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Abstract: Dam crack detection can effectively avoid safety accidents of dams. To solve the problem 
that the dam crack image samples are not available and the traditional algorithm detects cracks with 
low accuracy, we provide a dam crack image detection model based on crack feature enhancement 
and attention mechanism. Firstly, we expand the dam crack image dataset through a generative 
adversarial network based on crack feature enhancement (Cracks Enhancements GAN, CE-GAN). 
It can fully expand the dam crack data samples and improve the quality of the training data. Sec-
ondly, we propose a crack image detection model based on the attention mechanism (Attention-
based Faster-RCNN, AF-RCNN). The attention mechanism is added in the crack detection module 
to give different weights to the proposal boxes around the crack target and fuse the candidate boxes 
with high weights to accurately detect the crack target location. The experimental results show that 
our algorithm achieves 81.07% mAP on the expanded dam crack dataset, which is 8.39% higher than 
the original Faster-RCNN algorithm. The detection accuracy is significantly improved compared 
with other traditional dam crack detection algorithm models. 
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1. Introduction 
China has nearly 100,000 reservoir dams, making it the country with the most reser-

voir dams in the world. Reservoir dams have functions such as flood control, power gen-
eration, water supply and irrigation, which can protect people's property and also pro-
mote economic development. In general, China’s reservoir dams show a wide distribu-
tion, the total number of large spatial differences, many types of dams, and other charac-
teristics, so doing a good job of reservoir dam safety inspection work is of great signifi-
cance, although the task is heavy. However, with the increasing of the service life of dams, 
the aging of materials, environmental corrosion, and other reasons, the surface and inte-
rior of the dams are inevitably deformed and cracks of varying degrees appear. For ex-
ample, after more than half a century of operation of the Huai River tributary of the Fozil-
ing Reservoir dam, fork joints and leakage occurred at the junction of the construction 
joints and deformation joints at the arch ring of the dam [1]. Another example is the dam 
on the lake reservoir located in Baishan City, Jilin Province, which has multiple cracks at 
the top, 30–80 cm wide and nearly 2 m deep, causing particularly severe leakage and de-
formation damage to the dam. As there are a large number of dams in China, there are 
many such examples. If these cracks are not detected in time, they will have a negative 
impact on the safe operation of the dam. The current method for dam crack detection is 
based on manual inspection, which is very labor-intensive, and the accuracy of the detec-
tion depends on the professional level and experience of the inspector. Since different in-
spectors have different results in determining cracks, there is a subjective error in judg-
ment. In addition, the manual inspection method has potential safety problems for the 
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inspectors, and it is not easy to collect a large amount of relevant data. Therefore, it is 
hardly possible to satisfy the needs of dam crack detection using manual inspection meth-
ods alone, and it has become a priority to explore an objective, safe, and accurate dam 
crack detection method. With the development and application of deep learning, deep 
learning dam crack detection algorithms have gradually replaced manual detection. By 
applying deep learning to crack detection, Zheng et al. [2] have made theoretical basis and 
practical results for crack detection on the surface of buildings such as roads, bridges, 
houses, and dams based on deep learning. Ali et al. [3] introduced the important research 
of using convolutional neural networks (CNN) to classify and segment crack images to 
detect structural cracks, which can help us better understand the application of deep 
learning in crack detection. Although many researchers have studied crack detection 
based on deep learning, there are still some problems in dam crack detection due to the 
particularity of crack images in dam crack detection. Dam crack detection mainly faces 
two problems at the present. The first problem is the difficulty and high cost of obtaining 
images of cracks in dams, so it is very hard to have a large sample dataset. The second 
problem is that the speed and accuracy of traditional dam crack detection models are low, 
and the mistakes are large. 

To address the first problem in dam crack detection, researchers usually apply data 
augmentation to address the problem of insufficient data size, i.e., data augmentation and 
feature enhancement of small sample sets with the help of auxiliary information. Re-
searchers now typically use generative adversarial networks (GAN) [4] to solve low data 
size problems. GAN can generate clear and different images from the original images. 
Researchers can achieve a high-quality extension of the dam crack image set by using an 
improved adversarial generative network. To address the second problem in dam crack 
detection, researchers use deep learning to study dam crack images, which can effectively 
improve the speed and accuracy of dam crack detection. The deep learning crack detection 
method, which combines spatial and temporal pattern mining of crack features and deep 
convolutional neural networks, achieves accurate localization of cracks and improves 
crack detection accuracy. 

Given the deficiencies of the above models, we provide a crack image detection 
model with feature enhancement and attention mechanism. Our main contributions are 
as follows: 

(1) We propose a generative adversarial network based on crack feature augmenta-
tion (Cracks Enhancements GAN, CE-GAN) to expand the dam crack dataset. We add the 
image crack enhancement module to the model so that CE-GAN can better learn the fea-
tures of dam cracks and generate crack samples that are closer to the crack features of real 
samples to satisfy the demand of expanding data samples. 

(2) We propose a crack image detection model based on the attention mechanism 
(Attention-based Faster-RCNN, AF-RCNN) to facilitate the improvement of detection ac-
curacy. We introduce an attention mechanism to give different weights to the proposal 
boxes around the target and use weighted summation to fuse the selected proposal boxes, 
so that the updated candidate proposal box is the optimal one and the feature vector of 
the candidate proposal box contains more accurate location information. 

