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Abstract: The stress behavior of key parts of concrete dams is related to the safe operation of the dam.
However, the stress sensors in concrete are susceptible to aging and failure with increasing service life.
Estimating the structural stress under sensor failure or data loss scenarios for concrete dams in service
is essential and complex. This study presents a stress estimation method driven by the observation
data. Firstly, a one-to-one correspondence exists between dam deformation reflecting the load effect
and structural stress. Estimating the structural stress by simulating load effects with dam deformation
is more convenient when it is hard to simulate complex load effects directly. Therefore, based on the
observed data before stress sensor failure, the spatial–temporal relationship between structure stress
and multi-point deformations of a concrete dam is developed using convolutional neural networks
(CNN) and long short-term memory (LSTM). An improved particle swarm optimization algorithm
combined with swarm information entropy (SIE–APSO) is proposed simultaneously for tuning the
network’s hyperparameter and accelerating the convergence. Finally, the stress estimation of the
target part of the concrete dam in service is obtained. The case shows that it is valid and feasible. The
RMSE decreased by approximately 21–58%, MAPE decreased by 19–58%, and ARV decreased by
22–94% compared with the load-stress relationship model.

Keywords: concrete dam; stress estimate; data spatial–temporal association; CNN–LSTM; improved
particle swarm optimization

1. Introduction

Structural health monitoring (SHM) systems utilize numerous sensors installed on
dams to acquire timely and continuous data on the state of structures. Stress sensors
are commonly embedded in key parts of the dam to obtain structural strength informa-
tion. Hence, stress monitoring is important for dam safety assessment. However, stress
sensors are susceptible to aging and failure due to slow processes such as corrosion and
fatigue. Maintenance is also costly, since they are embedded in concrete. The research
on stress estimating for scenarios such as sensor failure and data loss is essential in dam
health monitoring.

Many studies have been conducted for the above scenarios. Li et al. [1] searched for
valid samples with the highest correlation with the default samples using the K-nearest
neighbor (KNN) algorithm. They took the average value of the relevant samples as the
target values. Zhang et al. [2] proposed a method for recovering missing data from long-
term measurements that considers the full-life monitoring of structures. Their method
analyzes the correlations of multiple strain sensors installed in a steel structure of a sta-
dium building and restores the missing data by interpolating their relationships. Wang
et al. [3] proposed a missing value complementation method based on kernel-independent
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component analysis (KICA) and relevant vector machine (RVM) models. They performed
a nonlinear transformation of the correlated measurement points of the target measure-
ment points to extract the independent components. The independent components and
measured values of the target measurement points are then used as input and output
for model training and applied to a concrete dam. Some scholars have also developed
estimation models based on: the relationship between multiple factors of environmental
loads (water pressure, temperature, and time factors) and structural responses [4], such as
the conventional hydrostatic–seasonal–time (HST) statistical model [5]; a machine learning
(ML)-based model, such as support vector regression (SVR) [6]; random forests (RF), based
on random decision-making [7]; Gaussian process regression (GPR), based on the probabil-
ity distribution [8]; boosted regression trees (BRT) combined with regression trees and an
enhancement method [9]; recurrent neural network (RNN) and its improved algorithms,
such as long-short term memory (LSTM) neural networks [10] and gated recurrent unit
(GRU) neural networks [11]; and temporal convolution network (TCN) [12].

The above studies estimate target values mainly (i) from the data of proximity time;
(ii) from the data of adjacent measurement points of the same sensor type; or (iii) based on
the relationship among the load factors and structure responses. However, the first type of
method is only for data interpolation problems, which are not applicable for future values
estimation after sensor damage. The second type of method does not involve the physical
mechanism of the structure. It only estimates by interpolation, which is less reliable in the
case of limited data from the same sensor type in the vicinity. The third type of method
contains the load and structural response information. Nevertheless, it is tough to simulate
complex load effects using load factors directly. Moreover, the estimation ability of this
method is limited in dealing with situations beyond the experienced conditions.

The monitoring data of various sensor types depict the operation information of the
dam system from different aspects, and there is a one-to-one correspondence among them.
At the same time, dam deformation data are the direct externalization of the load effect, and
they have the advantage of convenient collection and maintenance compared with stress
data. These premises open up an intriguing avenue of research: estimating structural stress
by simulating the load effects with observed deformation data. Specifically, the spatial–
temporal association among multiple relevant deformation sensors and target stress sensors
can be utilized to support stress estimation at the target part of concrete dams. The spatial–
temporal associations among the measured sequences of multiple monitoring points are
generally difficult to express with explicit functions. The recently developed deep learning
(DL) models have provided an actionable solution to extract information from various
kinds of data [13,14]. The convolutional neural network (CNN), inspired by the visual
system, includes network attributes such as convolution, pooling operations, and shared
weights, enabling it to capture data features from aspatial perspective [15]. The recurrent
neural network (RNN) has a cyclic connection to the architecture, meaning it can update the
current state based on past states and current input data [16]. Unfortunately, RNN is unable
to connect the relevant data when the input gap is large. Long short-term memory (LSTM),
derived from RNN, aims to handle the problem of long-term dependencies by providing
gate functions for RNN [17]. It has been widely adopted in research areas concerned with
sequential data because of its the powerful learning capacity [18–20]. Therefore, LSTM
networks are introduced for processing the time series data in this work.

