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Abstract: Rainfall depth is a crucial parameter in water resources and hydrological studies. Rain 

gauges provide the most reliable point-based rainfall estimates. However, they do not have a proper 

density/distribution to provide sufficient rainfall measurements in many areas, especially in arid 

regions. To evaluate the adequacy of satellite datasets as an alternative to the rain gauges, the King-

dom of Saudi Arabia (KSA) is selected for the current study as a representative of the arid regions. 

KSA occupies most of the Arabian Peninsula and is characterized by high variability in topographic 

and climatic conditions. Five satellite precipitation datasets (SPDSs)—CMORPH, PERSIANN-CDR, 

CHIRPS V2.0, TMPA 3B42 V7, and GPM IMERG V6—are evaluated versus 324 conventional rain-

gauges’ daily precipitation measures. The evaluation is conducted based on nine quantitative and 

categorical metrics. The evaluation analysis is carried out for daily, monthly, yearly, and maximum 

yearly records. The daily analysis revealed a low correlation for all SPDSs (<0.31), slightly improved 

in the yearly and maximum yearly analysis and reached its highest value (0.58) in the monthly 

analysis. The GPM IMERG V6 and PERSIANN-CDR have the highest probability of detection (0.55) 

but with a high false alarm ratio (>0.8). Accordingly, in arid regions, the use of daily SPDSs in rain-

fall estimation will lead to high uncertainty in the obtained results. The best performance for all 

statistical metrics was found at 500–750 m altitudes in the central and northern parts of the study 

area for all satellites except minor anomalies. CMORPH dataset has the lowest centered root mean 

square error (RMSEc) for all analysis periods with the best results in the monthly analyses. 

Keywords: CMORPH; PERSIANN-CDR; CHIRPS V2.0; TMPA 3B42 V7; GPM IMERG V6;  

satellite precipitation data; NSE; KGE; Arabian arid regions; hydrology 

 

1. Introduction 

Precipitation is a major driving component in the hydrological cycle [1]. Accurate 

measurements and reliable forecasting of rainfall characteristics significantly influence 

the reliability of the hydrological and water resources modeling [2]. Rain gauges’ meas-

urements are the most reliable source for rainfall characterization [3–5]. To achieve suffi-

cient spatiotemporal rainfall distribution, rain gauges should be properly distributed over 

the entire study area. However, the existing rain gauges are sparsely distributed in many 

countries due to climatic, topographic complexity, and even internal conflicts [6–8]. The 

currently available satellite-based precipitation datasets (SPDSs) have a quasi-global cov-

erage with different spatial resolutions and temporal coverages. The SPDSs temporal res-

olutions start from 30 min and spatial resolutions start from 0.0375°. The temporal cover-

age starts from 1981 to the near present. Further, SPDSs can be incorporated to address 
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the insufficient spatial coverage of rain gauges [9]. Table 1 summarizes the characteristics 

of some available SPDSs. 

Table 1. Characteristics of some available precipitation datasets. 

Precipitation Product 

Spatial Coverage Temporal Coverage Maximum 

Spatial 

Resolution 

Maximum 

Temporal 

Resolution 

Reference 
West East South North From To 

The African rainfall climatology–V2 

(ARC) 
20° 55° 40° 40° 1983 

Near 

Present 
0.1° × 0.1° 10 Days [10] 

Tropical applications of meteorology 

using satellite data and ground-

based observations (TAMSAT) 

20° 55° 40° 40° 1983 
Near 

Present 

0.0375° × 

0.0375° 
Daily [11] 

Global precipitation climatology cen-

ter (GPCP) 
180° 180° 90° 90° 2000 2020 0.5° × 0.5° Daily [12] 

Climate prediction center (CPC) 180° 180° 89.5° 89.5° 1979 
Near 

Present 
0.5° × 0.5° Daily [13] 

Tropical rainfall measuring mission–

3B43 V7 (TRMM) 
180° 180° 50° 50° 1998 2019 0.25° × 0.25° 3 h [14] 

Climate prediction center morphing 

method (CMORPH) 
180° 180° 60° 60° 1998 

Near 

Present 
8 × 8 km 30 min [15] 

Precipitation estimation from re-

motely sensed information using ar-

tificial neural networks (PERSIANN) 

180° 180° 60° 60° 2000 
Near 

Present 
0.25° × 0.25° 1 h [16] 

PERSIANN-climate data record 

(PERSIANN-CDR) 
180° 180° 60° 60° 1983 

Near 

Present 
0.25° × 0.25° Daily [17] 

PERSIANN–cloud classification sys-

tem (PERSIANN-CCS) 
180° 180° 60° 60° 2003 

Near 

Present 
0.04° × 0.04° 1 h [18] 

Climate hazards group infrared Pre-

cipitation combined with terrestrial 

stations observations (CHIRPS)  

180° 180° 50° 50°° 1981 
Near 

Present 
0.05°× 0.05° Daily [19] 

The global precipitation measure-

ment mission (GPM)  
180° 180° 90° 90° 2000 

Near 

Present 
0.1° × 0.1° 30 min [20] 

The accuracy of SPDSs has been extensively studied in many regions over the globe, 

following two approaches: (1) utilizing the satellite rainfall data in large-scale hydrologi-

cal models and comparing the simulated hydrographs with recorded ones, or (2) compar-

ing SPDSs values against the corresponding rain-gauge measurements. 

The first approach was applied in the assessment of seventeen precipitation prod-

ucts’ usage adequacy in modeling the stream flow for the Volta River basin (VRB: 415,600 

km2 drainage area) in West Africa for the 2009–2012 period. TAMSAT, CHIRPS, and PER-

SIANN-CDR were found to be the best-performing precipitation datasets based on daily 

streamflow evaluation [21]. TMPA 3B42 V7 precipitation dataset was utilized in the hy-

drologic modeling of the Gandak Himalayan River (44,797 km2 drainage area) using the 

soil water assessment (SWAT) model [22]. The rainfall was evaluated for a 10 year period 

(2000–2010). The results showed that the use of TRMM data is suitable for moderate (7.5–

35.4 mm/day) and heavy (35.5–124.4 mm/day) rainfall intensities and did not perform well 

for light (<7.5 mm/day) and extra-heavy (>124.4 mm/day) rainfall intensities. A summary 

of some previous SPDSs hydrological modeling studies is given in Table 2. 
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Table 2. Review of previous SPDSs hydrological modeling studies. 