(3) We improve the base anchor aspect ratio generated by the AF-RCNN based on 
the statistics of crack aspect ratio in the original dam crack image, so that the adjusted 
anchor is more suitable for crack detection and improves the efficiency of crack localiza-
tion. 

The rest of this paper is organized as follows. Section 2 reviews related works and 
discusses their limitations. Section 3 describes the framework of the dam crack detection 
model. Section 4 verifies the effectiveness of the proposed model through comparative 
experiments. Section 5 provides a relevant discussion of the deficiencies and developable 
directions demonstrated by the experimental results. Section 6 offers some conclusions 
and suggestions for future work. 
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2. Related Work 
2.1. Generative Adversarial Network in Crack Image Generation 

The generative adversarial network was a generative model proposed by Goodfellow 
et al. [4] in 2014, which differs from the traditional generative model in that the model 
structure contains a generative part and an adversarial part. In 2015, Radford et al. [5] 
proposed the DCGAN (deep convolutional GAN) model. This is the first time a convolu-
tional neural network has been applied to a generative adversarial model. In 2017, Isola 
et al. [6] proposed the Pix2Pix model, which realized the mapping from input image to 
output image. Its training process no longer requires relevant matched pairs of image in-
formation, thus simplifying the process of preliminary data preparation and providing 
technical support for further subsequent applications. 

There have been many applications of GAN in the generation of crack images. Hu 
Min et al. [7] applied GAN to the generation of crack images. Their experiments proved 
that some results were achieved for crack images, but this method was very prone to the 
problem of training instability, which led to a single pattern in the generated images. To 
solve the problem of training instability, Arjovsky et al. [8] used Wasserstein distance to 
measure the difference between real data and generated data, but the weight cropping of 
this method limits the performance of the network. Gulrajani et al. [9] showed that the use 
of gradient penalty term instead of weight clipping improves the defect of poor network 
performance. Radford et al. [5] modified the structure of the generative and discriminative 
models of GAN to use deep convolutional neural networks into GAN, and then they pro-
posed deep convolutional generative adversarial networks (DCGAN). Wei et al. [10] ap-
plied DCGAN to the generation of crack images. They demonstrated that the model could 
obtain higher quality image samples through experiments, but they found that the gener-
ated image details are not clear enough and the generated images are affected by the num-
ber of training samples. 

From the current research, it can be seen that the research on crack image generation 
is mainly focused on pavement, bridge, and tunnel cracks. There are still relatively few 
research studies on dam crack image generation. However, the background of dam frac-
ture images is rather cluttered, which tends to lead to a lack of clear details in the gener-
ated fracture images. 

2.2. Deep Learning in Crack Target Detection 
With the development of deep learning and neural networks, crack detection based 

on deep learning has attracted more and more attention. Han et al. [11] applied the deep 
convolution neural network to the detection of asphalt pavement cracks, which provided 
an alternative solution for the automatic detection of pavement cracks. Mohammed et al. 
[12] evaluated and verified three commonly used crack detection models of concrete struc-
tures, and expounded the advantages and disadvantages of each model. Weng et al. [13] 
proposed a segmentation method based on an improved full convolutional neural net-
work in order to complete the segmentation and detection of pavement cracks in complex 
environments, which can segment the pavement cracks more accurately. Zhu et al. [14] 
used multilayer convolution to automatically extract crack features. They achieved the 
integration of local and abstract features of cracks using the superposition of shallow and 
deep networks, which preserved the crack detail features. To improve the detection accu-
racy of cracks, Sun et al. [15] proposed crack image recognition based on Faster-RCNN, 
which achieved certain results for the detection and accurate localization of image cracks, 
but there are more leakage cases for the detection of smaller cracks. Xue et al. [16] imple-
mented the detection of crack defects based on the improved Faster-RCNN, with back-
bone using the improved inception full convolutional network to obtain the feature map 
and improve the feature extraction capability. He et al. [17] combined multi-level feature 
maps in backbone into multi-scale feature maps to obtain more contexts feature infor-
mation. However, both of them suffer from the problem that the candidate proposal box 
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is not accurate enough for locating the target cracks. Ding et al. [18] improved the locali-
zation accuracy by setting different proportions of anchor frames through mean cluster-
ing, which made the network adapt to the localization of smaller cracks. However, the 
impact of the non-maximum suppression (NMS) algorithm on the candidate suggestion 
window leads to inaccurate target detection localization, resulting in the problem of target 
crack misdetection as well as missed detection. Li et al. [19] proposed a new application 
scenario for applying YOLOv3 [20] to crack detection in floodgate dam surface and shared 
its effects. YOLOv3 uses three scale feature maps for prediction and enhances the detec-
tion of small cracks. Feng et al. [21] proposed a method of crack detection on dam surface 
(CDDS) using deep convolution network, and the CDDS network is improved based on 
the characteristics of the SegNet [22] structure and consists of encoding and decoding 
parts. Chen et al. [23] designed a shallow encoding network to extract features of crack 
images based on the statistical analysis of cracks. Furthermore, to enhance the relevance 
of contextual information, they introduced an attention module into the decoding net-
work. 