Different deep learning (DL) architectures are suitable for different datasets [21].
Therefore, the hyperparameters must be specified to fit a DL model to the target task.
The literature [22] suggests that the DL models will benefit from the tuning process since
they often have many hyperparameters requiring selection. Hyperparameter tuning is an
optimization problem. Particle swarm optimization (PSO) is a reasonable choice due to
its simple structure and inexpensive computational cost [23]. However, this algorithm is
prone to fall into the local optimum since the particles are only guided by the individual
and group optimal solutions during the iterative process [24]. Improvement to alleviate
this problem is needed.
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Based on the advantages of the DL technique mentioned above, the CNN and LSTM
networks are employed sequentially to extract the spatial–temporal association between
the historical monitoring data of the failure stress sensor and multiple relevant deformation
sensors. An improved PSO algorithm combined with swarm information entropy (SIE–
APSO) is also proposed for tuning the model hyperparameter during the training process.
Then, the estimation value at the location of the failed stress sensor can be derived by
feeding the trained learning model the existing deformation monitoring data. In addition,
the effectiveness of combining the estimation model with the deformation data presented
in this study is evaluated through comparison with HST, neural network (NN) with
single hidden layer, and SVR established on the load–stress relationships. Some other
algorithms are also introduced for the performance comparison of SIE–APSO. Furthermore,
the estimation performance that depends on the model input configuration, that is, the
length of the input sample, is examined.

The rest of this paper is organized as below: the overall architecture of the proposed
learning model for stress estimation is detailed in Section 2, and then we give a brief
introduction of the methodology involved; Section 3 presents the actual project and its
monitoring system mentioned in this study, followed by the data configuration process for
model development; model architecture and estimation results are reported in Section 4;
Section 5 discusses the performance comparison and further analysis of the model; finally,
the conclusions and limitations are summarized in Section 6.

2. Methodology

The modeling framework of the presented stress estimation model of concrete dams is
illustrated in Figure 1, and it contains four processes:

1. Data configuration. Observations from dam deformation and stress sensors are
collected to provide learning data for the estimation model. The supposed fail-
ure time of the target stress sensor is considered to be the splitting point between
the training and testing periods. The data samples are then configured via the
sliding-window approach.

2. Model development. Taking the deformation matrix as the model input and extracting
the spatial features among different deformation monitoring points via CNN each day
produces the output sequence containing the temporal attributes. Take this sequence
as the input of the single-layered LSTM to obtain the temporal representation of the
sequence. Finally, set a fully connected (FC) layer to get the model output and take it
as the value of concrete stress.

3. Tuning and training. The training and validation subset are obtained via the time
series cross-validation (CV) technique performed on the training data. Subsequently,
taking the average accuracy of the validation set of each fold as the fitness func-
tion, the hyperparameter tuning of the estimation model is implemented via the
proposed SIE–APSO.

4. Evaluation. The estimation performance of the trained model is evaluated by feeding it
the configured out-of-training data. Furthermore, the root mean square error (RMSE),
average absolute percentage error (MAPE), and average relative variance (ARV) are
utilized for model evaluation.

2.1. The CNN–LSTM Estimation Model

The stress estimation model of concrete dams utilizes data from multiple deformation
points to predict the stress response at the site of the failed stress sensor. Expressly, assume I
is a two-dimensional matrix (n × m) composed of the deformation measured values, where
n and m are the number of deformation sequences and the number of monitoring times and
represent the spatial and temporal dimensions of the data, respectively. Then, n CNN layers
are adopted in parallel to perform convolution processing on the data of the first dimension
(spatial dimension) of the matrix I. That is, m deformation data from the same monitoring
time participate in the calculation of a convolutional layer. A spatial feature sequence is
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generated by extracting the spatial association between multiple deformation monitoring
points each time. Notably, this sequence contains temporal attributes. The operation of the
LSTM is performed subsequently on the temporal dimensions of this sequence and then
obtains the spatial–temporal features of the data. The generated spatial–temporal features
are connected to target stress values through a single-layer network for estimation. The
architectures of CNN and LSTM are briefly introduced as follows.
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Figure 1. The process of the presented estimation model.

2.1.1. Convolutional Neural Network

CNN is a feedforward neural network that has the characteristics of autonomously
extracting data features and excellent classification capabilities [25]. The convolution
operation is implemented through the convolutional layer, which means the network
can conveniently process the data with a net structure. The two-dimensional discrete
convolution formula is as follows:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n) (1)

where S is the feature mapping; I is the two-dimensional input; K is the convolution kernel;
m, n are the element index of K and less than the number of rows and columns of the
convolution kernel, respectively; i, j are the element index of S and less than the number of
rows and columns of the feature mapping, respectively.