SPDSs Region Duration Main Conclusions Reference 

TMPA-3B42V6  
Tapajos river, 500,000 

km2, Brazil. 
2000–2003 

The generated modeled hydrographs had acceptable accu-

racy based on the comparison with 23 flow gauges along 

the river and its tributaries.  

[23] 

CMORPH  

TMPA-3B42RT 

TMPA 3B42 

PERSIANN  

Gilgel Abay, 1656 km2, 

a mountainous water-

shed in northwest Ethi-

opia 

2006–2007 

The microwave-based SPSDs (CMORPH and TMPA 

3B42RT) had a better performance than the infrared-based 

dataset (PERSIANN). The merged rain gauges and satellite 

data (TMPA 3B42) gave to lowest performance and incon-

sistencies  

[24] 

TMPA-3B42V7  

CHIRPS, CFSR  

PERSIANN-CDR 

Lake Ziway basin, 7311 

km2, Ethiopia 
1985–2004 

All SPDSs have a low correlation on daily temporal scale 

runoff simulations. CHIRPS, PERSIANN-CDR, and TRMM 

had good performance on the monthly temporal scale. 

[25] 

CHIRPS, CMORPH  

TMPA-3B42 V7  

PERSIANN 

Ganjiang River Basin, 

80,948 km2, China 
2000–2014 

TMPA outperformed other SPDSs. CMORPH PDS signifi-

cantly underestimated streamflow. 
[26] 

CHIRPS, 

PERSIANN-CCS,  

IMERG 

West Rapti River basin, 

5082 km2, Western Ne-

pal 

1986–2015 
The IMERG SPSD had the best accuracy among the used 

SPDSs. 
[27] 

TMPA-3B42V7  

CHIRPS 

Eastern Nile Basin, 

325,000 km2, East Af-

rica 

1998–2007 
TMPA 3B42V7 slightly had a better performance than 

CHIRPS in calculating the modeled monthly stream flow. 
[28] 

CHIRPS,  

PERSIANN-CDR  

TMPA 3B42 V7 

Three different climate 

basins in China 
2002–2015 

The three SPDSs performed better in humid regions than in 

arid ones. TMPA 3B42 V7 showed the best performance 

over CHIRPS and PERSIANN-CDR, respectively. PER-

SIANN-CDR had the best performance in the arid basin. 

Low accuracy included for the three SPDSs on a daily scale 

[29] 

The second approach was applied in the assessment of TMPA, PERSIANN, 

CMORPH, and GSMap SPSDs in nine mountainous regions around the globe [30] (the 

Blue Nile in Eastern Africa, the Himalayas in Nepal, the Alps in Italy and Switzerland, 

French Cevennes, the Andes in Peru and Columbia, the Rocky Mountains in U.S., and 

Taiwan). A minimum of 6 years of temporal coverage for each region was considered. 

Many SPDSs underestimated the rainfall depth in the wet season and, on the contrary, 

overestimated the dry season depth. The performance of the SPSDs was highly affected 

by seasonality. Furthermore, the accuracy of GSMap, IMERG, and CHIRPS to produce 

rainfall estimates over Bali Island versus 27 rain-gauge records from 2015 to 2017 was 

evaluated [31]. The study was performed for different temporal scales (i.e., daily, pen-

tadal, monthly, and annual). The GPM SPDS outperformed other SPSDs in all temporal 

resolutions and different altitudes. 

SPDS data were also used to generate the temporal and spatial distribution of rainfall 

over large catchments characterized by a sparsely distributed network. Egypt, one of the 

most hyper-arid lands in the world, is an example of this regard [32]. The generated data 

for Egypt were used in simulating the hydrologic response of Wadi El Arish in Sinai with 

a catchment area of 23,000 km2 [33] and a 176 km2 subbasin of wadi Qena in the Egyptian 

Eastern Desert [34]. A summary of some previous studies that compared the SPDS-based 

rainfall to conventional rain gauges for evaluating the SPDSs accuracy is provided in Ta-

ble 3. 
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Table 3. Review of SPDSs assessment studies based on rain gauges’ measurements comparison. 

SPDSs Region 
Ground 

Stations 

Temporal 

Resolution 
Duration Main Conclusions Reference 

TMPA-3B42 IRAN Grid * Annual 1998–2006 
The TRMM precipitation dataset underestimated the av-

erage annual precipitation. 
[35] 

PERSIANN-CDR China 1400 
Daily Ex-

treme Events 
1983–2006 

PERSIANN-CDR efficiently captured the precipitation 

behavior, especially in humid areas. The efficiency was 

significantly reduced in arid and mountainous areas. 

[36] 

TMPA-3B42 Iraq 4 Monthly 2000–2010 
Acceptable agreement between TMPA3B42 and ground 

stations for monthly temporal scale. 
[37] 

TMPA-3B42V7, PER-

SIANN,  

CMORPH 

Iran 1000 Daily  2003–2008 3B42V7 had a better performance than the SPDSs. [38] 

IMERG V6,  

TMPA-3B42 V7  

GSMap 

India Grid ** Daily 
Single mon-

soon 2014 

The IMERG and GSMap SPDSs showed better perfor-

mance than TMPA SPDS, especially for low precipita-

tion rates. 

[39] 

CHIRPS China 2480 Daily 1981–2014 

CHIRPS performed better for large rainfall depths than 

it does in arid and semi-arid land. The variation of 

CHIRPS performance is strongly affected by monsoon 

movement. 

[40] 

GPM-IMERG (early, 

late, final) 
KSA 189 Daily 

October 2015 

April 2016 

IMERG’s final run showed significant improvement 

over the early and late run over 80% of the KSA area. 
[41] 

TMPA-3B42V7, 

CMORPH  

GPM-IMERGV05 

China 542 

Daily 

Seasonal An-

nual 

2014–2017 

IMERG results had better performance than TMPA 3B42 

and CMORPH SPDSs. The quality of precipitation esti-

mates reduced over the Tibetan plateau. 

