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Abstract: The Quaternary aquifer in the western Nile Delta is threatened by seawater intrusion.
Few studies have integrated diverse techniques for the assessment of seawater intrusion in this
aquifer. The present study aims to determine the geochemical processes and impact of seawater
intrusion on this aquifer. To accomplish this investigation, the integration of hydrogeochemical,
statistical, multivariate statistical, and graphical tools were implemented on 75 groundwater samples
and 5 soil samples. The physicochemical variables were analyzed using hierarchical cluster analysis
(HCA), saturation index (SI), ionic ratios, ionic relationships, the seawater intrusion index (SWI)
and the correlations among 16 hydrochemical parameters, to identify the influencing processes
of groundwater quality in the study area. According to the statistical study, the groundwater is
divided into four groups. Those are distributed, from north to south: Group1 (G1), Group2 (G2),
Group4 (G4), and Group3 (G3). The samples of G1 and G2 are distinguished by Na–Cl chemical
type. While G4 has two main ion associations, HCO3–Ca–Mg and Cl–SO4–Na, G3 is characterized
by HCO3–Cl–SO4–Ca–Na type. The processes that affect the chemistry of the groundwater are the
seawater intrusion, ion exchange, silicate and Ca-rich mineral weathering, and mineral deposition.
G1 and G2 groups are primarily influenced by seawater incursion, evaporation, and the ion exchange
mechanism. In addition, the weathering of silicate minerals has a substantial effect on G3 and G4
groups, resulting in the creation of carbonate minerals.

Keywords: coastal aquifers; seawater intrusion index; hierarchical cluster analysis; saturation index;
ion exchange; GIS techniques

1. Introduction

Groundwater is a valuable natural resource that is essential for social and economic
growth and human needs, especially in arid and semi-arid regions which suffer from
shortage of precipitation and fresh surface water sources [1–3]. Aquifer rock material,
climate conditions, and human activities in addition to seawater intrusion have a significant
impact on groundwater quality and quantity in coastal aquifers [4–7].

Due to extreme use of the groundwater in coastal aquifers for industrial, agricultural,
and urban expansion, seawater intrusion has come to be a global problem [8–11]. Cli-
mate change has raised atmospheric surface temperatures and melted ice caps, mountain
glaciers, and polar ice sheets, which raises ocean and sea water levels, compounding the
problem [12]. In addition, both the slope of the aquifer bed and the slope of the seaside
influence the seawater intrusion; increasing the slope of the bed toward the sea will increase
the interference [13]. Seawater intrusion hazard induces salinization of aquifers, reducing
groundwater quality and causing a salinity hazard to the superimposed soils [14].
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Globally, the coastal areas are occupied by about 20% of the world’s population [12].
However, due to groundwater overexploitation to face the increasing water demand associ-
ated with population expansion and fast urban development, these locations are vulnerable
to seawater intrusion. Future climate change and the resulting sea level rise are both
predicted to worsen this vulnerability. Nevertheless, groundwater management becomes
more complicated when all these elements come together.

Groundwater salinization threatens coastal fresh water supplies such as north Kuwait [15],
Kish Island, Iran [16], Thriassion Plain and Eleusis Gulf, Greece [17], China [18], Spain [19],
Bangladesh [20], Mexico [21], and others. Contamination by seawater has been studied in
many coastal aquifers. The assessment of this phenomenon involves determining the spatial
variation of physicochemical properties such as electrical conductivity (EC), total dissolved
solids (TDS), seawater mixing and groundwater level, groundwater hydrochemical analy-
sis, and geoelectrical methods such as resistivity and electromagnetic techniques [22–29].
Several studies have been conducted to simulate the seawater intrusion using different
numerical techniques, including Sefelnasr and Sherif [30], Mabrouk et al. [31], Mabrouk
et al. [32], Abd-Elhamid et al. [12], Abd-Elhamid et al. [13], Sarker et al. [20], Masoud
et al. [33]. The Nile Delta aquifer is one of the largest fresh groundwater sources in the
world. Researchers found that the seawater intrusion front in the Nile Delta aquifer moved
inland more than 100 km from the Mediterranean shoreline [34–36].

Eventually, the complex process of seawater intrusion is influenced by, among others,
shoreline geomorphology, hydrogeochemical reactions, biological processes, and aquifer
dynamics. Saltwater intrusion, mostly in unconfined coastal aquifers, is the main cause
of salinization [19]. In confined or semi-confined aquifers, complicated hydrogeological
processes such as water–rock interaction and mixing with different water sources may
impact groundwater quality and geochemical evolution [30].