A basic CNN architecture consists of input, convolutional, pooling, fully connected,
and output layers, as shown in Figure 2. Among them, the convolutional layer and the
pooling layer can be stacked repeatedly according to the complexity of the net structure data.
During this process, the features of net structure data are extracted through convolution
operations in the convolutional layer. Then, the dimension of the features is reduced in
the pooling layer to improve the calculation accuracy, effectively avoiding over-fitting and
reducing the computational load. Finally, the classification or regression results of the data
are obtained by the well-trained model according to its features. The feature extractor,
composed of the convolutional layer and the pooling layer, is automatically optimized
during the network training process without additional intervention.
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Figure 2. Basic structure of the Convolutional Neural Network.

Both the convolution and pooling operations of CNN are linear. Therefore, some
improvements, such as activation functions and regularization, are frequently introduced
to enhance the model’s performance. There are activation functions for non-linearities;
regularization is introduced via normalizations and dropout to counteract the exploding
gradient problem and prevent overfitting.

2.1.2. Long Short-Term Memory Network

LSTM is an improved architecture of Recurrent Neural Networks (RNNs), which
introduce three control units of input, output, and forget gates to intervene in the cell
state [26]. The input gate and the output gate can regulate the input and output vectors
of the unit, respectively; the forget gate will evaluate whether the memory cell’s state
conforms to the rules to perform the state’s retaining or discarding operation. These gate
structures can keep track of arbitrary long-term dependencies from time series data, making
them more insensitive to gap length than RNNs. The function of the cell state is roughly the
same as the hidden layer vector in the traditional neural network. The basic architecture of
the LSTM unit is depicted in Figure 3.
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Given, an input vector xt ∈ Rd, the output vector ht of the single hidden layer LSTM
unit can be expressed as in the following formulas:

it = σ(W(i)xt + U(i)ht−1 + b(i)) (2)

ft = σ(W( f )xt + U( f )ht−1 + b( f )) (3)

c̃t = tanh(W(c̃)xt + U(c̃)ht−1 + b(c̃)) (4)

ct = Dt
(i) c̃t + Dt

(f)ct−1 (5)

ot = σ(W(o)xt + U(o)ht−1 + b(o)) (6)

ht = Dt
(o)tanh(ct) (7)



Water 2023, 15, 59 6 of 19

where it ∈ (0, 1)h, ft ∈ (0, 1)h and ot ∈ (0, 1)h are the activation vector of the input, for-
get, output gate, respectively; ht ∈ (−1, 1)h is the hidden state vector or output vector;
c̃t ∈ (−1, 1)h and ct ∈ Rh are the cell input activation vector and cell state vector, respec-
tively; W(i) ∈ Rh×d and U(i) ∈ Rh×h are the weight matrices, and b(i) ∈ Rh is the bias
vector of the network parameters that need to be learned during training; the superscripts
d and h refer to the number of input features and number of hidden units, respectively;
Dt

(i) = diag(it), Dt
(f) = diag(ft

)
and Dt

(o) = diag(ot

)
where diag(·) is the diagonal

operator; the sigmoid function σ(·) and hyperbolic tangent function tanh(·) are applied
element-wise to the vector.

2.2. Improvement of the Particle Swarm Optimization

Particle swarm optimization (PSO) is a heuristic technique inspired by cooperative
predation behavior among individuals in a bird swarm. Detailed and rigorous descrip-
tions can be found in [27]. Assume

→
v i

(k) ∈ RD and
→
x i

(k) ∈ RD are the velocity and
position (candidate solution) of the i-th particle in the k-th generation, respectively, and
D is the dimension of the position, which in this paper is the number of the optimized
hyperparameters in the DL model. The calculation formula is then [27]:

→
v i

(k+1) ← ω(k) ·→v i
(k) + ϕprp · (

→
p i

(k) −→x i
(k)) + ϕgrg · (

→
p g

(k) −→x i
(k)) (8)

→
x i

(k+1) ← →
x i

(k) +
→
v i

(k+1) (9)

where
→
p i

(k) ∈ Rd and
→
p g

(k) ∈ Rd is the historical best position of the i-th particle and all
particles, respectively; ω is the inertia weight of the particle; ϕp and ϕg are the cognitive
coefficient and social coefficient. The algorithm gives the particle three behavior patterns
according to the formula above:

• inheritance of its inertia;
• the particle’s cognitive behavior, which represents the thinking of the particle itself;
• the population’s social sharing behavior represents the information sharing and coop-

eration between particles.

The above formula shows that the particles will approach the individual or group’s op-
timal position from the initial stage of iteration. As a consequence, particles are susceptible
to falling into local optimum. In fact, the swarm system will be disturbed by environmental
changes, and the swarm objective has yet to be specific. Some birds will move in different
directions from others. This phenomenon, called alienation here, is especially evident in
the early stages of swarm development. Simulating this behavior is an exciting avenue in
dealing with the problem of getting stuck in the local optimum. Therefore, we consider
adopting particles’ alienation to simulate this behavior, which produces the reference and
possibility to search in other directions. This process was implemented by combing three
random dissimilar particles in this study. Suppose

→
x alienation represents the position of the

alienation particle; the alienation strategy proposed is then:

→
x alienation = 0.5×→x r1 + r× (

→
x r2 +

→
x r2) (10)

where
→
x r1,

→
x r1,

→
x r1 are the position vectors of the three particles, and r1 6= r2 6= r3; r

is a random number from 0 to 1. Notably, the bounds are still working, although the
expectations of the position vector still fall within the set range.