From the current research, it can be seen that there is still much space for improve-
ment in the dam crack detection algorithm. 

3. The Dam Crack Image Detection Model 
The overall framework of the dam crack image detection model is shown in Figure 

1. Compared with the traditional dam crack detection algorithm, the model provides in-
novations in image expansion and crack detection work. 

Generator

Discriminator

Crack Feature 
Enhancement

Image Feature Extraction

Candidate Proposal Box 
Selection

Candidate Proposal Box 
Fusion

Results of 
Detecting

Original 
Dataset

CE-GAN AF-RCNN  
Figure 1. The framework of our model. Compared with the traditional dam crack detection algo-
rithm, our model provides innovations in image expansion and crack detection. When the dam 
crack dataset is fed into the model, the expansion module effectively expands the dataset and en-
hances the crack feature through generator and discriminator, so as to facilitate the training of the 
dam crack detection network. The crack detection module extracts the feature under the action of 
the attention mechanism, generates candidate proposal boxes, and optimizes them. Finally, the 
model generates detection results. 

3.1. Generative Adversarial Network Based on Crack Feature Enhancement 
To address the problems of fewer dam crack images and more cluttered image back-

ground, we want to build a network model that is more conducive to dam crack image 
generation. Therefore, we propose the Cracks Enhancements GAN (CE-GAN), which is a 
generative adversarial network based on crack feature enhancement. 

CE-GAN applies the self-encoder and self-decoder to the discriminator, which can 
better distinguish the real crack image from the generated crack image. The generator uses 
a deconvolutional neural network, which can reduce the feature distance and decrease the 
value of the loss function. This model incorporates an image crack enhancement module 
to better learn the features of dam cracks, further reduce the feature differences between 
the generated crack images and the real crack images, as well as improve the quality of 
the generated images. The structure of the model is shown in Figure 2. 
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Figure 2. The architecture of CE-GAN. 

We define x as the real dam crack image, Z as the random noise data input to the 
generative model, and (ݖ)ܩ as the generative model that generates fake images based on 
the noise data. (ݖ)ܩ and x can generate the image ݕ௙ by the crack feature enhancement 
module. In the other channel of the model, the real image x is fed into the discriminator 
for training. The trained discriminator can be obtained after a period of training, which 
enables the discriminator to learn the features of the cracked image. After this, (ݖ)ܩ and 
x are fed into the trained discriminator to obtain ݕ .′ݕ′ can generate the image ݕ௙′  by the 
crack feature enhancement module. Then, we calculate the characteristic values of the im-
age ݕ௙  and the image ݕ௙′  and subtract the two feature values to obtain the difference 
which is passed to the generator through the feedback channel. If the image reconstructed 
by the discriminator is close to the real image, the difference of the characteristic values 
will be relatively small. Similarly, if the difference between the reconstructed image of the 
discriminator and the real image is relatively large, the characteristic values difference 
will also be relatively large, resulting in a large loss error, thus prompting the generator 
to update the parameters so that the output crack image can be closer to the real crack 
image. 

3.1.1. Crack Enhancement 
By analyzing the collected dam crack images in the dataset, we found some short-

comings about dam crack images and their data sets: 
(1) The semantics of dam crack images are relatively simple. Dam crack images need 

to focus on the underlying features, such as the outline, color, texture, and morphology of 
the cracks. As shown in Figure 3a, the crack profiles are mostly straight and the texture of 
the crack images is not clear enough. According to this feature, in the image expansion 
part, we could design filters to filter the image data by Fourier transform to achieve the 
enhancement of the crack image. 

(2) The dam cracks have various characteristics and shapes. The formation of dam 
cracks is affected by internal and external uncertainties, resulting in a cluttered back-
ground of the crack image. The crack image has obvious linear characteristics. There are 
also multiple fracture branches near the fracture, as shown in Figure 3b,c). According to 
this feature, in the crack detection part, we could set the anchor frame suitable for dam 
crack detection by calculating the aspect ratio of linear cracks. 

(3) The dam crack sample set is lacking. The sample set was acquired mainly from 
the dam crack images collected from a dam safety inspection report, but the amount of 
data in the safety inspection report that met the experimental requirements was relatively 
small, resulting in insufficient data for subsequent model training. 
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(a) (b) (c) 

Figure 3. Sample images of dam cracks. (a) shows the image where the crack is not obvious. (b) 
shows the image where the crack is obvious. (c) shows the image with multiple cracks. 

In order to solve the above defects, in this paper, we use the Fourier transform in the 
crack feature enhancement module to convert the input image from the spatial domain to 
the frequency domain and filter the image t    o enhance the image features of the dam 
crack, so that the model can better learn the features of the dam crack and make the gen-
erated crack sample closer to the crack image of the real sample. 

The two-dimensional discrete Fourier transform [24] transforms the image from the 
spatial domain to the frequency domain. The transformation equation is shown in Equa-
tion (1). 

1 1 2 ( )

0 0

( , ) ( , )
ux vyM N j
M N

x y

F u v f x y e
π− − − +

= =

=   (1)

where M is the image length and N is the image height. Here, ݑ)ܨ,  denotes a frequency (ݒ
domain image, where the range of u is [0, M − 1] and the range of v is [0, N − 1]. ݂(ݔ,  (ݕ
denotes the spatial domain image, a spatial domain matrix of size ܯ × ܰ, where the range 
of x is [0, M − 1] and the range of y is [0, N − 1]. 