Understanding the hydrochemistry is essential for determining the groundwater
quality and its suitability for various applications, and therefore, determining sound man-
agement options for this resource as well as efficient mitigation measures when required.
Diverse statistical and graphical techniques, such as pattern diagrams and GIS, can also be
used to characterize seawater incursion. However, evaluation of the groundwater chem-
istry in the region based on integration of hydrogeochemical methods, statistical analysis,
and advanced geostatistical techniques is still weak. Such integration provides the means of
investigating such complex coastal aquifers, and the results may function as the foundation
for effective groundwater management.

The purpose of this study is to evaluate the anthropogenic impacts and saltwater
intrusion on the geochemical constituents and processes governing groundwater in the
study area. To achieve this objective, groundwater samples of soil and water were collected
and analyzed. For organizing groundwater samples, managing this volume of data, and
providing accurate interpretations, graphical representations of the data were accompanied
by multiple statistical approaches and multiple indices.

2. Materials and Methods
2.1. Study Area

The study area is a part of the Northwest Rosetta branch. It lies between 30◦42′ to
31◦28′ N and 29◦45′ to 30◦48′ E (Figure 1). It is bounded to the north by the Mediterranean
Sea, to the east by the branch of Rosetta, and to the west by El Nubaryia Canal. The
study area has an arid to semi-arid climate with an average annual temperature of 30.4 ◦C
and an average annual humidity of 59% [37]. The rainfall ranges from 50 mm/a in the
south to about 200 mm/a in the north. The evapotranspiration ranges from 1648 in the
north to 1680 mm/y in the south [38]. Geomorphologically and hydrogeologically, the
investigated area was subjected to different studies such as Allam et al. [39], Dawoud
et al. [40], Morsy [41], El Fakharany and Hagran [42], and Salem et al. [43]. Young alluvial
plains characterize the research region. It features a nearly elevated ground surface that
ranges from −3 m (amsl) in the northwest to +6 m (amsl) in the southeast [41]. The area is
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characterized by sand dunes, aeolian deposits that occasionally occupy the surface, brackish
lakes, and water-logged areas that occur in several places [44]. The slope is very smooth,
representing one meter per 10 km to the north direction [44,45]. The Quaternary aquifer is
comprised of Mit Ghamr Formation on the bottom and Bilqas Formation on the top [43].
The Mit Ghamr Formation is made up of sand and gravel with clay intercalations of
continental origin. The aquifer layer is semiconfined with a thickness reaches its maximum
near the Rosetta branch (about 850 m) and decreases rapidly towards the west, where it
notably decreases near the El Nubaryia canal (<200 m) [36,46]. The Holocene-aged cap
layer of the Bilqas Formation consists of clay and silt and is less than 20 m thick in the south
and up to 50 m thick in the north. The Nile Delta aquifer system is recharged in the flood
plain by infiltration from surface water (especially from irrigation systems), rainfall, and
by leakage from subsurface drainage water in the cultivated lowlands [40]. Groundwater
discharge takes place either naturally through the outflow into the drainage system, via
evapotranspiration and groundwater baseflow, or artificially through direct well extraction,
which is primary discharge component of the aquifer [47]. The groundwater level within
the study area ranges from 1 m in the north to 4 m close to El Nubaryia canal. The general
groundwater flow direction is from south to north and from southwest to northeast.
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Figure 1. Location map showing the extent of the study area and the distribution of the collected
water samples.

2.2. Sampling and Analytical Techniques

The study of the hydrogeochemical aspects of groundwater in the study area was
mainly based on the results of the chemical analyses of 75 groundwater samples that
were collected from the drilled wells during March, June, and October 2018 (Figure 1). In
addition, five soil water samples were also collected from the subsoil drainage system and
analyzed to estimate the origin of dissolved ions. The sampled wells have depths varying
from 15 to 200 m. The chemical analyses were performed in the laboratory of the Geology
Department, Faculty of Science, Tanta University, and in the Center of Scientific Research
and Measurements, Tanta University. The analysis techniques are shown in Table 1. While
water samples were being analyzed, a number of quality assurance and quality control
procedures were carried out. The validation of analytical methodologies was accomplished
by calibrating devices and assessing the precision of the samples being analyzed. Charge
error balance (CBE) was calculated to ensure that the analytical error of the analyzed ions
concentration in meq/L−1 was accurate [48,49]. The CBE of every examined sample was
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found to be within the permissible range of ±5%. The obtained chemical data are listed in
Table 2.