[42] 

GPM IMERG (03,04, 05) CHINA 30,000 Daily 
June 2014 May 

2015 

V04 and V05 Final run show significant differences and 

improvements from V03 except for mountainous and 

arid zones. 

[43] 

PERSIANN-CDR 

PERSIANN  

TMPA-3B42  

CMORPH 

KSA 29 
Daily 

Monthly 
2003–2011 All satellites performed better in the wet season.  [44] 

GSMap  

GPM-IMERG  

CHIRPS 

Egypt 29 Daily 
March 2014 

May 2018 

None of the SPDSs showed consistent performance to be 

evaluated as the best quality or lowest quality among 

them. 

[45] 

TMPA-3B42  

GPM-IMERG 
CHINA 830 Daily 2000–2017 

The GPM dataset outperformed the TRMM dataset over 

the same. The performance is better in humid areas and 

reduced in arid and mountainous areas. 

[46] 

TMPA 3B43V7 India Grid ** Monthly 1998–2013 
The correlation is higher during post-monsoon and win-

ter seasons than pre-monsoon and monsoon seasons. 
[47] 

CMORPH-CRT Mexico 14 
30 min and 

Daily 
2000–2018 

Weak to moderate correlation with ground stations. 

CMORPH-CRT overestimates the number of rainy days. 
[48] 

CMORPH 
South Af-

rica 
60 

Daily, 

Weekly, 

Seasonal 

1998–2013 

CMORPH predicts 60% of rainfall events. The perfor-

mance in lower temporal resolution (weeks or months) 

is better than in high temporal resolution (days). 

[49] 

GPM IMERG V6  

TMPA 3B42V7 
CHINA 13 Daily 2009–2017 

The GPM dataset performed better than the TRMM da-

taset. The correlation coefficient for both falls below 0.6. 
[50] 

CHIRPS BRAZIL 45 
Monthly, 

Annual 
1981–2017 

CHIRPS dataset has a good correlation with mean 

monthly data with underestimation for the rainiest 

months and extreme rainfall events. It was concluded 

that the CHIRPS data could not provide a proper 

presentation of the trends in rainfall indices. 

[51] 

16 SPDSs Nigeria 11 Monthly 2000–2012 

The IMERG SPDS is consistent with its predecessor 

TMPA, and the best performance was concluded for 

IMERG-V6 and Multi-Source Weighted-Ensemble Pre-

cipitation MSWEP v. 2.2. 

[52] 

CMORPH 
South Ko-

rea 
48 

Hourly, 

Daily, 

Monthly, 

Annual 

1998–2015 

CMORPH underestimates precipitation over South Ko-

rea. Annual-to-daily resolution can be used adequately 

in hydrological modeling. The hourly resolution re-

quires corrections. 

[53] 

CHIRPS Ethiopia 6 Monthly 1991–2015 
CHIRPS overestimates the mean monthly data but with 

a strong positive linear correlation. 
[54] 
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TMPA 3B42V7  

CMORPH 
Thailand 120 

Daily, 

Monthly, 

and Annual 

1998–2012 

Both TRMM and CMORPH had limited ability for pro-

ducing the characteristics of extreme events. Generally, 

the TRMM `outperformed the CMOPRH in representing 

precipitation. 

[55] 

TMPA-3B42V7, 

CMORPH  

IMERGV05 

Tibetan 

Plateau 

China 

87 
Monthly An-

nual 
2001–2016 

GPM outperformed the TRMM and CMORPH. Under-

estimation of the annual precipitation was recorded for 

the three satellites. 

[56] 

PERSIANN-CCS,  

PERSIANN-CDR  

SM2RAIN-ASCAT  

CHIRPS-2.0 

Punjab 

Province—

Pakistan 

26 

Daily, 

Monthly, 

Seasonal An-

nual 

2010–2018 
CHIRPS-2.0 and SM2RAIN-ASCAT outperformed PER-

SIANN products. 
[57] 

Note(s): * Iran synoptic gauges’ data of the Islamic Republic of Iran Meteorological Organization 

(IRIMO) Version 0902, 0.25° × 0.25° gridded precipitation [35]. ** India Meteorological Department 

(IMD) 0.25° × 0.25° gridded precipitation [58]. 

Based on the abovementioned studies, it can be concluded that the accuracy of SPDSs in 

capturing the spatiotemporal characteristics of rainfall depth has a significant variability. The 

variability is affected by the intensity of rainfall, altitude, and geographic locations. The effi-

ciency of SPDSs improved in coarser temporal resolution since many studies concluded sig-

nificant accuracy improvement in monthly and annual temporal resolution over the daily 

ones. However, few studies evaluated the efficiency of SPDSs in arid and semi-arid regions, 

such as the Arabian Peninsula. The Kingdom of Saudi Arabia (KSA) constitutes most of the 

Arabian Peninsula area, with relatively dense rain gauges in some areas and sparse in others. 

The topography of KSA has a wide variability from low flat terrains in coastal areas, moun-

tainous terrain, and flat plateaus [59]. The available rain-gauges in the KSA provide a long 

record of total daily precipitation. Our goals in the current study are to: 

• Assess the accuracy of PERSIANN-CDR, CMORPH, CHIRPS V2.0, TMPA 3B42 V7, and 

GPM IMERG V6 Final Run to capture the precipitation characteristics versus rain gauges’ 

measurements at different temporal resolutions in arid zones. 

• Evaluate the SPDSs performance at different altitudes. 

Additionally, we utilized a larger number of rain gauges with longer record durations 

compared to previous studies (refer to Table 3), which enabled a more accurate evaluation of 

SPDS performance. 

2. Materials and Methods 

2.1. The Study Area 

The study area covers the whole extent of the Kingdom of Saudi Arabia (KSA). KSA lies 

between latitudes 16° and 33° N and longitudes 34° and 56° E with an area extent of about 

2,150,000 km2 and spans about 80% of the Arabian Peninsula. KSA has a western 2250 km 

shoreline along the Red Sea and an eastern one of 550 km along the Arabian Gulf. The two 

water bodies are the source of water vapor in the country [60]. KSA’s main topographic fea-

tures is classified into coastal plains, northern and Najd plateaus, the Empty Quarter Desert, 

the Tuwayq mountains, and Asir Mountains. The highest level in the country is 2990 m above 

sea level at Asir Mountains [44]. The levels steeply raised from the coastal area and gradually 

varied to the central area toward Najd Plateau and Arabian Gulf. Figure 1 shows the location 

and the topography of KSA and the average annual precipitation. 