Subsequently, we proposed an approach for evaluating the swarm alienation rate
considering multi-dimensional entropy. This process makes the swarm adaptively and
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probabilistically accept particle alienation behavior. Suppose x(k)i,j is the j-th dimension

value of x(k)i . The alienation rate is calculated as follows.

R(k) =
D

∑
d=1

Ed
(k)/D (11)

Ed
(k) = −

N

∑
i=1

p(x(k)i,d ) ln p(x(k)i,d )/ln N (12)

where the alienation rate R ∈ (0, 1); Ed
(k) is the entropy of the swarm in the d-th dimension;

p(x(k)i,d ) is the distribution probability of particles when the d-th dimension interval is
divided equally according the number of particles; and N is the number of particles.

Moreover, a greedy strategy is used for current particles to update the particle position:

→
x =

{→
x =

→
x alienation,

→
x =

→
x original ,

i f f itness(
→
x alienation) < f itness(

→
x original)

otherwise
(13)

The pseudo code of the proposed swarm information entropy-based alienation particle
swarm optimization (SIE–APSO) is presented in Figure 4.
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Figure 4. Pseudo code of the SIE–APSO algorithm.

Improvement in the above can achieve the following effectiveness compared to the
standard PSO:

• Reduce the probability of falling into a local optimum. With the preform of iteration,
the diversity of particles will continue to decrease, and it is easy to fall into the local
optimum. Simulation of particle alienation behavior can reduce the probability of
this phenomenon.

• Balance the global and local search capabilities of the algorithm. The particles are
uniformly distributed in the early iteration with a larger swarm information entropy.
At this stage, the higher alienation rate effectively prevents the particles from moving
directly to the current optimal solution, giving it a better global exploration ability.
While in the later stage, the particles are gradually concentrated. The decreasing of the
alienation rate provides better local development of the particles.

2.3. Time Series Cross-Validation Technique

The cross-validation (CV) technique is used for robustly choosing the best ML model.
It is achieved by tuning hyperparameters on training subsets and evaluating them on the
complementary subset of the data. Unlike other data types, temporal dependencies exist in
time series data, making the order of the data vital in time series-related problems. Hence,
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we must withhold all data about events that occur chronologically after the events used
for fitting the model [28]. We therefore adopt the time series CV technique on a rolling
basis for the hyperparameter tuning of the DL model [29]. Figure 5 gives a depiction of
this approach where the fold is 3. This process starts with splitting the data set into a
training and a testing set. The testing set is preserved for evaluating the cross-validated
model. The training set is split temporally into k folds containing the training subset and
validation subset in time series CV. The data after the validation subset will never be used
for model training in each fold. Then the validation error obtained on all folds is averaged
for evaluating the model under the specific hyperparameter combination.
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2.4. Evaluation Metrics

The root mean square error (RMSE) and average absolute percentage error (MAPE) are
frequently used as evaluation indicators of the regression model, computed as
Equations (14) and (15).

RMSE =

√√√√ 1
N

N

∑
i=1

(yo(i) − yp(i))
2 (14)

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣∣y
(i)
o − y(i)p

y(i)o

∣∣∣∣∣∣ (15)

where yo
(i) is the i-th observed value; yp

(i) is the i-th predicted value; N is the number
of data. Given that RMSE is measured in the same units as the target variable, MAPE is
measured in the relative percentage of error; these provide a practical accuracy evalua-
tion. Moreover, the average relative variance (ARV) adopts as a measure of accuracy in
this study [30]:

ARV =
∑N

i=1 (yo
(i) − yp

(i))
2

∑N
i=1 (yo(i) − yo)

2 =
MSE

σ2 (16)

where yo yo is the mean of the observed data. Given that ARV represents the ratio between
the mean squared error and the variance, it considers both the magnitude and the deviation
of the target variable. Furthermore, a model with ARV = 1 is as accurate an estimate as the
mean of the observed.

3. Case Study
3.1. Project Description

An engineering project in southwestern China contains the water retaining structure,
flood discharge, energy dissipation structure, and diversion (tail) water power generation
system, as shown in Figure 6. This dam is a roller-compacted concrete (RCC) gravity
dam composed of the left and right retaining dam section, the left and right middle-hole
dam section, and the discharge dam section with a 5-hole at the river bed. The dam crest
elevation is 1334.0 m, and the maximum dam height is 168.0 m, with a normal storage
level of 1330.0 m and a total storage capacity of 760 million m3. The dam is located in
a high mountain and valley area, with steep slopes and a relatively complex geological
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structure. The overall slopes of the terrain on the bank sides are relatively neat and have
an asymmetrical "V" shape in the valleys. The monitoring object of the dam monitoring
system mainly includes:

• environment variables;
• horizontal and vertical displacement of the dam;
• the inclination of the dam foundation and dam body;
• the stress and strain of the dam concrete.
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Considering the representativeness of monitoring points and the completeness of the
sequence, we selected the measured values of two deformation monitoring points and one
stress monitoring point of the 9# dam section for model development. Figure 7 gives the
cross-section of the 9# dam section and the layout of the monitoring points. The height and
the foundation elevation of this dam section are 148.0 m and 1186.0 m, respectively.
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Figure 7. The layout of the monitoring project for 9# section of the dam.