Table 1. The analyzing techniques of the measured parameters.

Parameter Used Instrument Analyzing
Techniques Analyzing Place

Electric conductance
Ec (mS/cm) Hach’s Portable

conductivity/ Total
dissolved solids (TDS)

The typical analytical
methods explained by

HACH [50]

FieldTotal dissolved solids
TDS (mg/L)

Temperature (◦C)

Hydrogen ion
activity (pH)

Portable Consort pH
Meter (Model p 314)

SO4 and NO3

Hach’s Direct
Reading (DR/2000)
Spectrophotometer

Department of
Geology, Faculty

of Science,
Tanta University

Cl and HCO3

Hach’s Digital
Titrator Model

16900-01

Na, K, Ca, Mg, Al, Ba,
Fe, Mn, Sr, and Si

ICP (Inductive
Coupled Plasma
Optima 7000 DV)

EPA method 200.7 by
USEPA [51]

Center of Scientific
Research and

Measurements,
Tanta University

Table 2. Statistical analysis of the obtained hydrochemical data.

Parameter Min Max Av SD

TDS (mg/L) 190 27,680 3806.2 7001.4
EC (ms/cm) 0.38 55.3 7.1 12.3

pH 5.05 8.7 7.1 0.8
TH (mg/L) 25.93 3315 762.8 839.4
Ca (mg/L) 4.74 670 153.6 159.5
Mg (mg/L) 3.43 430 92.3 110.9
Na (mg/L) 37.98 9200 1156.7 2339.8
K (mg/L) 2.34 337.7 34.8 68.4

HCO3 (mg/L) 13.02 394 222.6 74.1
SO4 (mg/L) 0 2300 365.7 517.7
Cl (mg/L) 48 14,300 1844.1 3647.6

NO3 (mg/L) 0 202 22.9 36.6
Al (mg/L) 9 × 10−4 0.36 0.1 0.1
Ba (mg/L) 12 × 10−5 15.39 0.3 1.7
Fe (mg/L) 12 × 10−5 34.56 1.1 4.1
Mn (mg/L) 9 × 10−4 2.853 0.5 0.5
Si (mg/L) 4.57 23.42 12.1 3.9
Sr (mg/L) 0.04 62.5 4.6 11.1

2.3. Cluster Analysis and Saturation Index (SI)

Multivariate statistical analyses were used to provide a quantitative measure of water
quality parameters relative to each other and to estimate correlations between chemical
parameters and groundwater samples [50–57]. Hierarchical cluster analysis HCA using
Ward’s linking method and squared Euclidean distance as a dissimilarity metric was used
to group parameters by multivariate similarities.

The saturation percentage, specified as SI = log (IAP/Ks), defines the degree of min-
eral saturation in water. IAP is the ionic activity product of the proper ions, and Ks is
the constant of saturation under a specific temperature. The equilibrium distribution of
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minerals in an aqueous solution and the state of saturation is determined using the hydro-
chemical program PHREEQC Interactive Program [58]. An SI < 0 means that the mineral’s
groundwater is undersaturated. An SI > 0 indicates that the groundwater is supersaturated
with this mineral phase and thus incapable of dissolving more of the mineral.

2.4. Seawater Intrusion Quality Index (SWI)

To identify the threat of seawater intrusion, Tomaszkiewicz et al. [59] created the
groundwater quality index for seawater intrusion (GQISWI) (Equation (1)). This model
translates the Piper diagram information GQIpiper (mix) (freshwater seawater mixing index of
Piper diagram) and the seawater fraction index GQIfsea to create a new two-stage numerical
indicator for seawater intrusion [59].

GQISWI =
GQIpiper(mix) + GQI f sea

2
(1)

The first stage included the calculation of GQIpiper (mix) as follows:

GQIPiper(mix)(meq/l) =


(

Ca+2 + Mg+2
)

Total cations
+

(
HCO−3

)
Total anions

× 50 (2)

The second stage involves computing the seawater fraction index GQIfsea (Equation (3))
from the seawater fraction (fsea) (Equation (4)). GQIfsea was then used to classify the SWI.
These values vary from 0 to 100, the fresher waters of which have lower values.