The KSA area is categorized into arid and semi-arid regions [61,62]. The study area has 

light winds and high temperatures in most areas. Rainfall depths have high spatial and tem-

poral variance, and each season has its distinctive weather patterns.  Most rains fall in the win-

ter from October to April [63,64]. The southwestern region is characterized by high rainfall 

spatial variation due to topographic complexity that triggers convective rain conditions 

[61,65,66]. Winter rainfall is caused by western winds and the Mediterranean Sea and the Su-

dan Trough effect [62]. Generally, desert areas have an annual rainfall depth of less than 100 

mm, while mountainous areas have rainfall depths ranging from 250 mm to 300 mm 

[61,62,64]. 
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Figure 1. (A) Location and topography of the Kingdom of Saudi Arabia, (B) average annual precip-

itation (* https://en.wikipedia.org/wiki/Saudi_Arabia#/media/File:Saudi_Arabia_(ortho-

graphic_projection).svg), accessed on 5 January 2022. 

2.2. Satellite Data 

PERSIANN-CDR, CMORPH, CHIRPS V2.0, TMPA 3B42 V7, and GPM IMERG V6 

Final Precipitation were selected for the current study. The selected five SPDSs satisfied a 

minimum of one-day temporal resolution to match the terrestrial rain gauges’ records, in 

addition to the spatial coverage for the study area. The time coverage for each dataset is 

shown in Figure 2. The following paragraphs briefly describe the characteristic of each 

precipitation dataset that was used. 

Precipitation estimation from remotely sensed information using artificial neural net-

works (PERSIANN) [17] provides satellite-based precipitation products from 1983 to the 

near present. Three PERSIANN products are available based on data processing algo-

rithms and spatial and temporal resolutions, namely PERSIANN, PERSIANN-CDR, and 

PERSIANN-CCS [67].  The PERSIANN products are developed by the Center for Hydro-

meteorology and Remote Sensing at the University of California, Irvine, using gridded 

satellite (GridSat-B1) IR data [68]. The daily/0.25° PERSIANN-CDR dataset from 1983-01-

https://en.wikipedia.org/wiki/Saudi_Arabia#/media/File:Saudi_Arabia_(orthographic_projection).svg
https://en.wikipedia.org/wiki/Saudi_Arabia#/media/File:Saudi_Arabia_(orthographic_projection).svg
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01 to 2022-09-09 was downloaded for the current study from: 

(https://www.ncei.noaa.gov/data/precipitation-persiann/access/), accessed on 15 October 

2022. 

NOAA—climate data record (CDR) of climate prediction center (CPC) morphing 

technique (CMORPH) [15] provides high-resolution quasi-global satellite precipitation es-

timates. The morphing technique utilizes low orbiter satellite passive microwave (PMW) 

data to develop the precipitation estimates [69]. The precipitation data covered (60° N–60° 

S) a region with (0.25°) spatial resolution for daily datasets and 8 km resolution for 30 min 

temporal resolution datasets. The CMORPH data period extended from 1998 to 2021 [70]. 

The daily/0.25° CMORPH dataset from 1 January 1998 to 31 December 2021 was down-

loaded for the current study from: (https://www.ncei.noaa.gov/data/cmorph-high-resolu-

tion-global-precipitation-estimates/access/daily/), accessed on 8 May 2022. 

Climate hazards group infrared precipitation combined with terrestrial stations ob-

servations (CHIRPS) is a quasi-global precipitation dataset that covers (50° N–50° S) a re-

gion with (0.05°) spatial resolution satellite imagery [19]. CHIRPS relies on long periods 

of infrared cold cloud duration (CCD) rainfall estimates and ‘smart interpolation’ tech-

niques [69,71]. CHIRPS uses TMPA 3B42 V7 algorithm [72] to calibrate the global CCD 

rainfall estimates and also builds on interpolated gauge products [73–75]. CHIRPS precip-

itation data are available in monthly, decadal, pendatal, and daily temporal resolutions 

by the University of California at Santa Barbara (UGSB), from 1981 to the near present 

[76]. The daily/0.05° CHIRPS V2.0 dataset from 1 January 1981 to 9 September 2022 was 

downloaded for the current study from: (https://data.chc.ucsb.edu/products/CHIRPS-

2.0/global_daily/netcdf/), accessed on 5 June 2022. 

The tropical rainfall measuring mission (TRMM) is the first satellite mission dedi-

cated to tropical and subtropical rainfall studying. TRMM is a joint mission between 

NASA and the Japan Aerospace Exploration Agency (JAXA). The mission covered more 

than two-thirds of the world’s area, which falls between ±50° of the equator. The satellite 

flew at a low orbital altitude of about 400 km to detect rainfall. The mission used 5 sensors 

utilized in the TRMM multi-satellite precipitation analysis algorithm (TMPA) [72]. The 

TMPA products are found in two temporal scales, TMPA 3B43 monthly precipitation av-

erages and TMPA 3B42 daily and sub-daily (3 h) averages; 3B42 and 3B43 are available in 

0.25° spatial resolution [77]. Version 6 and version 7 are available for both TMPA datasets. 

A considerable number of researchers concluded that TMPA 3B42 V7 significantly im-

proved over TMPA 3B42 V6 [78–82]. The daily/0.25° TMPA 3B42 V7 from 1 January 1998 

to 1 January 2020 was downloaded for the current study from: 

(https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary), accessed on 7 April 

2022. 