The monitoring points LA9 and IP3 are installed at the 1334 m elevation of the crest
and 1205 m elevation of the dam foundation corridor of the 9# dam section, respectively,
to monitor the displacement along and perpendicular to the river. LA9 is monitored
by vacuum laser alignment (LA), and IP3 is monitored by inverted plumb lines (IP).
Figure 8 depicts the working principle of the vacuum laser and inverted plumb line for dam
deformation monitoring. LA systems are commonly used to monitor relative movement
from the dam crest to the bank. The light spot at the receiving end changes with the
movement of the zone plate on the measuring point. Therefore, the relative displacement of
the measuring point can be calculated via the positional relationship among the transmitting
end, the zone plate (measuring point), and the receiving end. At the same time, the absolute
displacement of the vacuum laser measuring point can be obtained by superimposing the
absolute displacement of the endpoint. IP systems are generally used to monitor relative
movement from the dam’s rock foundation to the dam’s gallery level. The IPs include the
floating ball group, the plumb line, and the anchoring point. The buoyancy of the floating
ball keeps the vertical line in a vertical state. By regularly monitoring the movement of the
floating ball, the displacement of the inspection gallery relative to the vertical line or the
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bottom of the borehole (assumed to be a fixed point of horizontal displacement) can be
obtained. In addition, a stress sensor S9 was installed at the 1275 m elevation to measure
the concrete stress of vertical and downstream direction in this area, which is the principal
direction of interest for the stress monitoring of gravity dams.
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Figure 8. Instrument schematic of the dam deformation monitoring system (X-direction, Y-direction
represent the direction along the river and the direction perpendicular to the river, respectively).
(a) Inverted plumb line, (b) Vacuum laser.

3.2. Data Configuration

The observed value curves of the selected monitoring points are presented in Figure 9.
For model validation, this paper assumed that the stress sensor S9 in dam section 9# was
damaged at a specific time on 11 April 2015. In other words, the monitoring data of
the 9# dam section from 7 November 2014 to 4/ November 2015 (containing 275 days
of continuous data) and 4 December 2015 to 7 December 2015 (containing 90 days of
continuous data) are selected for model training and testing, respectively. Then, the
estimation model was trained with an input matrix size of 10 × 4 (4 sets of deformation
monitoring values in 10 consecutive days of monitoring points LA9 and IP3) and output
size of 1 × 1 (one of the two direction stress values on the 11th day of sensor S9). So the
training set size is 275 − 10 = 265, and the test set size is 90.
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Figure 9. Time curves of the monitoring data (X-direction, Y-direction represent the direction along
the river and the direction perpendicular to the river, respectively). The shaded area is the sensor
failure period. (a) Vacuum laser alignment monitoring point LA9, (b) Inverted plumb line monitoring
point IP3, and (c) Stress sensor S9.
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4. Results
4.1. Hyperparameter Tuning Result of the Model

Lesser layers and a concise structure can maintain crucial features in the training
process of the DL model with a small sample size [31]. Considering the amount of data
involved, we set the domains of the model hyperparameters to small values to maintain a
concise structure. Moreover, the training set was divided into five folds containing subsets
for the time series CV. The hyperparameter combinations of the presented model tuned
via SIE–APSO and time series CV technique are reported in Table 1. Notably, the CNN
layer is implemented on each day’s data. Hence, the number of CNN filters is a vector of
size 10 for the model with ten consecutive days’ worth of data of the input matrix. See the
Appendix A for more details about the hyperparameter results.

Table 1. The hyperparameters of the presented model (take the vertical direction as an example).

Layers Parameters Domain (Upper Limit,
Lower Limit) Optimization Value

CNN filter number of each layer (2, 64) (27, 35, . . . , 23)

LSTM
unit number (2, 32) 11
dropout rate (0, 0.5) 0.187

FC unit number (2, 32) 15

Optimizers algorithms
learning rate

-
(10−8, 105)

Adagrad
0.300

- batch size (32, 256) 76
CNN: convolutional neural network; LSTM: long short-term memory network; FC: fully connected layer.

4.2. Estimation Stress Results Evaluation

The estimated curve of the proposed learning model for the normal stress of vertical
and downstream directions is presented in Figure 10. The shaded part indicates the failure
period of the target stress sensor. Figure 11 depicts the error-epoch charts of training
and testing sets. The evaluation results of the training and testing periods are presented
in Table 2. The results show that the estimation model maintains a good estimate of
accuracy in both the training and testing periods. Specifically, the estimation performance
of the vertical direction does not show degradation in the testing period, while the RMSE
increased by around 40% of the direction along the river. We suspect the reason is that the
stress observations on the direction along the river were subjected to greater perturbations
than those in the vertical direction, as shown in the time curves. This perturbation may be
caused by observation errors. Nevertheless, the estimated curves still appropriately display
the approximate variation of stresses without any overfitting phenomena.