GQI fsea = (1− fsea)× 100 (3)

The following formula can be used to measure the seawater fraction (fsea) [60]:

fsea =
mCl(sample) −mCl( f reshwater)

mCl(seawater) −mCl( f reshwater)
(4)

where mCl (sample) is the Cl concentration of the sample, mCl (seawater) is the Cl concentration
of the Mediterranean Sea (603 meq/L), and mCl (freshwater) represents the Cl concentration of
the freshwater (0.48 meq/L).

The difference in hydrochemistry between seawater and freshwater was classified by
concentrations of anions and cations. Indeed, the freshwater is defined by an abundance
of calcium and bicarbonate, while the seawater is classified by its dominance of chloride
and sodium [61]. The concentration of chloride is the base which determines the mixing of
these two types of water, which is clarified by the conservative presence of anions [62].

3. Results and Discussions
3.1. Hydrochemical Characteristics and Spatial Distribution

The hydrochemical characteristics of groundwater are discussed with respect to the
study area and according to the results of water samples chemical analysis. As shown in
Table 2, the groundwater pH values range from slightly acidic (5.05) to slightly alkaline
(8.7) averaging 7.1. The differences in pH values are primarily due to the aquifer–rock
interaction and the distance from the sea [63]. Based on the classification of Winslow
and Kister [64], 53%, 21%, 15%, and 11% of the groundwater samples are fresh, slightly,
moderately, and very saline water, respectively (Table 3). The EC of groundwater in the
study area ranges from 0.38 to 55.3 mS/cm with an average of 7.1 mS/cm (Table 2). TDS
levels range from 190 to 27680 mg/L, averaging 3806.2 (Table 2). The Rosetta branch and
many irrigation canals nearby produce fresh to slightly salty water in the southern and
central study area. Near irrigation canals, Nile water seepage dilutes groundwater. Figure 2
shows that seawater incursion increases salinity northward, where the shore is 30 km away.
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Table 3. Classification of water according to Total Dissolved Solids [64].

Water Class Salt Concentration (mg/L) No. of Wells %

Fresh >1000 40 53
Slightly saline 1000–3000 16 21

Moderately saline 3000–10,000 11 15
Very saline 10,000–35,000 8 11

Brine <35,000 - -
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As demonstrated in Figure 3a–c, Ca, Mg, and Na concentrations were lowest in
the south and center regions and rose northward. It is largely seawater interference. The
southern and central parts may have lower cations due to Nile water seepage and irrigation.

Figure 3d shows that the concentration of bicarbonate increases from south and
northwest towards the central parts. Bicarbonates are introduced to natural water through
recharging with meteoric water and interaction with sediments rich in either carbonate
minerals or organic matter. The dissolution of CaCO3 or the decay of organic matter
increase in the presence of CO2 leading to the formation of more soluble bicarbonate [65].
SO4 and Cl spatial distributions showed that they have almost the same pattern. The
lower values are located in the south and increase towards the north (Figure 3e,f). Such
distribution patterns could be related to seawater intrusion effect.

Figure 4a–f shows Al, Mn, Ba, Fe, Sr, and Si spatial distribution maps. Al concentration
increases southward and decreases northward (Figure 4a). Mn is highest in the northeast
and declines westward to its minimum at El Nubaryia Canal (Figure 4b). Ba, Fe, and
Sr have similar distributions. The concentration increases northeastward from the south
(Figure 4c–e). Si levels are higher in central areas from northeastern to southwestern
directions and lower along the western boundary (Figure 4f).
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3.2. Hydrochemical Classification
3.2.1. Cluster Analysis

Based on the HCA procedures, four groups were identified. Figure 5a shows that
G2, G3, and G4 are related, but G1 samples are distinct. This is primarily due to their
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occurrences in the south and center of the study area, which are relatively located far from
the sea. On the other hand, G1 is located in the northern region near to the sea, thus, its
chemical composition was significantly affected by the seawater.
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Figure 5. (a) Dendrogram shows the grouping of the groundwater samples into four groups de-
pending on the major ion concentrations in milliequivalents per lite and (b) Scholler diagrams
characterizing the chemical type for samples groups.

Table 4 shows the mean hydrochemical data values for each sample group to explain
their features. Figure 6 depicts group dispersion by location.

Table 4. The average composition of the hydrochemical parameters of the four groundwater sample
groups.