Equation (2) is the transfer function of the Butterworth high-pass filter. 

20

1( , )
(1 [ ] )

( , )
n

H u v
D

D u v

=
+

 
(2)

where  ܦ଴ is the specified positive number, ݑ)ܦ, ,ݑ) denotes a distance from the point (ݒ ,ݑ)ு௉ܪ  to the center of the filter, and ݊ is the order of the filter. If (ݒ  is the transfer (ݒ
function of the high-pass filter, then the transfer function of the corresponding low-pass 
filter is  ܪ௅௉(ݑ, (ݒ = 1 − ,ݑ)ு௉ܪ  .(ݒ

We use the high-pass filter as the baseline filter to improve the dam crack image by 
controlling the low-frequency information and adjusting the high-frequency information 
accordingly, as shown in Equation (3). 

1
1 2( , ) [ ( , ) ( , ) ( , )]HPg x y f k F u v k H u v F u v−= +  (3) 

where ݑ)ܨ, ,ݔ)݂ denotes a frequency domain image which is obtained from the input image (ݒ ,ݑ)ு௉ܪ ,by Fourier transform (ݕ denotes the high-pass filter, ݇ଵ (ݒ  is the variable 
that controls the low frequency, and ݇ଶ is the variable that controls the high frequency. 

We found by testing that the image enhancement is better when ݇ଵ = 1 and ݇ଶ = 1.3. 
We perform low-pass filtering, high-pass filtering, and improved filter filtering operations 
on the image, respectively. The effect is shown in Figure 4. 

    
(a) (b) (c) (d) 
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Figure 4. The effect of three kinds of filtering methods. (a) shows the original dam crack image. (b) 
shows the effect under low-pass filtering. (c) shows the effect under high-pass filtering. (d) shows 
the effect under our improved filtering. 

As shown in Figure 4a, the crack edges in the high-frequency region and the sur-
rounding area become blurred when the dam crack image is processed with low-pass fil-
tering, because the crack edge information in the high-frequency region is filtered out 
when the low-pass filtering filters the high-frequency information. As shown in Figure 4b, 
after high-pass filtering, most of the background in the original image will be lost. Alt-
hough the high-pass filter can enhance the crack features, the loss of background is also 
detrimental to the subsequent detection of cracks in the dam. As shown in Figure 4c, the 
improved filter enhances the crack features of the image, and the background of the image 
is not lost. In summary, this image data enhancement method can achieve the enhance-
ment of dam crack image features. 

3.1.2. Generator and Discrimination 
The input of the generator model is a noisy data Z that obeys some random distribu-

tion. The output of the generator is a new sample of size 256 × 256 × 1. The generator 
has no fully connected layers and pooling layers. After a reshape layer, it will go through 
five deconvolutional layers, with a convolution kernel size of 5 × 5. The specific structure 
is shown in Figure 5. 

8×8×1024
16×16×512

32×32×256
64×64×128

128×128×64 256×256×1

Reshape Deconv-1 Deconv-2 Deconv-3 Deconv-4 Deconv-5
Input Z

 
Figure 5. The architecture of the generator. 

The discriminator consists of an encoder and a decoder. The specific structure is 
shown in Figure 6. 

The encoder consists of three convolutional layers and three pooling layers. The in-
put to the encoder is an image of size 256 × 256 × 1 generated by the generator. After 
transforming the number of channels and image size for the feature map, the dimension 
of the input data is compressed to 32 × 32 × 32. All the convolutional layers in the encoder 
use the ReLU activation function. The size of the convolution kernel is 3 × 3. 

The decoder consists of four convolutional layers and three up-sampling layers. The 
input data of the decoder is the output data of the encoder. The output of this network is 
a new image sample data of 256 × 256 × 1. The size of the convolution kernel is 3 × 3. 

256×256×1 256×256×64 128×128×64 128×128×64 64×64×64 64×64×32 32×32×32

Input Conv-1 Pool-1 Conv-2
Conv-3

Pool-2
Pool-3

 

32×32×32
64×64×32 64×64×64

128×128×32
128×128×64

256×256×64
256×256×64 256×256×1

Input Upsample-1
Conv-1 Upsample-2

Conv-2 Upsample-3
Conv-3 Conv-4

 
(a) (b) 
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Figure 6. The architecture of discriminator. (a) is the structure of encoder. (b) is the structure of 
decoder. 

3.1.3. Loss Function 
The loss function of the original generative adversarial network is shown in Equation 

(4). We adjust the loss function to make the image generation stable and diverse. 

min max ( , ) ( ) log[ ( )] log[(1 ( ( )))]
data zG D x P z PV D G E x D x E D G z− −= + −  (4) 

Set ܫ  is the image, and we find the eigenvalues of images ݕ௙  and ݕ′௙  to obtain ܣ(ݕ௙) and ܣ(ݕ′௙). We obtain the two-parametric number of eigen differences ||ܣ(ݕ௙)  ଶ and feed the feature difference to the generator as part of the loss function, as||(௙′ݕ)ܣ−
shown in Equation (5). 