Table 2. Evaluation results of the proposed model.

Index RMSE MAPE ARV

Direction Training
Period

Testing
Period

Training
Period

Testing
Period

Training
Period

Testing
Period

Direction
along the

river
0.016 0.021 1.195% 1.678% 0.319 0.378

Vertical
direction 0.024 0.032 0.678% 0.973% 0.055 0.387

RMSE: root mean square error; MAPE: average absolute percentage error; ARV: average relative variance.
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Figure 10. Predictions of the proposed estimation model (lines) versus observed data (circles). The
residuals between them are shown in the bar chart. Shaded part is the testing period. (a) Direction
along the river. (b) Vertical direction.
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5. Discussion
5.1. Estimation Performance Comparison

In this section, three conventional models established based on the load-stress
relationship—HST, SVR, and NN—are adopted for the performance comparison of the
estimation models proposed. The model factors of SVR and NN are the same as HST.
Detailed and rigorous descriptions can be found in [30]. The hyperparameters of SVR and
NN have been tuned as in the proposed model. Considering the limited monitoring points
and the method reliability, this work does not adopt the method estimated from the data of
adjacent points of the same sensor type as a comparison. Due to space constraints, Figure 12
gives the estimation results of different models in the Z-direction only. The performance
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evaluation results of each model are shown in Figure 13. The following can be deduced
from the comparison results.
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Figure 12. Time curve of each estimation model and water level. Shaded part is the testing period.
(a) HST. (b) SVR. (c) NN. (d) Time curve of water level. HST: hydrostatic-seasonal-time statistical
model; SVR: support vector regression; NN: neural network with single hidden layer.
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HST and NN fitting performances are barely satisfactory during the training period,
while the difference comes in the prediction performance compared with the proposed
model. The curve of the HST model exhibits significant cyclical variation throughout,
resulting in an overall more considerable estimated value than the observed value in
the testing period. In addition, the curves of the HST and NN models both show two
significant fluctuations during the testing period. The analysis suggests that the water level
change, which is not experienced during the training period, as in Figure 12(d), results
in significant fluctuations in the model estimates at the corresponding moments, but the
observed fluctuations are relatively stable. SVR models perform poorly in both the training
and testing periods. For the performance gain, from the evaluation index perspective, the
RMSE of the two-directional stress estimated from the proposed model has decreased by
approximately 0.016(21%)–0.044(58%); compared with three comparison models, the MAPE
decreased by 0.443%(19%)–1.355%(58%), and the ARV decreased by 0.470(22%)–1.303(94%).

We speculate that the reasons are as follows. The input factors of the above models
were frequently unable to describe the dam’s load-stress relationship comprehensively. The
estimation results of these models have a greater probability of exaggerated fluctuations
facing an unexperienced load (water level fluctuation), which is not the case for the actual
structure. In comparison, dam deformation and stress are symbiotic responses of the
structure, and the relationship between the two is more constrained by the system’s intrinsic
state. Therefore, describing the association among these responses is more favorable for
estimation than the relationship between structural stress and external loads.

The comparison analysis demonstrates that the proposed estimation model combin-
ing deformation data performs better in dealing with the stress estimation under sen-
sor failure and data loss scenarios, and especially in dealing with dam responses under
unexperienced conditions.

5.2. Evaluation of Tuning Algorithms SIE–APSO

In this section, we analyze the performance of the SIE–APSO proposed in this paper
via other algorithms for algorithm verification. The SIE–APSO is compared to the standard
PSO [32], linear descent inertia weight strategy PSO (LDIW–PSO) [33], the standard grey
wolf optimizer (GWO) [34] as SI (swarm intelligence)-based technique, and the gravitational
search algorithm (GSA) [35] as a physics-based algorithm. Note that all algorithms were
run on Intel (R) Core (TM) i5-8400 with 16 G memory, and the software environment is
python 3.7. The population number of each algorithm was set to 20; the maximum number
of iterations was 50; and the maximum particle velocity was set to 10% of the search domain.
The convergence curve of each tuning algorithm is reported in Figure 14. Regarding the
dataset in this work, the convergence curve shows that the GSA and GWO algorithms
converge slowly and have a poor optimization result. In contrast, the PSO and its improved
algorithms show a faster convergence process. Moreover, the SIE–APSO algorithm can
jump out of the local solution and achieve more satisfactory results when the PSO and
LDIW–PSO algorithms reach the convergence bottleneck.
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Figure 14. Performance comparison of SIE–APSO (swarm information entropy-based alienation
particle swarm optimization), PSO (particle swarm optimization), LDIW–PSO (linear descent inertia
weight strategy particle swarm optimization), GSA (gravitational search algorithm), and GWO
(standard grey wolf optimizer). Convergence curve of each tuning algorithm. (a) Direction along the
river, (b) Vertical direction.

In order to evaluate the algorithms’ efficiency, we further give the time cost of each
algorithm in the same experimental environment in Table 3. We are informed from this
result that the performance improvement brought by SIE–PSO inevitably results in a
slight increase of the time cost of 19.8% and 23.9% in two directions. However, the cost is
still within an acceptable range compared to GWO and GSA, and the its performance is
improved by 38.0% and 71.3% in two directions compared to others. Consequently, the
proposed SIE–APSO algorithm is preferred for hyperparameter tuning of the estimation
model, considering the algorithm’s performance and efficiency.

