is possible to see that the model completely missed the highest peak of more
than 3.0 m. This indicated that the model could not correctly predict stage values too far
into the future, with it not being able to provide precise results. The following Figure 27
illustrates the variance in the forecasted results around the regression line.
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Figure 26. Comparison between the forecasted stage values using GNN-SAGE and the real measured
stage values for Humber River for a 24 h forecasting horizon.

As expected, there was much more prominent scattering than the previously shown
results. The high variance of the model for 24 h forecasting resulted in more dispersed
forecasted points, indicating a less precise model for this situation. This was reflected in
the model’s R2, which was lower than the previously assessed configurations, with a value
of 22.65%.

3.9. Results of the SHAP Analysis

Figure 28a–e present the results of the SHAP analysis conducted for the proposed
model. The SHAP analysis organized the variables in descending order of influence over
the forecasted result. This meant that the closer to the top the variable was, the more
influential it was. This approach also presented the correlation between input variables
and the achieved result, as presented by the right sidebar in Figure 28a–e: the higher the
feature value, the higher the correlation with the forecasted stage for the river. Besides this,
positive values for the SHAP analysis indicated that the variable positively affected the
model’s forecasting, and vice versa.
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From Figure 28, the most influential variable for the model for all forecasting horizons
was related to the reference station itself, as indicated by the variable “Station 0_lag”. This
variable refers to the stage level of the reference station and shows a high correlation with
the final output, negatively affecting the model’s prediction. In Figure 28a, all the most
influential variables were previous information from neighboring stations because only
past-stage values were used for this configuration. However, as previously mentioned,
from the 3 h forecast horizon onward, other input variables were added to the model.
Figure 28b–e show that HoD and DoY played a significative role in the model’s predictions,
being amongst the most influential variables for this forecasting horizon. These variables
could capture seasonality and diuturnal variations, adding important information for the
model’s forecasting due to the daily and yearly river stage variations.
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For the precipitation input data, its influence started to be relevant for the 6 h horizon
onward, as shown in Figure 28c–e. Past information for precipitation coming from station 7,
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e.g., “PrecipStation 7_lag”, carried more spatiotemporal information than the other stations.
Only for the 6 h forecasting horizon did another station provide influential information
regarding precipitation, i.e., station 4.

4. Discussion

The proposed GNN-SAGE model managed to satisfactorily forecast flooding events
of the Humber River up to 3 h in advance. After this time horizon, the results started to
deteriorate, as shown in Figures 17, 22 and 27. However, this is an expected behavior in ML
approaches that use time-series forecasting. Previous works on flooding forecasting showed
that the error increased as the leading time increased, deteriorating future flood predictions
and indicating that the input information may not provide enough spatiotemporal data for
the model [24,80]. This may also lead to lagged forecasted results when compared with
the expected values, as shown in Figures 16, 21 and 26 [81]. The performance deterioration
could potentially be attributed to the dataset size, suggesting that more data might be
required for increased precision in longer-range forecasts [24,79].

GNN-SAGE’s performance was comparable with some of the state-of-the-art ap-
proaches found in the literature. Tables 1 and 2 summarize the performance metrics
achieved by the proposed graph-based model and the results from previous works.

Table 1. Summary of performance metrics for forecasting using the GNN-SAGE model.

Metric 1 h Ahead 3 h Ahead 6 h Ahead 12 h Ahead 24 h Ahead

RMSE (m) 0.02516 0.06736 0.09200 0.12215 0.16077
MAE (m) 0.01592 0.0345 0.04372 0.05514 0.07077

MAPE 1.04% 2.18% 2.65% 3.20% 3.78%
R2 96.45% 75.50% 59.10% 40.12% 22.65%

Table 2. Literature values for flooding prediction.

Model Metric Value Author

Spatio-temporal attention LSTM (STA-LSTM)

Error rate
3.96% for 6 h forecasting horizon

3.98% for 12 h forecasting horizon
6.31% for 24 h forecasting horizon

Zhang et al.
[19]

Quantitative precipitation forecast (QPF) RMSE
0.09 m for 1 h forecasting horizon

Wu et al.
[28]

Support vector machine (SVM)
RMSE (MAE)

0.072 m (0.036 m) for 3 h forecasting horizon
0.131 m (0.070 m) for 6 h forecasting horizon

Dazzi et al.
[80]

Support vector regression (SVR)

RMSE
0.07 m for 1 h forecasting horizon
0.25 m for 3 h forecasting horizon

RMSE

Nguyen and Chen
[82]