2|| ( ) ( ' ) ||
( )

( ) ( ( ))
256

f f

G

A y A y
i jL z D G z

−
+= =  (5) 

where ݅ is the image of the row pixel size and ݆ is the image of the column pixel size. 
The loss function of the discriminator is shown in Equations (6)–(8). 

( , ) ( ) ( ( ( )))DL x z D x D G z= + −  (6)

2|| ( ) ( ' ) ||
( )

( )
256

f x f xA y A y
i jD x

−
+=  (7)

( ) ( ) 2|| ( ) ( ' ) ||
( )

( ( ))
256

f G z f G zA y A y
i jD G z

−
+=  (8)

As shown in Equation (9), we add a threshold ܯ to the discriminator loss function 
thus acting as a restriction to avoid model collapse and to balance (ݔ)ܦ and ((ݖ)ܩ)ܦ. 

( , ) ( ) max(0, ( ( )))DL x z D x M D G z= + −  (9)

Finally, we improve the loss function as shown in Equations (10) and (11). 

, ,
( ) cos( , )PT i ji j i j

f S e eγ
≠

=   (10)

( , ) ( ) max(0, ( ( ))) ( )D PTL x z D x M D G z f S= + − +  (11)

where ߛ is hyperparameters, ݁௜  denotes the output vector after decoding in a batch 
S=൛. . .௜ݔ . .௝ݔ . ൟ, and ௉்݂(ܵ) is used to represent the similarity of the images. 

3.2. Crack Image Detection Based on Attention Mechanism 
To address the problems of low accuracy of traditional detection algorithms and in-

accurate positioning of candidate suggestion frames in the process of detecting dam crack 
images, we propose the AF-RCNN, a crack image detection model based on the attention 
mechanism. This model uses the Faster-RCNN model as the baseline model. Its feature 
extraction network partly combines ResNet-50 [25] and SENet [26] to improve the feature 
representation capability and quality of the network. It adjusts the scale and proportion 
of the foundation anchor according to the dam crack aspect ratio. In addition, the model 
achieves candidate proposal boxes merging by using the attention mechanism to improve 
the accuracy of the target proposal boxes for crack localization, reduce the occurrence of 
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false detection and missed detection, and promote the improvement of the detection ac-
curacy. The structure of the model is shown in Figure 7a. 
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(a) (b) 

Figure 7. (a) Structure of crack image detection model based on attention mechanism. (b) Residual 
unit embedded SENet. 

3.2.1. Feature Extraction Network with SENet Structure 
Considering that the network depth is not easily too deep, we use the ResNet-50 net-

work as the benchmark network. The core operation of the SENet network consists of two 
parts: squeeze and excitation. We try to embed the SE structure into other network models 
and find that this enables the network model to integrate more features spatially, allowing 
the network to focus more on the feature channels with more information while suppress-
ing the feature channels with less information, thus improving the feature representation 
capability of the network. As a result, we embed the SENet structure in the feature extrac-
tion network Resnet-50 in AF-RCNN, so that it can incorporate more spatial features, per-
form feature compression for feature channels with different information amounts, obtain 
corresponding different weights after squeezing the features, and update the relevant 
channel information according to the different weights. 

The structure of the residual unit added to the SENet network is shown in Figure 7b, 
where X is a feature map and Y is a feature map after squeeze and excitation. First, input 
the feature map of size M × W × X into the SENet structure, perform global average pool-
ing on the feature map, and squeeze it into a vector of size M × 1 × 1; second, input the 
real number sequence of size M × 1 × 1 into the fully connected layer, reduce the dimen-
sion into a vector of size 1 × 1 × (M/r), and increase the dimension to a vector of size 1 × 1 × M through the ReLU activation function; third, input the vector of size 1 × 1 × M 
into the second fully connected layer and obtain the corresponding weight of the channel 
through the sigmoid activation function; and finally, calculate the channel and the corre-
sponding weight to realize the channel weighting and obtain the updated output. 

We embed the SENet structure in the feature extraction network Resnet-50, i.e., SE 
units are embedded after the Conv1, Conv2_3, Conv3_4, Conv4_6, and Conv5_3 layers, 
respectively. The specific structure is shown in Figure 8. 
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Figure 8. Resnet-50 embedded SENet. 

3.2.2. Improvement of Regional Proposal Network 
We calculate the length and width of the crack using the following equation, and then 

set the size of the anchor applicable to dam crack detection based on the crack aspect ratio. 
The calculation of the continuous curve spacing [27] is shown in Figure 9. For two contin-
uous functions ܷ(ݔ) and ܸ(ݔ), (ܷ(ݔ) +  denotes the midpoint connection of the 2/((ݔ)ܸ
functions, ܲ(ݔ) = (ݔ)ܷ − (ݔ)ܸ  denotes the vertical distance, and (ݔ)ߠ = (ݔ)ܷ)] ′[2/((ݔ)ܸ+  denotes the inclination of the curve at the midpoint P. So, ܹ(ݔ) (ݔ)ܲ= × )ݏ݋ܿ  is an approximation of the width between the two curves where P is ((ݔ)ߠ
located. 

y

(ݔ)ߠ
P

(ݔ)ߠ
U(x)

V(x)

U(x)-V(x)

x  
Figure 9. Diagram of continuous curve spacing. 