Table 3. Time cost of optimization (unit: second).

Direction SIE–APSO PSO LDIW–PSO GSA GWO

Direction
along the

river
1283.1 1074.7 1473.2 6050.2 1887.6

Vertical
direction 1755.4 1236.7 963.8 6738.8 2493.7

Average 1519.2 1155.7 1218.5 6394.5 2190.7
SIE–APSO: swarm information entropy-based alienation particle swarm optimization; PSO: particle swarm
optimization; LDIW–PSO: linear descent inertia weight strategy particle swarm optimization; GSA: gravitational
search algorithm; GWO: standard grey wolf optimizer.

5.3. Effect Analysis of the Input Sample Length

In order to further analyze the effect of the input sample length on the estimated
model, 4 sample sets with different input lengths from 10 to 80 are used for evaluation. The
evaluation indexes of the model estimation results with different input lengths are given in
Figure 15. The model error tends to fluctuate and increase with the more considerable input
length, as shown in the trend line marked by the dashed line in this figure. The analysis
results indicate that the length of the input samples affects the model estimation accuracy,
and too lengthy periods will be more unfavorable.
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6. Summary and Conclusions

A learning model based on CNN and LSTM was developed for response estimation of
concrete dams under stress sensor failure and data loss scenarios. This model presented the
estimation result based on the spatial–temporal association of data between the target stress
sensor and multiple deformation sensors. Simultaneously, an improved PSO algorithm for
hyperparameter tuning was studied. The presented estimation model was validated on the
monitoring data of an actual engineering project. The main conclusions are as follows:

1. By comparing three conventional models established with load-stress relationships,
this work verified the feasibility of the proposed estimation model based on the
data’s spatial–temporal association among the multiple monitoring points of dam
deformation and stress.

2. The proposed tuning algorithm SIE–APSO, which maintains higher computational
accuracy and stability without losing efficiency compared with the standard PSO, is
presented and has been tested on the target dataset.

3. The estimation method provides reliable data supplements for the strength evaluation
of concrete dams under the scenario of sensor failure and data loss, especially dealing
with the dam responses under unexperienced conditions.

However, like all data-driven estimation models currently, the association consistency
among structural stress and deformation and the estimation accuracy may be partially
affected by the integrity of the concrete. Therefore, limitations of this method exist. The
period in this work is one year, and the application scenario is specified to a short-term
range where the structure is not subject to significant disturbances, such as damage. This
means that estimating over a more extended period needs to consider changes in the
structural state. In addition, fewer data samples are commonly insufficient for tuning and
training deep network models.

Future research can combine inversion and forward calculation for timely updating of
the model to achieve longer-term estimation for the above limitation. Some investigations
may also benefit from the advancement of algorithms in the deep learning (DL) field, such
as combining transfer learning with numerical models to supplement data samples for
real structures.
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Appendix A

Table A1. The hyperparameters of the proposed model (direction along the river).

Layers Parameters Domain [Upper Limit,
Lower Limit] Optimization Value

CNN filter number of each layer (2, 64) (13, 19, 10, 9, 16, 15, 17,
14, 15, 12)

LSTM
unit number (2, 32) 19
dropout rate (0, 0.5) 0.335

MLP unit number (2, 32) 23

Optimizers algorithms
learning rate

-
(10-5, 10-1)

Adagrad
0.100

- batch size (32, 256) 165

Table A2. The hyperparameters of the proposed model (vertical direction).

Layers Parameters Domain [Upper Limit,
Lower Limit] Optimization Value

CNN filter number of each layer (2, 64) (27, 35, 21, 12, 24, 33, 26,
31, 20, 23)

LSTM
unit number (2, 32) 11
dropout rate (0, 0.5) 0.187

MLP unit number (2, 32) 15

Optimizers algorithms
learning rate

-
(10-5, 10-1)

Adagrad
0.300

- batch size (32, 256) 76

Appendix B

The following is the code of the CNN–LSTM model implemented based on Keras 2.6.0.
def buildModel(param):

# param: the network hyperparameter
# output dimension
output_dim = 1
# cnn
cnn_input = layers.Input(shape = (sample_length, feature_size_cnn, 1))
# split layer
split_cnn_input = layers.Lambda(lambda x: tf.split(x, sample_length, axis =

1))(cnn_input)
# single cnn layer
for i in range(sample_length):

locals()[’cnn_spf’ + str(i + 1)] = layers.Conv2D(filters = int(param[i]), ker-
nel_size = cnn_filters_size, padding = padding_method)(split_cnn_input[i])

locals()[’cnn_spf’ + str(i + 1)] = layers.Flatten()(locals()[’cnn_spf’ + str(i + 1)])
locals()[’cnn_spf’ + str(i + 1)] = layers.Dense(1)(locals()[’cnn_spf’ + str(i + 1)])