Parameter G1 G2 G3 G4

TDS mg/L 22,686.75 6486.4 597.94 1829.1
Ca meq/L 26.09 14.27 4.24 5.37
Mg meq/L 30.12 14.97 2.57 5.94
Na meq/L 329.78 82.24 5.51 19.17
K meq/L 5.18 0.72 0.17 0.56

HCO3 meq/L 3.42 187 3.49 3.95
SO4 meq/L 29.71 13.94 2.92 5.93
Cl meq/L 332.59 92.92 5.6 20.91
Si mg/L 12.63 12.89 11.31 10.59
Al mg/L 0.09 0.03 0.01 0.00
Ba mg/L 0.12 3.11 0.13 0.24
Fe mg/L 0.25 10.01 0.55 1.47
Mn mg/L 0.49 1.55 0.49 0.88
Sr mg/L 0.80 28.01 1.97 6.14

Scholler’s diagram is commonly used to correlate many of the chemical water com-
positions. The average hydrochemical data of the four groups (Table 4) are plotted on the
semi-logarithmic diagrams (Figure 5b). The samples of G1, G2 and G4 have Na–Cl water
type (Na > Ca > Mg > and Cl > SO4 > HCO3) with an average TDS values 22,686.7 mg/L,
6486.4 mg/L and 1829.1 mg/L, respectively. The spatial distribution of G1, G2 and G4
(Figure 6) indicated that these groups are influenced by seawater intrusion, while G3 sam-
ples have Na–Cl (Na > Ca > Mg and Cl > HCO3 > SO4) water type and lower concentrations
of TDS (average 597.9 mg/L) and ions compared to the other groups. G3 is distributed in
the southern part of the study area and its origin might be related to direct seepage from
the irrigation canals.
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3.2.2. Piper’s (Trilinear) Diagram

The collected samples were plotted in the trilinear diagram [66] (Figure 7) according
to the HCA classification (Figure 5a). In most groundwater samples, Na is the major cation
and Cl is the main anion. Generally, the samples of G1, G2 and G4 were plotted on sub-area
7 (Figure 7) indicating primary salinity character, where NaCl and Na2SO4 salts dominate
the chemical properties. This is largely due to the impact of seawater intrusion and soil
salinity. Most samples of G4, which occupied the southern parts, are located in sub-area 9
(Figure 7) indicating that none of the cation–anion pairs exceeds 50%. In the right triangle,
samples of G3 and 4 show an increase in concentrations of either SO4 or HCO3 and decrease
of Cl. In the lift triangle, due to ion exchange process, concentrations of Ca and Mg increase
in groups 3 and 4 and Na decrease [67].
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3.2.3. Statistical Ions Classification

Figure 8 shows sample group ion-association dendrograms. Na, Cl, and TDS in
groundwater samples from groups G1 and G2 (Figure 8a,b) show seawater intrusion in the
northern section of the research area (Figure 6). Assuming G3, HCO3–Cl–SO4–Ca–Na is the
major ion association in the southern region, indicating freshwater origin and evaporation
(Figure 8c). Figure 8d demonstrates ion-association in group four samples. HCO3–Ca–
Mg-minors and Cl–SO4–Na showed that freshwater impacted by seawater intrusion and
exchange processes is widespread. Al, Mn, Ba, Fe, Sr, Si, and NO3 are linked in a short
distance, suggesting a shared origin that may affect fertilizer or water–rock interactions
(Figure 8).
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3.3. Saturation Index (SI)

Table 5 shows the statistical summary of dissolved mineral saturation indicators.
The dissolved minerals were classified into five different groups: carbonate, sulphate,
chlorides, oxides, and silicate minerals. Detected carbonate minerals include aragonite,
calcite, dolomite, and witherite. Unlike groups 1, 2, and 4, group 3 is saturated with
aragonite, calcite, and dolomite. All groups are undersaturation with respect to witherite.
As the investigated aquifer is composed of clastic sediments, production of bicarbonate
ion is due to the formation of CO2 from decay of the organic matter (Equation (5)) [60].
Such conditions could lead to saturation conditions in the southern part where group 3
samples are located but the unsaturation conditions in groups 1, 2, and 4 might be related
to carbonate minerals deposition where the increase in sulfate and chloride minerals due
to seawater intrusion in the northern parts is accompanied by deposition of the carbonate
minerals [36,68].

CO2 + H2O→ H2CO3 + H→ HCO3
− + H (5)

SO4
−2 + 2C + 2 H2O→ H2S +2 HCO3 (6)

The studied groundwater is mostly unsaturated with respect to anhydrite and gypsum
minerals, whereas most of G3, which is located in the southern part of the area, was
saturated with respect to barite. Hydrochemical studies of major and trace elements made
by Drevaliene et al. [69] showed that the probable barium source in groundwater is the
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dissolution of witherite. According to Table 5, all four groups of groundwater samples
showed an undersaturation state with the dissolved chloride minerals (Halite and Sylvite).