Based on the above calculation, the length and width of the dam cracks can be calcu-
lated using the following steps: 

(1) Transverse cracks 
Step 1: Average the position coordinates of all crack pixel points in column j as shown 

in Equation (12). 
( )

1
( , )

( )
( )

P i

k
z k j

M j
P j
==   (12) 

where P(j) denotes the number of pixels in column j and ܼ(݇, ݆) denotes the position 
coordinates of all crack pixels in the image, k = 1, 2, …, P(j). 

We can consider the line between the coordinates (ܯ(݆), ݆) as the centerline of the 
crack, and then the inclination angle of the centerline of the jth column is expressed as 
Equation (13). 

( ( ) ( ))( ) arctan[ ]
(2 )

M j r M j rj
r

θ + − −=
×

 (13) 

where ݎ = 1,2,3. 
We take the j column as the center, calculate the inclination angles of the left and right 

columns of the j column, and then take the average ߠ(݆) of the three columns as the in-
clination angle of the jth column. 

Step 2: Calculate the width of each column where the crack is located separately. ܹ(݆) denotes the crack width in column j, as shown in Equation (14). 
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( ) ( ) cos( ( ))W j P j jμ θ= × ×  (14) 

where ߤ is a pixel resolution, P(j) denotes the number of pixels in column j, and ߠ(݆) is 
the inclination of the jth column. 

Step 3: Calculate the length of cracks, as shown in Equation (15). 

1

1

( )

( ) cos( ( ))

m

i
m

j

P j
L

P j j

n

μ

θ

=

=

×
=

×




 

(15) 

(2) Longitudinal cracks are calculated as above, as shown in Equations (16) and (17). 

( ) ( ) cos( ( ))W i P i iμ θ= × ×  (16) 

1

1

( )

( ) cos( ( ))

m

i
m

i

P i
L

P i i

m

μ

θ

=

=

×
=

×




 

(17) 

where P(i) denotes the number of pixels in row i. 
We use the above formula to calculate the length and width of the crack, and then set 

the size of the anchor applicable to dam crack detection based on the aspect ratio of the 
crack. 

3.2.3. Proposal Boxes Fusion with Attention Mechanism 
 According to the problems of the NMS algorithm, in order to obtain more infor-

mation about the location of the target crack, the suppressed surrounding candidate pro-
posal boxes need to be selected. We need to select the surrounding candidate proposal 
boxes that contain more target location information. However, different surrounding pro-
posal boxes contain different location information and thus have different importance for 
the target proposal box. We propose a weighted fusion method of candidate proposal 
boxes based on the attention mechanism. Firstly, we will set a reasonable threshold T to 
select the surrounding proposal boxes. Secondly, we will identify the surrounding pro-
posal boxes as the one that contains more target locations when the score of intersection 
over union (IOU) between the target proposal box and the surrounding proposal box is 
greater than or equal to T. Finally, we fuse the selected proposal boxes using multiplexing 
and weighted summation to achieve the updated target proposal frame as the optimal 
target proposal box, so that the feature vector of the target proposal box contains more 
accurate location information and improves the accuracy of model recognition. The spe-
cific screening process is shown in Figure 10. 

Input

RPN Proposal Box

ROI Pooling

FCN Layer 2

Proposal Box FusionFCN Layer 1

Output

 
Figure 10. Proposal boxes fusion. 

The steps to achieve the fusion of surrounding proposal boxes based on the attention 
mechanism are as follows: 

Step 1: We input the RPN selected target proposal box to the fully connected layer 1. 
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Step 2: ܲ = ,ଵ݌] ,ଶ݌ . . . , -௜] denotes the feature vector on the fully connected layer cor݌
responding to the target proposal box. We identify the surrounding proposal boxes as the 
one that contains more target locations when the score of intersection over union (IOU) 
between the target proposal box and the surrounding proposal box is greater than or equal 
to T. After that, we fuse the selected proposal boxes by using multiplexing and weighted 
summation to improve the feature vector of the target proposal box P. 

Step 3: We calculate the weights between the target proposal box P and the retained 
feature vectors of each surrounding proposal box. Then, we combine the attention mech-
anism to automatically learn the weight information, as shown in Equation (18). We use 
the Softmax classification to output the weights. 

( [ ]),
ji

T
ij a v ve W W f f=  (18) 

where ்ܹ and ௔ܹ denotes the parameters of automatic learning and ௩݂೔ and ௩݂௝  de-
notes the feature vectors on the fully connected layer 1, which correspond to the ith and 
jth surrounding proposal boxes of the target proposal box vector. 

Step 4: We update the feature vector corresponding to the target proposal box P, as 
shown in Equation (19). 

1 2 ...V i V i V ij VF a F a F a F= × + × + + ×
i 1 2 j

 (19) 

Step 5: We output the updated target proposal box to the fully connected layer 2. 

4. Experimental Result and Analysis 
4.1. CE-GAN Experiment Results and Analysis 

The crack dataset was obtained from the inspection results of a power station dam 
project. The original dataset has a total of 759 images. The crack dataset is adjusted after 
collection so that the target area of the crack is basically located in the image. In this ex-
periment, the resolution of the crack image is uniformly modified to 256 × 256 size, as 
shown in Figure 11. 