The global precipitation measurement mission (GPM) launched on February 2014, 

was initiated by NASA and JAXA as a successor to the TRMM. GPM provides global pre-

cipitation and snow observations through a constellation of international satellite net-

works [20]. The key advantage of the GPM over the TRMM is the capability of capturing 

light rain with an intensity of less than 0.5 mm/hour [83]. The GPM estimates were based 

on the use of an advanced dual frequency precipitation radar (DPR) and multi-channel 

GPM microwave imager (GMI) attached to a Core Observatory satellite. The COS acted 

as a reference for the standardization of the different operational satellite measurements 

[84]. The IMERG version 6 is the latest GPM algorithm that reprocessed the early collected 

precipitation estimates during the TRMM operation in addition to the current data. GPM 

covered the globe (90° N–90°S) region with (0.1°) spatial resolution and provided 30 min, 

3 h, daily, 3 days, 7 days, and one-month temporal resolutions datasets [85]. The daily/0.1° 

GPM IMERG V6 final precipitation from 2000-06-01 to 2021-10-01 was downloaded for 

the current study from: (https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_06/sum-

mary), accessed on 7 June 2022. 

https://www.ncei.noaa.gov/data/precipitation-persiann/access/
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Figure 2. The time coverage for each satellite-based precipitation dataset (SPDS). 

2.3. Rain Gauges 

Ground rain-gauge data were acquired from the Ministry of Environment of KSA 

(ME), the Ministry of Water and Agriculture of KSA (MEWA), and the Presidency of Me-

teorology and Environment of KSA (PME). Among 385 accessed rain gauges, only 324 

gauges overlapped with (at least) one year of daily records for each precipitation dataset. 

The temporal coverage of the data analysis controls the selection of rain gauges based on 

the available overlap period with the satellite data. In the current study, a minimum of 

365 days, 36 months, and 10 years are chosen as an overlapped records period threshold 

for the daily, monthly, and yearly data analysis, respectively. Additionally, the collector 

rain gauges were removed during conducting the daily and monthly analyses but consid-

ered in the yearly one. The spatial distribution of the selected rain gauges with altitude 

over KSA zones is shown in Figure 3. The number of rain gauges in each zone and for 

each analysis time frame is given in Table 4. The variation in the selected rain gauges’ 

density for each analysis period is minor and did not generate a noticeable impact on the 

density of the rain gauges used over the study area as shown in Figure S1 in the supple-

mentary materials section. 

 

Figure 3. Rain gauges elevations and distribution over KSA administrative zones for different anal-

ysis periods. 
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Table 4. Distribution of rain gauges in the KSA administrative zones. 

Zone Name 
Zone 

Code 

Total Rain 

Gauges 

Rain Gauges 

Daily Analysis 

Rain Gauges 

Monthly Analysis 

Rain Gauges 

Yearly Analysis 

Holy Makkah MQ 45 45 45 39 

Asir AS 51 50 50 48 

Tabouk TB 9 9 9 9 

Jazan GA 24 24 24 21 

Al-Baha BA 15 15 15 12 

Al-Jouf GO 17 17 16 14 

Madinah MN 37 25 24 27 

Qaseem QA 23 22 22 19 

Al-Sharqiyah SQ 19 17 16 13 

Hail HA 21 21 21 15 

North Region SH 4 4 4 4 

Riyadh RD 52 52 48 37 

Najran NG 7 3 3 1 

2.4. Evaluation of SPDSs 

2.4.1. Rain-Gauge Data Screening 

In arid and semi-arid regions, near-zero (and zero) values were common as the lower 

limit  of the measurements. Meanwhile, the maximum annual rainfall depths reached high 

values that may look like an outlier. These high values (outliers) can be attributed to hu-

man errors in recording and archiving, device calibration, or errors in reading and record-

ing rainfall depths. Thus, checking the outliers was very important before proceeding with 

the analyses. Equations (1) and (2) are used to eliminate the outlier measurements from 

rainfall records [86]. The available rain-gauge data were provided in a list format contain-

ing only the date of rainy days and the rain depth in mm, while the remaining days (with 

no data) were considered dry (i.e., 0 mm/day rainfall depth). 

Max = μG + Km × σG (1) 

Km = 1.055 + 0.981 × logN (2) 

where N is the number of rainy days, and μG, and σG are the mean and standard devia-

tion of rain gauge records. 

In the current study, the SPDSs assessment was carried out using six quantitative 

statistical metrics and three categorical statistical matrices. 

2.4.2. Quantitative Statistical Metrics 

Six quantitative statistical metrics were utilized to evaluate the quality of the SPDS. 

Pearson correlation coefficient (CC), Equation (3), is a scale for the strength of the linear 

relationship between rain-gauge and SPDS-based values. It ranged between −1 for a per-

fect inverse linear relation to 1 for a perfect linear relationship. The zero value represented 

no linear relationship. Further, Nash–Sutcliffe efficiency coefficient (NSE), Equation (4), 

[87] is a normalized coefficient that considered the ratio between the SPSD residual vari-

ance and the rain-gauge measurements variance that varies between − and 1. Negative 

NSE value indicated that the mean of the rain-gauge readings was better than the SPDSs 

as a predictor of rainfall. The perfect match was achieved with NSE = 1. Moreover, Kling–

Gupta efficiency score (KGE), Equation (5), [88] is considered an improvement of the NSE 

[89]. KGE is a composite performance measure that depends on the decomposition of the 

NSE into its principal components (linear correlation, mean bias, and standard deviation 

bias). KGE varies between − and 1, a score of −0.41 represents the KGE value correspond-

ing to the mean observed precipitation benchmark. The range −0.41< KGE < 1 can be con-

sidered reasonable and the perfect match was achieved with KGE = 1 [90]. Relative bias 
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(RB), Equation (6), represents the systematic error between the satellite data and rain-

gauge measurements. Mean absolute error (MAE), Equation (7), represents the average 

error magnitude in mm. The root mean square error (RMSE) is the standard deviation of 

the residuals, and the centered root mean square error (RMSEc), Equation (8), isolates the 

difference in the means in the assessment of patterns in mm. 