Table 5. Dissolved minerals saturation indices.

No. Aragonite Calcite Dolomite Witherite Anhydrite Gypsum Barite Halite

G1

Min −1.7 −1.6 −2.7 −8.4 −1.3 −0.9 −2.5 −3.1
Max 0.2 0.3 1.0 −3.6 −0.4 0.0 2.5 −2.2
Av −0.7 −0.6 −0.8 −5.5 −0.7 −0.4 −0.1 −2.7

SI > 1% 12.5 25 25 0 0 0 57.2 0
SI < 1% 87.5 75 75 100 100 100 42.8 100

G2

Min −1.9 −1.7 −3.1 −8.6 −2.2 −1.9 −2.7 −4.2
Max 1.1 1.2 2.5 −3.7 −0.8 −0.6 −0.7 −3.8
Av −0.5 −0.4 −0.5 −6.0 −1.4 −1.1 −1.5 −3.9

SI > 1% 40 40 40 0 0 0 0 0
SI < 1% 60 60 60 100 100 100 100 100

G3

Min −1.1 −1.0 −1.9 −6.4 −3.8 −3.5 −4.2 −7.2
Max 1.2 1.3 2.6 −1.8 −1.1 −0.7 0.7 −5.4
Av 0.4 0.5 0.9 −2.9 −2.1 −1.8 −0.2 −6.3

SI > 1% 84.90 87.90 87.9 0 0 0 63.7 0
SI < 1% 15.10 12.10 12.1 100 100 100 36.3 100

G4

Min −1.9 −1.7 −3.4 −8.0 −3.8 −3.5 −3.3 −7.1
Max 0.8 0.9 1.7 −1.8 −1.2 −0.8 1.2 −4.4
Av −0.8 −0.6 −1.1 −5.2 −2.1 −1.8 −1.2 −5.4

SI > 1% 22.6 25.9 22.6 0 0 0 25.9 0
SI < 1% 77.4 74.1 77.4 100 100 100 74.1 100

No. Sylvite Hematite Pyrolusite Albite Anorthite K-feldspar Kaolinite Quartz

G1

Min −4.6 −2.7 −1.8 −4.4 −12.1 −4.3 −1.8 0.1
Max −3.7 16.5 2.9 0.1 −4.3 0.6 4.8 0.7
Av −4.0 10.6 0.7 −2.2 −7.7 −1.6 1.3 0.4

SI > 1% 0 87.5 0 25 0 25 50 100
SI < 1% 100 12.5 100 75 100 75 50 0

G2

Min −5.7 1.7 −0.4 −2.9 −8.4 −2.9 1.1 0.1
Max −4.9 20.3 0.4 −1.7 −5.1 −1.1 1.7 0.5
Av −5.4 9.7 0.1 −2.5 −6.9 −2.2 1.4 0.3

SI > 1% 0 100 0 0 0 0 100 100
SI < 1% 100 0 100 100 100 100 0 0

G3

Min −7.9 5.5 −0.2 −3.8 −6.6 −2.6 0.7 0.1
Max −6.4 20.3 2.1 0.1 −0.7 1.3 5.8 0.5
Av −7.1 15.0 1.1 −1.0 −2.2 0.1 3.6 0.3

SI > 1% 0 100 0 5.8 0 79.5 100 100
SI < 1% 100 0 100 94.2 100 20.5 0 0

G4

Min −7.6 1.1 −0.6 −4.6 −9.6 −3.8 0.5 −0.1
Max −4.9 21.2 2.7 −0.6 −1.6 0.0 6.4 0.5
Av −6.4 11.4 0.5 −2.9 −6.5 −2.0 1.7 0.2

SI > 1% 0 100 0 0 0 0 100 88
SI < 1% 100 0 100 100 100 100 0 12

G1, G2, G3, and G4 are undersaturated with respect to pyrolusite but most of them
are saturated with hematite (Table 5) due to the reductive dissolution of Fe and Mn. The
dissolution of Fe and Mn oxides in the aquifer is at the cost of the oxidation of organic
matter [70,71], and the bicarbonate will increase. The reaction Equations (7) and (8) are as
follows:

CH2O + 2MnO2 + 3H+ = 2Mn2+ + HCO3
− + 2H2O (7)