    

    

Figure 11. The samples of the dataset. 

In this experiment, we train the generator and discriminator using a set of dam crack 
images, both of size 256 × 256. The initial weights are set to follow a normal distribution 
of N (0, 0.02). We compare the experimental results with those of other models to verify 
the effectiveness of the model. Among the selected comparison models are GAN [4], 
WGAN [8], WGAN-GP [9], and DCGAN [10]. 

In order to visually compare the quality of images generated by different generative 
adversarial networks and their visual effects, images generated by the models GAN, 
WGAN, WGAN-GP, DCGAN, and CE-GAN are shown in Figure 12. 
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(a) (b) (c) (d) (e) 

Figure 12. Crack images generated by different models. (a) Crack images generated by GAN. (b) 
Crack images generated by WGAN. (c) Crack images generated by WGAN-GP. (d) Crack images 
generated by DCGAN. (e) Crack images generated by CEGAN. 

We found that the images generated by the GAN basically have no crack features 
and there is a pattern collapse, which cannot meet the required sample set. The images 
generated by the WGAN and DCGAN appear to have crack features, but the details of the 
crack images are missing, and they cannot learn the features of the dam cracks well, and 
the diversity of the generated images also performs poorly. Although the image crack 
features generated by the WGAN-GP are already clearer and better than WGAN and 
DCGAN in image quality, the diversity of the generated images as well as the image qual-
ity are inferior to CE-GAN. The dam crack images generated by the CE-GAN are closer to 
the real dam crack images and are the best among the generated images in terms of visual 
effects. 

To further compare the model effect, we selected FID evaluation index to analyze 
and compare the models of WGAN, WGAN-GP, DCGAN, and CE-GAN. FID is an index 
to evaluate the generative model, which responds to the difference between the generated 
image distribution and the original image distribution; the smaller the FID value is, the 
smaller the difference is and the more realistic the generated image is. The formula is as 
shown in Equation (20). 

1
2 2(Σ 2(Σ ) )r g r r

g g

FID Trμ μ= − + + − ‖ ‖  (20) 

where r is the real image, ݃ is the generated image, ߤ is the mean of the real image fea-
tures, Σ is the covariance, and ܶݎ is the trace of the matrix. 

As shown in Figure 13, it can be seen that CE-GAN converges faster than WGAN, 
DCGAN, and WGAN-GP in the early stage. The FID value of CE-GAN is also lower than 
the other three models. A smaller FID value indicates a higher quality of the generated 
image. So, CE-GAN is useful for the improvement of dam crack images. 
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Figure 13. The graph of FID value. 

4.2. AF-RCNN Experiment Results and Analysis 
The crack data images used in this experiment have been expanded by CE-GAN with 

a total of 6500 images, including 759 original images from the inspection results of a power 
station dam project. Each image in this dataset is of 256 × 256 resolution. The dam crack 
dataset was labeled and partitioned following the VOC2007 dataset format, of which 5000 
sheets were used for training and 1500 sheets for testing. 

We selected the SSD [28], YOLOv3 [20], Faster-RCNN [15], TDD-Net [18], DDN [17], 
and AF-RCNN for our experiments and compared them in terms of mAP, average IOU, 
and AR, respectively. The SSD, YOLOv3, and Faster-RCNN are the original aspect ratio 
and the scale size. 

We counted the original 759 dam crack images and obtained a total number of 1270 
cracks. We observed that the dam cracks are mainly straight, with relatively few reticu-
lated cracks, and the reticulated cracks that exist can be decomposed into multiple straight 
cracks. Therefore, we counted the aspect ratio of linear cracks and designed an anchor size 
ratio suitable for the cracks of the dam. 

We used the method in Section 3.2.2 to count the aspect ratio of cracks and improve 
the aspect ratio of the basic anchor based on the counted crack aspect ratio. The statistical 
graph of the aspect ratio of the cracks in the dam is shown in Figure 14. Finally, we de-
signed the anchor size scale suitable for the dam cracks. We found that the aspect ratios 
of dam cracks can be classified into four types, which are 4:1, 2:1, 5:1, and 1:2. Based on 
the statistical results and the percentage of the four aspect ratios of the dam cracks, we 
adjusted the ratio of the basic anchor to (2:1, 4:1, 1:2, 5:1). In order to be able to detect 
cracks of smaller size and reduce the leakage cases, we will adjust the scale of the anchor 
to {32ଶ, 64ଶ, 128ଶ}, so that the number of anchors on the feature map is 12. 

 
Figure 14. The graph of crack aspect ratio. 

In summary, the anchor point aspect ratio of AF-RCNN is (2: 1,4: 1,1: 2,5: 1) and the 
scale is {32ଶ, 64ଶ, 128ଶ}. The anchor point aspect ratio of TDD-Net is (1: 2,1: 1,2: 1) and 
the scale is {15ଶ, 25ଶ, 40ଶ, 60ଶ, 80ଶ}. The anchor point aspect ratio of DDN is (1: 2,1: 1,2: 1) 
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and the scale is {64ଶ, 128ଶ, 256ଶ, 512ଶ}. SSD, YOLOv3, and Faster-RCNN are all original 
aspect ratio and scale. 