CC = 
∑ (Si - S̅) · (Gi - G̅)n

i=1

√∑ (Si - S̅)
2n

i=1 · √∑ (Gi - G̅)
2n

i=1

 
(3) 

NSE = 1 −
∑ (Gi − Si)

2N
i=1

∑ (Gi − Gi̅)
2N

i=1

 (4) 

KGE = 1 − √(CC − 1)2 + (
σS

σG

− 1)
2

+ (
μS

μG

− 1)
2

 (5) 

RB = 
∑ (Si - Gi)

N
i=1

∑ Gi
N
i=1

 (6) 

MAE = 
∑ |(Si - Gi)|N

i=1

N
 (7) 

RMSE𝐶 = √
1

𝑁
∑[(Si − S̅) − (Gi − S)̅]

2
N

i=1

= √σS
2 + σG

2 − 2 · σS · σG · CC (8) 

where μS, and σS are the mean and standard deviation of satellite precipitation data. 

2.4.3. Categorical Metrics 

In addition to the quantitative metrics, the precipitation-capturing capability of each 

SPDS was evaluated using three categorical metrics, namely (a) the probability of detec-

tion (POD), (b) the false alarm ratio (FAR), and (c) the critical success index (CSI) [91]. As 

per the available daily gauge values, the categorical metrics were calculated in daily tem-

poral resolution based on the number of hits, misses, and false alarm counts as shown in 

Table 5. POD was the ratio of the correct satellite estimated number of precipitation oc-

currences to the total number of gauged precipitation events, including the null values, as 

given in Equation (9), with an optimal value of 1. Additionally, FAR was the ratio of the 

wrongly estimated precipitation estimates to the total number of satellite-estimated rain-

fall events, as given in Equation (10), with an optimal value of 0. Lastly, the calculation of 

the CSI included both missed and false alarm events, as given in Equation (11), with an 

optimal value of 1. In the current study, 0.5 mm/day was selected as a threshold to confirm 

the occurrence of rainfall on any day. Figure 4 shows the flow chart of calculating cate-

gorical and quantitative metrics. 

Table 5. Precipitation contingency table between precipitation gauged data and SPDSs. 

  Gauge Data 
  Rain (≥0.5 mm/Day) No Rain (<0.5 mm/Day) 

Satellite 

Data 

Rain (≥0.5 mm/day) Hits (H) False alarm (F) 

No rain (<0.5 mm/day) Miss (M) Correct negative 

 

Probability of Detection (POD) = 
H

H + M
 (9) 
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False Alarm Ratio (FAR) = 
F

H + F
 (10) 

Critical Success Index (CSI) = 
H

H + M + F
 (11) 

 

Figure 4. Flow chart for calculating categorical and quantitative metrics. 

3. Results and Discussion 

The categorical statistical metrics (POD, FAR, and CSI) are calculated for daily pre-

cipitation values. The altitude range is classified into six categories (0–250 m), (250–500 

m), (500–750 m), (750–1000 m), (1000–1500 m), and (1500–2600 m), in addition to the total 

range (0–2600 m). The variation of each categorical parameter for each dataset and altitude 

range is given in Figure 5. GPM IMERG V6 and PERSIANN-CDR SPDSs have the highest 

POD with an average value of 0.55 for both. CHIRPS V2.0 SPDS has the lowest POD with 

an average value of 0.31. GPM IMERG V6 has a higher average CSI (0.14) and lower av-

erage FAR (0.84) compared to the PERSIANN-CDR SPDS (CSI = 0.1, and FAR = 0.88). 

As shown in Figure 5, the major trend for all satellites except minor anomalies is that 

the best performance (highest POD, CSI, and lowest FAR) is found at 500–1000 m altitude. 

This trend contradicts previous studies that stated that SPDSs have better performance at 

low altitudes rather than at high altitudes [92].  Most of the low-altitude rain gauges (0–

500 m) are located at the foot of the Red Sea Mountains in the western region and in the 

vicinity of the Red Sea coast, which is affected by humid weather and seasonal wind. Most 

stations with an altitude of 500–1000 m are located on Najd and the Northern plateaus in 

the central and northern regions of KSA. The central area of KSA is relatively flat and has 

dry weather. Accordingly, it is likely that the effect of the Red Sea seasonal wind, humid 

weather, and the mountains explain the better performance for 500–750 m rain gauges 

rather than (0–500 m) rain gauges. Figure 6 shows the variation of GPM IMERG V6 cate-

gorical metrics (POD, CSI, and FAR) with altitude. The spatial distribution of the categor-

ical metrics is generated using inverse distance weighted interpolation (IDW) as shown in 

Figure S2 in the Supplementary Section. 
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Figure 5. Variation of categorical metrics (POD, CSI, and FAR) with gauge altitude. 
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Figure 6. Variation of GPM IMERG V6 categorical metrics (POD, CSI, and FAR) with altitude. 

The used six quantitative statistical metrics can be classified into two groups. The 

first group includes CC, NSE, and KGE, which are utilized to evaluate the SPSDs ade-

quacy to estimate precipitation depth. The second group includes RB, MAE, and RMSEc, 

which are used to rank the SPDSs adequacy based on error evaluation. All statistical met-

rics are calculated in daily, monthly, yearly, and maximum yearly temporal resolution for 

each satellite at each rain gauge location, and the results are then classified based on the 

altitude of the rain gauge. 

The study area is characterized by its large extent, topographic, and climatic varia-

bility. Additionally, the distribution of the rain gauges over the study area is not uniform 

and has a large density variation. To assess the variation of the quantitative statistical 

metrics over the study area, the IDW technique is utilized to provide 0.05° × 0.05° raster 

for each parameter over the study area. 

The mean value of CC is calculated using ArcGIS zonal statistics spatial analysis. 

Figure 7 shows the variation of the average CC value over the study area for each satellite 

and analysis duration. A low correlation for all satellites is found for daily and maximum 

yearly analyses with the highest value of 0.31 for GPM IMERG V6 in the daily analysis 

and 0.32 for CMORPH in the maximum yearly analysis. The CHIRPS V2.0 has the lowest 

correlation coefficient (0.18 and 0.14 for the daily and maximum yearly analysis, respec-

tively).  The correlation coefficient slightly improved in the yearly analysis with the high-

est value of 0.43 for PERSIANN-CDR. The best correlation coefficient for all satellites is 

found in the monthly analysis with a GPM IMERG V6 average value of 0.58. Figures 8 and 

9 show the spatial distribution of CC, NSE, and KGE for daily and monthly rain gauge 

records. The yearly and maximum yearly record coefficients are shown in Figures S3 and 

S4 in the Supplementary Section. 