Multiple additive regression trees (MART) 0.14 m for 1 h forecasting horizon
0.29 m for 3 h forecasting horizon

Fu et al.
[83]

Hybrid wavelet and ANN (WANN)

RMSE (R2)
0.03 m (98%) for 1 h forecasting horizon
0.038 m (97%) for 3 h forecasting horizon
0.12 m (60%) for 6 h forecasting horizon

Alexander et al.
[84]

The hybrid approach STA-LSTM, as implemented by Zhang et al. [19], was used to
forecast flooding of the Humber River. The attention-based LSTM model showed good
agreement between real and predicted values for forecasting horizons ranging from 6 h
to 24 h. When comparing GNN-SAGE with their results, it is possible to see that the
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graph-based model achieved better results for each of the studied horizons. The results
indicate that the GNN-SAGE had better performance when forecasting flooding of the
Humber River than the attention model.

In Wu et al. [28], a physics-based model was implemented to forecast flooding for 1 h
ahead in Taiwan. The authors managed to improve their results by 80% when compared
with direct simulated values of the river using real-time data correction. However, when
comparing GNN-SAGE with the best QPF result achieved, the graph-based model showed
superior performance, achieving an RMSE that was 3.5 times smaller than the one presented
in the literature.

The GNN-SAGE performance was also superior when analyzed against SVM and
SVR models. In Dazzi et al. [80], the authors used an SVM to predict the river stage in
Italy up to 9 h into the future. Their best results were found for the 3 h forecasting horizon,
where the RMSE was 0.072 m and the MAE was 0.036. For a 3 h forecasting horizon, the
errors were greater (as expected), achieving 0.131 m for the RMSE and 0.070 m for the MAE.
When comparing these values with the ones presented in Table 1, GNN-SAGE surpassed
the literature numbers for both assessed horizons, improving the forecasting for 3 h and 6 h
ahead by 6% and 29%, respectively, in terms of RMSE. For the MAE, GNN-SAGE improved
the forecasting by 4% for 3 h ahead and 38% for 6 h ahead. For both metrics, GNN-SAGE
presented forecasted results more accurately for the river stage. When comparing with
the work done by Nguyen and Chen [69], where the authors forecasted flooding events in
Taiwan, the proposed graph-based model improved the RMSE metric by 64% and 73% for
1 h and 3 h, respectively.

The GNN-SAGE model also surpassed the results achieved by MART and hybrid
WANN models. The MART model was used by Fu et al. [83] to predict flooding in China.
Considering their downstream station and the best results from their study, which are
presented in Table 2, GNN-SAGE presented an improvement of 82% for the 1 h forecasting
horizon and 77% for the 3 h forecasting horizon, indicating great superiority over the
MART model. Finally, in Alexander et al. [84], a hybrid WANN model was implemented
to estimate flooding in India. Their model RMSE and R2 were consistent between 1 h and
3 h ahead, with a minimal difference between them, as presented in Table 2. However,
for the 6 h forecasting horizon, their RMSE and R2 deteriorated greatly. Compared with
the WANN model, GNN-SAGE improved the forecasting for 1 h ahead regarding RMSE
by 16%. However, for this same forecasting horizon, the R2 metric for the WANN model
was superior, indicating that their model was better at explaining the data. For a 3 h
forecasting horizon, GNN-SAGE was surpassed by the WANN model in terms of RMSE
and R2. However, our proposed model improved the forecasting for the 6 h horizon by
23%, while the R2 was around the same value as the one in the literature.

The SHAP analysis showed that for most of the assessed horizons, past data from
the reference and its neighboring stations were found to be the most relevant for the
model forecasting. The river seasonality was captured using HoD and DoY, which started
to exert relevant influence over GNN-SAGE from 3 h onward. Precipitation was also
another relevant variable for the model starting from the 6 h horizon. Precipitation is
an important parameter for hydrological event simulations [19,40,85], and accumulated
precipitation data from the previous 72 h can give enough hydrological information for
flooding forecasting [30]. In [86], SHAP analysis showed that forecasting streamflow relies
on important precipitation data, besides streamflow inputs, often influencing the mode
positively. In Ekmekcioğlu et al. [87] and Aydin and Iban [88], SHAP analysis showed
that precipitation may affect the forecasted result differently depending on the ML model
used, which is an expected behavior since different ML approaches process data differently,
resulting in different results for an identical task [33,48,49,89].

5. Conclusions

The present work presented a graph-based deep-learning forecasting model to estimate
flooding. The proposed model was validated for the Humber River, Canada. Using
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historical data from stations distributed along the river, comprising previous information
on the stage level and precipitation ranging from 8 June 2018 to 17 September 2020, the
GNN-SAGE model was trained and tested to forecast possible flooding events up to 24 h in
advance.