The test results are shown in Table 1. 

Table 1. Detection results of each detection model. 

Method mAP (%) IoU (%) AR (%) 
SSD 64.01 78.31 67.85 

YOLOv3 65.65 75.26 68.29 
Faster-
RCNN 

72.68 73.15 66.16 

TDD-Net 80.08 81.20 69.54 
DDN 78.26 79.65 68.67 

AF-RCNN 
(ours) 81.07 80.56 70.13 

We find that the detection accuracy of Faster-RCNN is better than that of SSD and 
YOLOv3 with essentially the same average IoU and AR, which indicates that the Faster-
RCNN model is a better choice as the benchmark model. TDD-Net has the best perfor-
mance in IOU, but it is not as good as AF-RCNN in mAP. The AF-RCNN has the highest 
mAP value, indicating that this model is more accurate in detecting the location of cracks 
in the dam compared with other detection models. 

To further compare the enhancement effect of the model in this paper after improv-
ing the anchor ratio and adding the attention mechanism, we compare the Faster-RCNN, 
SENet + Faster-RCNN, Attention mechanism + Faster-RCNN, and AF-RCNN, respec-
tively, for the experiments. The test results are shown in Table 2. 

Table 2. Detection results of ablation experiment. 

Method Anchor mAP (%) IoU (%) AR (%) 
Faster-
RCNN 

9 72.68 73.15 66.16 

Faster-
RCNN 

12 74.72 76.26 66.85 

SENet + 
Faster-
RCNN 

12 76.65 79.68 68.29 

Attention 
mechanism 

+ Faster-
RCNN 

12 78.50 80.25 67.86 

AF-RCNN 12 81.07 80.56 70.13 

As shown in Table 2, the detection accuracy of the model improved from 72.68% to 
74.72% when the anchor aspect ratio was improved. When the feature extraction module 
is embedded in SENet, it can improve the model feature representation and the detection 
rate is increased to 76.65%. When the fusion of candidate proposal boxes is achieved by 
using the attention mechanism, the detection accuracy of the model is improved to 78.50%. 
Combining the three improvements at the same time, the model achieved a detection rate 
of 81.07%. In summary, the improvement of this model is effective. 

As shown in Figure 15, the detection results of the model before improvement had 
obvious misses and the target proposal box was not accurate enough for locating the tar-
get cracks. However, the detection results of the improved model can be seen to be more 
accurate in locating the target cracks and reducing the number of wrong detections. We 
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can assume that the present model can effectively contribute to the improvement of the 
detection accuracy. 

   

   

   
(a) (b) (c) 

Figure 15. Detection effect comparison diagram. (a) Original image of cracks. (b) Test results before 
improvement. (c) Test results after improvement. 

5. Discussion 
On the basis of the existing research at home and abroad, we deeply analyzed the 

characteristics of dam crack images, used the improved confrontation generation network 
to expand the dam crack image set with high quality, and studied the dam crack image 
detection model based on deep learning to improve the accuracy of dam crack detection. 
Although our experimental results show that the recognition accuracy of our proposed 
model can reach 81.07%, there is still much space for improvement. 

(1) In view of the low computational efficiency of existing deep learning methods in 
dam crack detection, we assume the use of transfer learning for target detection. Transfer 
learning can also alleviate to some extent the limitations caused by insufficient data on 
dam cracks. For example, Fan et al. [29] realized knowledge transfer of crack image fea-
tures using a multi-level adversarial transfer network. Yang et al. [30] proposed an auto-
matic pixel-level crack detection method based on deep transfer learning. Maybe we can 
try to apply transfer learning in dam crack detection. 

(2) Existing crack detection methods still suffer from background noise interference, 
such as dirt patches and pitting. In this paper, we analyze low-pass filtering and high-
pass filtering to design a filter suitable for dam crack images, so as to achieve feature en-
hancement for dam cracks. We feel that perhaps different scale information and different 
field of view information can be used to better recognize dam cracks. Zhang et al. [31] 
designed an encoder–decoder crack segmentation network based on multi-scale contex-
tual information enhancement to make the network more effective at distinguishing be-
tween cracks and background noise. Qu et al. [32] proposed a new multi-scale feature 
fusion module where the deep semantic information is integrated into the low-level con-
volution stage layer by layer to strengthen the network model’s ability to locate the crack 
pixels. 

6. Conclusions 
In this paper, we used an improved adversarial generative network to achieve a high-

quality expansion of the dam crack image set for the characteristics of dam crack images 
and studied the dam crack images based on a deep learning model to solve the problem 
of lack of data volume while improving the accuracy of detection. We proposed a gener-
ative adversarial network (CE-GAN) based on crack feature enhancement to augment the 
dataset, which has been experimentally verified to improve the quality of the generated 



Water 2023, 15, 64 17 of 18 
 

 

images and content with the demand of expanding data samples. In addition, we also 
proposed an attention mechanism-based crack image detection model (AF-RCNN), which 
is improved in three parts: feature extraction part, candidate boxes detection region, and 
detection processing part. It is experimentally verified that the model improves the accu-
racy of locating the crack location of the dam and shows advantages in detection accuracy. 
In future research, we may apply other deep learning models in the dam crack detection 
to further improve the detection efficiency and accuracy. 
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