The concern of using NSE in this study is that it could not significantly differentiate 

between variables with low correlations as shown in Figure 8 with an average correlation 

coefficient of about 0.24 unlike Figure 9 with an average correlation coefficient of about 

0.53. Decomposing the NSE to its primary components (linear correlation, mean bias, and 

standard deviation bias) in the KGE score overcomes this shortcoming. Differentiation 

between areas with low correlation coefficients could be achieved using KGE as shown in 

Figure 8. 
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Figure 7. Variation of the Pearson correlation coefficient mean values over the study area. 

Figure 10 shows the variation in the monthly CC for all satellites with respect to 

gauge’s altitude. Similar to the categorical metrics, the highest values of the correlation 

are found at 500–750 m altitude. The variation of the correlation coefficient with gauge 

altitude for all analysis periods is given in Figure S5 in the Supplementary Section. 

The quantitative statistical metrics (i.e., RB, MAE, and RMSEc) provide a different 

lens for error assessment. The variation of RB, MAE, and RMSEc is given in Figures S6–

S9. The root mean square error (RMSE) is the most widely used statistical parameter to 

quantify the errors. In the current study, Taylor’s diagram [93] is utilized to provide a 

concise summary of the performance of different SPDSs through the graphical plot of the 

standard deviation and CC for the rain gauges’ measurements and SPDSs. The centered 

root mean square error (RMSEc) is the mean removed RMSE, as given in Equation (8). 

Figure 11 shows the Taylor diagram for two sample rainfall gauges, namely R119 and 

A126. These stations were selected to represent the low- and high-intensity area, respec-

tively. In the current study, the RMSEc is proposed as a ranking criterion for the adequacy 

of the SPDSs, where the satellite with the smallest RMSEc (the nearest one to the rain 

gauge point in the diagram) will be selected as the best-performing satellite. 

The zonal statistics algorithm is applied to calculate the average RMSEc in each zone 

and the best-performing satellite is highlighted for each analysis duration in Table 6. 

Based on the minimum obtained, RMSEc, CMORPH, and GPM IMERG V6 have the best 

performance over most regions in the study area, while TMPA 3B42V7 has the worst per-

formance. Figures S10–S12 in the supplementary section show the variations of the quan-

titative statistical metrics (RMSEc, MAE, and RB) with respect to the gauge’s altitude for 

each analysis duration. CMORPH has the lowest MAE, RB, and RMSEc for all analysis 

periods, except the maximum yearly analyses where GPM IMERG V6 has the lowest 

MAE. The same trend of variation with the gauge’s altitude is a similar correlation coeffi-

cient and categorical metric where the lowest errors are found at 500–750 m altitude. 
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Figure 8. Spatial distribution of daily statistical quantitative metrics (CC, NSE, and KGE) over the 

study area. 
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Figure 9. Spatial distribution of monthly statistical quantitative metrics (CC, NSE, and KGE) over 

the study area. 
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Figure 10. Variation of a monthly correlation coefficient with gauge altitude. 

Generally, previous studies did not indicate any overwhelming consensus on the 

best-performing SPDS, where varying recommendations for the same study area were re-

ported, depending on the number of used rain gauges, temporal coverage, and selected 

satellite datasets [56,94,95]. In the current study, CMORPH and GPM IMERG V6 had the 

best performance indices (quantitatively and categorically) across different regions in the 

KSA. These results agreed to some extent with the previous research conducted on the 

KSA by (Sultana, and Nasrollahi, 2017) [44] where CMORPH was recommended and by 

(Mahmoud et al., 2018) [41] where GPM was recommended for the current study area. 

Further, the altitudinal assessment of SPDS highlighted the better performance at eleva-

tions (500–750 m) compared to lower elevations (0–500) found in coastal areas at moun-

tains’ toes, which aggrees with (Kim, and Han, 2021) [53] that geographical features affect 

the quality of CMORPH data. Lastly, the correlation between daily rainfall measurements 

and SPDS is lower than the correlation at coarser temporal resolutions (e.g., monthly, sea-

sonal, and yearly), as concluded by other previous studies [53,55,57]. 

Table 6. Variation of RMSEc values for each region in the study area (mm). 

Region Daily Monthly Yearly Max. Yearly Region Daily Monthly Yearly Max. Yearly Satellite 

Al-Baha 

3.65 23.81 92.57 27.37 

Madinah 

1.83 11.20 36.77 14.27 CHIRPS 

3.22 22.56 99.86 28.74 1.63 10.50 40.26 14.89 CMORPH 

3.22 21.08 97.68 28.56 1.95 12.04 47.70 15.25 GPM 

3.46 24.48 93.67 27.52 1.75 11.15 39.83 14.46 PERSIANN 

3.45 26.99 111.02 28.23 1.93 11.43 43.99 15.22 TRMM 

Al-Jouf 

1.46 7.61 25.88 9.08 

Najran 

2.38 14.54 60.52 13.75 CHIRPS 

1.51 7.93 28.98 12.23 1.94 13.49 58.90 12.43 CMORPH 

1.49 7.32 23.95 11.10 2.09 14.06 74.31 16.00 GPM 

1.27 8.04 25.17 8.45 2.11 13.55 61.37 16.71 PERSIANN 

1.84 9.42 29.11 12.74 2.20 14.43 63.67 20.73 TRMM 

Al- 

Sharqiyah 

1.91 10.69 41.94 13.49 

North  

Region 

1.80 9.74 34.80 11.50 CHIRPS 

1.37 8.57 33.28 11.88 1.42 8.89 30.65 11.38 CMORPH 

1.76 10.55 38.90 16.37 1.53 7.93 29.16 11.45 GPM 

1.81 10.93 43.41 14.61 1.61 10.11 35.32 11.86 PERSIANN 

2.14 12.92 47.05 18.46 1.84 9.80 34.27 14.22 TRMM 

Asir 

3.09 20.42 76.54 20.08 

Qaseem 

2.61 13.77 47.85 18.70 CHIRPS 

2.65 21.25 78.53 18.80 1.64 11.89 36.40 13.94 CMORPH 

2.76 20.18 87.62 17.76 1.97 11.19 39.80 16.53 GPM 

2.81 20.86 81.38 18.67 1.87 12.01 49.48 15.07 PERSIANN 

2.98 21.26 88.48 22.74 2.45 13.11 43.82 16.49 TRMM 

Hail 2.15 11.79 38.15 14.12 Riyadh 2.14 12.73 44.46 14.39 CHIRPS 
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1.44 9.33 28.23 11.98 1.45 10.03 36.53 11.82 CMORPH 