The forecasted results were assessed using the metrics RMSE and the coefficient of
determination R2. The RMSE values for 1 h, 3 h, 6 h, 12 h, and 24 h forecasting horizons
were, respectively, 0.025 m, 0.067 m, 0.920 m, 0.122 m, and 0.160 m. For the coefficient
of determination, the found values were 96.45%, 75.50%, 59.10%, 40.12%, and 22.65%,
respectively, meaning average improvements over the benchmark persistence and GNN-
ResGated models of 18% and 9%, respectively. The model presented a great performance
for forecasting horizons of 1 h and 3 h. However, results deteriorated after that, which was
an expected behavior due to the increase in uncertainty for longer forecasting horizons.

When compared with similar studies found in the literature, GNN-SAGE surpassed or
provided competitive results in terms of errors RMSE, MAE, and MAPE, and the coefficient
of determination R2, except when compared with the hybrid WANN model. The graph-
based model surpassed the physic-based QPF model, the ML SVM and SVR models, and
the ensemble MART model, offering an average improvement of 53% over the literature
models.

The SHAP analysis showed that the most influential variable for the model result was
the data coming from the reference station for all assessed horizons. However, seasonality
regarding DoY and HoD increased their importance over the forecasted values when the
forecast horizon was increased. Precipitation was also more influential in the forecasted
result starting from a forecasting horizon of 6 h.

In future works, the performance of GNN-SAGE can be investigated further when
applied to a larger river body. In this case, the impact of spatiotemporal information from
neighboring stations can be assessed by examining a variety of station numbers. The
developed model can also be applied to an early alarm flooding system. The results of the
graph-based model indicate that it can provide adequate warning ahead of time, allowing
residents and stakeholders to be better prepared for flooding events.
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87. Ekmekcioğlu, Ö.; Koc, K.; Özger, M.; Işık, Z. Exploring the Additional Value of Class Imbalance Distributions on Interpretable Flash

Flood Susceptibility Prediction in the Black Warrior River Basin, Alabama, United States. J. Hydrol. 2022, 610, 127877. [CrossRef]
88. Aydin, H.E.; Iban, M.C. Predicting and Analyzing Flood Susceptibility Using Boosting-Based Ensemble Machine Learning

Algorithms with SHapley Additive ExPlanations. Nat. Hazards 2023, 116, 2957–2991. [CrossRef]
89. de Amorim Neto, J.P.; Marinho, F.P.; Lima, R.J.P.; Rocha, P.A.C.; Mendonça, S.P.; Bueno, A.V.; da Silva, M.E.V. Thermal Behavior

Estimation of a Solar Wall Operated by TiO2 Nanofluids Using Several Machine Learning Models. J. Braz. Soc. Mech. Sci. Eng.
2022, 44, 128. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.3390/app12188972
https://doi.org/10.1016/j.chemolab.2022.104682
https://doi.org/10.1016/j.conbuildmat.2022.128296
https://doi.org/10.1029/2021MS002881
https://doi.org/10.1057/s41599-023-01548-7
https://www.ncbi.nlm.nih.gov/pubmed/36818038
https://doi.org/10.3390/w14020227
https://doi.org/10.1016/j.jglr.2020.11.009
https://doi.org/10.3390/geosciences8080275
https://doi.org/10.3390/w13121612
https://doi.org/10.1016/j.ejrh.2021.100985
https://doi.org/10.3390/w12030787
https://doi.org/10.1007/s11269-019-02357-x
https://doi.org/10.1080/09715010.2017.1422192
https://doi.org/10.1002/essoar.10501417.1
https://doi.org/10.1016/j.jhydrol.2021.126636
https://doi.org/10.1016/j.jhydrol.2022.127877
https://doi.org/10.1007/s11069-022-05793-y
https://doi.org/10.1007/s40430-022-03425-x

	Introduction 
	Proposed Model 
	Persistence Model 
	GNN-SAGE and GNN-ResGated Models 
	SHAP Analysis 

	Validation and Analysis of Results 
	Humber River Description 
	Evaluation Metrics 
	Dataset Size Evaluation 
	Results for a 1 h Forecast Horizon 
	Results for a 3 h Forecast Horizon 
	Results for a 6 h Forecast Horizon 
	Results for a 12 h Forecast Horizon 
	Results for a 24 h Forecast Horizon 
	Results of the SHAP Analysis 

	Discussion 
	Conclusions 
	References