CH2O + 4Fe(OH)3 + 7H+ = 4Fe2+ + HCO3
− + 10H2O (8)
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The encountered dissolved silicate minerals are albite, anorthite, K-feldspar, kaolinite,
and quartz. Groundwater samples are undersaturated with albite and anorthite. Most of G1,
G2, and G4 are in the undersaturation state with K-feldspar but G3 is mostly saturated with
this mineral. G2, G3, G4, and most of G1 are saturated with quartz and kaolinite (Table 5).
Following Hosono et al. [72], incongruent dissolution reactions of silicate weathering in the
study area can be hypothesized by following Equations (9) and (10):

2NaAlSi3O8 (Albite) + 2CO2 + 11H2O→ Al2Si2O5(OH)4 (Kaolinite) + 2Na+ + 2HCO3
− + 4H4SiO4 (9)

CaAl2Si2O8 (Anorthite) + 2CO2 + 3H2O→ Al2Si2O5(OH)4 (Kaolinite) + 2Ca2+ + 2HCO3
− (10)

3.4. Hydrogeochemical Processes
Ions-TDS Relationships

• Gibbs diagram

Gibbs diagrams show the groundwater chemistry’s main natural process. It shows
how rock weathering, mineral precipitation, and evaporation affect groundwater chem-
istry [73]. High concentration of Ca2+ and HCO3

− reveals rock–water interaction. On
the other hand, the presence of high concentration of Na+ and Cl− indicates evaporation
processes or seawater intrusion [74,75]. TDS concentrations are plotted against the weight
ratios of Na/(Na + Ca) for cations (Figure 9a) and the weight ratios of Cl/(Cl + HCO3) for
anions (Figure 9b). The major processes governing groundwater chemistry are evapora-
tion/seawater intrusion and rock interaction. Most G3 samples have dissolved HCO3 and
Ca via water-rock interaction. Evaporation and seawater intrusion supply Na and Cl to
Groups 1, 2, 4, and soil water.
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• TDS vs. Ca, Mg, Na + K, Cl, HCO3, and SO4

TDS vs. Ca, Mg and Na + K relationship (Figure 10a–c) are very strong (r2 = 0.9, 0.9,
and 0.9, respectively, Table 6). For TDS relationships with Ca and Mg, samples were plotted
under the mixing line which indicate ion-exchange process due to seawater intrusion,
where Na replaces either Ca or/and Mg as shown in Equations (11) and (12). TDS vs.
Cl relationship shows a very strong correlation (r2 = 0.9, Table 6, Figure 10d). For the
relationships between TDS and Na + K and Cl, most plotted groundwater samples are
clustered along the irrigation water–seawater mixing line suggesting that the variance
in concentrations of theses ions is due to the mixing between irrigation canal water and
seawater. TDS vs. HCO3 (Figure 10e) showed weak inverse relationship (r2 =−0.1, Table 6),
which means that freshwater seepage is not only the primary source of dissolved carbonates
but may also be the reason for the weathering of silicate minerals. as shown in Equations (11)
and (12) [76].

2Na+ + Ca − X2 → 2Na − X + Ca2+ (11)

2Na+ + Mg − X2 → 2Na − X + Mg2+ (12)

where x is an ion exchanger.
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Table 6. Correlation matrix between physico-chemical parameters in groundwater.

TDS EC Ca Mg Na K HCO3 SO4 Cl NO3 Al Ba Fe Mn Si Sr

TDS 1
EC 0.9 1
Ca 0.9 0.9 1
Mg 0.9 0.9 0.9 1
Na 0.9 0.9 0.8 0.9 1
K 0.6 0.6 0.5 0.6 0.7 1

HCO3 0.1 0.1 0.2 0.1 0.1 0.1 1
SO4 0.6 0.6 0.5 0.7 0.6 0.7 0.0 1
Cl 0.9 0.9 0.9 0.9 0.9 0.7 0.1 0.6 1

NO3 −0.1 −0.1 −0.1 0.0 −0.1 0.1 0.0 0.1 −0.1 1
Al −0.2 −0.2 −0.2 −0.3 −0.2 −0.1 −0.1 −0.1 −0.2 −0.1 1
Ba 0.5 0.5 0.4 0.4 0.5 0.4 −0.1 0.5 0.4 −0.1 −0.1 1
Fe 0.4 0.4 0.4 0.4 0.5 0.4 −0.1 0.5 0.4 −0.1 −0.1 0.9 1

Mn 0.1 0.1 0.2 0.1 −0.1 −0.1 0.2 −0.1 0.1 −0.2 −0.1 0.1 0.1 1
Si 0.1 0.1 0.1 0.1 0.1 0.0 −0.1 0.1 0.1 −0.2 0.3 0.1 0.1 0.2 1
Sr 0.5 0.5 0.6 0.6 0.5 0.6 −0.1 0.6 0.5 0.1 −0.2 0.9 0.9 0.1 0.1 1

Note: values listed in red font have strong positive correlation, blue font have intermediate positive correlation,
values listed in green font have weak correlation.