1.69 9.73 34.21 14.65 2.00 12.96 49.52 16.91 GPM 

1.81 11.77 41.80 13.46 1.84 12.03 44.67 13.55 PERSIANN 

2.09 11.44 37.85 16.55 2.13 12.28 43.79 16.92 TRMM 

Holy  

Makkah 

2.63 16.07 56.73 19.67 

Tabouk 

1.55 8.34 26.53 15.32 CHIRPS 

2.52 16.44 63.75 21.76 1.47 7.60 30.99 16.16 CMORPH 

2.58 16.12 62.51 19.68 1.59 7.56 28.87 12.85 GPM 

2.55 16.87 60.28 20.14 1.43 8.04 27.63 13.64 PERSIANN 

2.78 17.45 64.69 19.60 1.67 8.37 31.82 14.16 TRMM 
     

Jazan 

4.14 29.79 128.55 20.97 CHIRPS 
     4.32 31.67 126.43 25.26 CMORPH 
     4.28 28.37 118.75 21.51 GPM 
     4.10 32.68 134.32 19.98 PERSIANN 
     4.38 29.70 127.99 23.89 TRMM 

 

Figure 11. Taylor diagram for rain gauges A126 and R119. 



Water 2023, 15, 92 19 of 23 
 

 

4. Summary and Conclusions 

In the current study, the performance of CMORPH, PERSIANN-CDR, CHIRPS V2.0, 

TMPA 3B42 V7, and GPM IMERG V6 satellite precipitation datasets (SPDSs) were evalu-

ated over the area of the Kingdom of Saudi Arabia (KSA) as an arid region.  KSA extends 

for 2,150,000 km2 and occupies most of the Arabian Peninsula as an arid region. The SPDSs 

were evaluated versus conventional rain-gauge records. The evaluation was conducted 

for daily, monthly, and yearly temporal resolutions and maximum yearly records. A total 

of 324 rain gauges’ daily data was collected and filtered to remove outliers. A total of 304, 

297, and 259 rain gauges out of the 324 was selected for daily, monthly, and yearly analysis 

temporal resolutions, respectively. The selection of the rain gauges based on satisfying 

minimum overlapped 365 days, 36 months, and 10 years for daily, monthly, and yearly 

analysis, respectively. 

Several categorical and quantitative metrics were utilized to assess the performance 

of each SPDS. The categorical metrics included the probability of detection (POD), the 

false alarm ratio (FAR), and the critical success index (CSI). The quantitative statistical 

metrics included the Pearson correlation coefficient (CC), Nash–Sutcliffe efficiency coeffi-

cient (NSE), Kling–Gupta efficiency score (KGE), relative bias (RB), mean absolute error 

(MAE), and centered root mean square error (RMSEc). The nine metrics were calculated 

for each rain gauge, and the results were interpolated over the study area using inverse 

distance weighted interpolation (IDW). The ArcGIS zonal statistics spatial analysis was 

used to calculate the average value of each statistical metric for each region of the 13 study 

area regions. The variation of each statistical metric was assessed at 0–250, 250–500, 500–

750, 750–1000, 1000–1500, and 1500–2600 m altitude intervals. 

The best performance for all metrics values was found at 500–750 m altitude for all 

satellites, except minor anomalies. Most of the low-altitude rain gauges (0–500 m) were 

located at the foot of the Red Sea Mountains in the western region and the vicinity of the 

Red Sea coast. The majority of stations with (500–750 m) altitude were located on Najd 

and the Northern plateaus in the central and northern regions of KSA. The effect of the 

Red Sea seasonal wind and the effect of the mountains may lead to the presence of warm 

clouds or the evaporation of precipitation before reaching the surface, which can justify 

the lower performance indicator for 0–500 m altitude. The lowest correlation between the 

SPDSs and rain gauge records was found in the daily analysis with a maximum value of 

0.31 and slightly improved in the maximum yearly and yearly analysis. GPM IMERG V6 

had the highest average value of the correlation coefficient of 0.58 in the monthly analysis. 

Differentiating regions with low correlation coefficients could be achieved using KGE, 

which was not the case using NSE. Based on error assessment, CMORPH had the lowest 

MAE, RB, and RMSEc for all analysis periods except for maximum yearly analyses where 

GPM IMERG V6 had the lowest MAE. 

Finally, it can be concluded that the use of daily SPDSs in arid regions could lead to 

misleading results. The best-performing dataset among the selected SPSDs is the CMORH 

with a monthly temporal resolution over the central and northern areas of KSA. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/w15010092/s1, Figure S1. The distribution of the selected 

rain gauges for each analysis period, Figure S2. Spatial distribution of categorical metrics (POD, CSI, 

and FAR) over the study area, Figure S3. Spatial distribution of yearly statistical quantitative metrics 

(CC, NSE, and KGE) over the study area, Figure S4. Spatial distribution of max. yearly statistical 

quantitative metrics (CC, NSE, and KGE) over the study area, Figure S5. Variation of correlation 

coefficient with gauge altitude for each analysis duration, Figure S6. Spatial variation of daily RB, 

MAE, and RMSEc over the study area, Figure S7. Spatial variation of monthly RB, MAE, and RMSEc 

over the study area, Figure S8. Spatial variation of yearly RB, MAE, and RMSEc over the study area, 

Figure S9. Spatial variation of maximum yearly RB, MAE, and RMSEc over the study area, Figure 

S10. Variation of RMSEc with gauge altitude for each analysis duration, Figure S11. Variation of 

MAE with gauge altitude for each analysis duration, Figure S12. Variation of RB with gauge altitude 

for each analysis duration. 
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