On the other hand, TDS–SO4 (Figure 10f) have a strong relationship (r2 = 0.7, Table 6).
The origin of sulfates is not linked to the trend of surface water–seawater mixing but
possibly related to soil origin, especially in low salinity water. The relationships between
TDS vs. Ba, Fe and Sr (r2 equals 0.5, 0.4, and 0.5, respectively, Table 6) showed intermediate
correlation, on the other hand it showed weak relationships with Al, Mn, and Si (r2 equals
−0.2, 0.1, and 0.1 respectively, Table 6). Figure 10a–f shows that plotted soil water samples
and indicates that the soil hydrochemical processes are very effective in the hydrochemical
characteristics of the studied low salinity groundwater (G3 and G4) where it acts as an
important origin of the dissolved ions.

3.5. Seawater Intrusion Quality Index (SWI)

In ArcGIS 10 framework, the calculated GQISWI results are transformed into a map
using a kriging interpolation function. The GQISWI value varies from 17.8 to 82.3 as shown
in Figure 11. According to Table 7, the groundwater of the study area is classified into
saline, mixed, and fresh water. The coastal area in the northern parts has low values and
reflects the salinization of groundwater.
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Table 7. GQISWI ranges [77].

Water Type GQISWI Based on Worldwide Literature Typical GQISWI
Min Max Mean Min Max

Fresh water 73.5 90.1 82.7 75 100
Mixed groundwater 47.8 79.9 63.4 50 75
Saline groundwater 4.8 58.8 27.5 10 50

Seawater 3.1 9.2 5.8 0 10

4. Conclusions

In this work, the seawater intrusion and the processes governing the groundwater
of the Quaternary aquifer of the Nile Delta were assessed using hydrochemical analysis
in conjunction with several multivariate statistical methods and graphical approaches.
It was concluded that groundwater chemistry is influenced by the evaporation process,
seawater intrusion, ion exchange process, dissolution and weathering of Ca-rich minerals,
and weathering of silicate minerals. The groundwater samples are divided into four groups
in accordance with HCA, which were identified as G1, G2, G3, and G4. G1 and G2, which
are found in the northern regions near to the Mediterranean Sea, are primarily controlled
by the evaporation process and seawater intrusion. High Cl and Na concentrations and low
HCO3 concentrations mostly serve to demonstrate this. Additionally, seawater intrusion
is joined by another process such as cation exchange where Na replaces Ca and/or Mg.
On the other hand, in the case of G3 and G4, the weathering of silicate minerals led to
the development of carbonate minerals. Most of the groundwater samples from the four
groups included more calcium than HCO3 and SO4; this is mostly because calcium-rich
minerals dissolve and weather.

Climate change and its parameters, sea-level rise, extensive groundwater pumping to
meet various needs, land-use changes due to population growth and urbanization, changes
in rainfall patterns, and reduced groundwater recharge all threaten saltwater intrusion
coastal aquifers.

Since the coastal aquifer in the Nile Delta is responsive to climate change and ground-
water extraction, sustainable water resource management is needed to protect it from
saltwater intrusion. This research provides a useful assessment tool for seawater intru-
sion variability in coastal aquifers. The results can improve understanding of present
and future saltwater intrusion in the investigated area and provide specific adaptive keys.
As a response to the aquifer stresses, adaptation styles to any of the given hazards or
challenges may be designed. Thus, the adaptation in the case of the Quaternary aquifer in
the Nile Delta should be transformational, where changes in the fundamental attributes
of a system (especially pumping) must be adopted. This may not preclude combining
different adaptation strategies or using biodiversity and environmental services as part of
an adaptation plan. Constant monitoring of the saline interface is essential for maintaining
the aquifer’s equilibrium and determining the most effective aquifer management strategy.
An assessment study for the saltwater intrusion under different climate and anthropogenic
activities is still needed for the aquifer.
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