# concatenate layer
cnn_spf_all = locals()[’cnn_spf1’]
for i in range(sample_length-1):
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cnn_spf_all = layers.concatenate([cnn_spf_all, locals()[’cnn_spf’ + str(i + 2)]],
axis=-1)

cnn_spf_all = tf.expand_dims(cnn_spf_all, axis = −1)
# single layer LSTM_spf
lstm_spf_tpf = layers.LSTM(units=int(param[sample_length]), activation = ’soft-

sign’, dropout = param[sample_length + 1])(cnn_spf_all)
# Flatten
f = layers.Dense(param[sample_length + 2])(lstm_spf_tpf)
# output
out = layers.Dense(output_dim)(f)
# model compile
model = Model([cnn_input], out)
optimizer = optimizers. Adagrad(learning_rate = 10. ** param[sample_length + 3])
model.compile(loss=’mse’, optimizer=optimizer)
return model

References
1. Li, M.-L.; Wang, Z.-M.; Ma, N. A Novel Prediction Model for the Missing Data of Environmental Measurement. J. Sichuan Univ.

2003, 4, 736–739.
2. Zhang, Z.; Luo, Y. Restoring method for missing data of spatial structural stress monitoring based on correlation. Mech. Syst.

Signal Process. 2017, 91, 266–277. [CrossRef]
3. Wang, J.; Yang, J.; Cheng, L. An interpolation method based on KICA-RVM for missing monitoring data of dam. J. Water Resour.

Water Eng. 2017, 28, 197–201. Available online: http://szyysgcxb.alljournals.ac.cn/szyysgcxb/ch/reader/view_abstract.aspx?
doi=10.11705/j.issn.1672-643X.2017.01.35 (accessed on 29 November 2022).

4. Li, B.; Yang, J.; Hu, D. Dam monitoring data analysis methods: A literature review. Struct. Control Health Monit. 2020, 27, e2501.
[CrossRef]

5. Mata, J.; Tavares de Castro, A.; Sá da Costa, J. Constructing statistical models for arch dam deformation. Struct. Control Health
Monit. 2014, 21, 423–437. [CrossRef]

6. Su, H.; Li, X.; Yang, B.; Wen, Z. Wavelet support vector machine-based prediction model of dam deformation. Mech. Syst. Signal
Process. 2018, 110, 412–427. [CrossRef]

7. Belmokre, A.; Mihoubi, M.K.; Santillán, D. Analysis of Dam Behavior by Statistical Models: Application of the Random Forest
Approach. KSCE J. Civ. Eng. 2019, 23, 4800–4811. [CrossRef]

8. Lin, C.; Li, T.; Chen, S.; Liu, X.; Lin, C.; Liang, S. Gaussian process regression-based forecasting model of dam deformation. Neural
Comput. Appl. 2019, 31, 8503–8518. [CrossRef]

9. Salazar, F.; Toledo, M.; González, J.M.; Oñate, E. Early detection of anomalies in dam performance: A methodology based on
boosted regression trees. Struct. Control Health Monit. 2017, 24, e2012. [CrossRef]

10. Liu, W.; Pan, J.; Ren, Y.; Wu, Z.; Wang, J. Coupling prediction model for long-term displacements of arch dams based on long
short-term memory network. Struct. Control Health Monit. 2020, 27, e2548. [CrossRef]

11. Zhang, J.; Cao, X.; Xie, J.; Kou, P. An Improved Long Short-Term Memory Model for Dam Displacement Prediction. Math. Probl.
Eng. 2019, 2019, 6792189. [CrossRef]

12. Wu, X.; Zheng, D.-J.; Liu, Y.-T.; Chen, Z.-Y.; Chen, X.-Q. Temporal convolution network-based time frequency domain integrated
model of multiple arch dam deformation and quantification of the load impact. Struct. Control Health Monit. 2022, 29, e3090.
[CrossRef]

13. Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput.
2017, 29, 2352–2449. [CrossRef]

14. Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018,
107, 241–265. [CrossRef]

15. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]

16. Werbos, P.J. Generalization of backpropagation with application to a recurrent gas market model. Neural Netw. 1988, 1, 339–356.
[CrossRef]

17. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
18. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
19. Zhu, G.; Zhang, L.; Shen, P.; Song, J. Multimodal Gesture Recognition Using 3-D Convolution and Convolutional LSTM. IEEE

Access 2017, 5, 4517–4524. [CrossRef]
20. Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM Model for Sea Surface Temperature Prediction. IEEE Geosci.

Remote Sens. Lett. 2017, 15, 207–211. [CrossRef]

http://doi.org/10.1016/j.ymssp.2017.01.018
http://szyysgcxb.alljournals.ac.cn/szyysgcxb/ch/reader/view_abstract.aspx?doi=10.11705/j.issn.1672-643X.2017.01.35
http://szyysgcxb.alljournals.ac.cn/szyysgcxb/ch/reader/view_abstract.aspx?doi=10.11705/j.issn.1672-643X.2017.01.35
http://doi.org/10.1002/stc.2501
http://doi.org/10.1002/stc.1575
http://doi.org/10.1016/j.ymssp.2018.03.022
http://doi.org/10.1007/s12205-019-0339-0
http://doi.org/10.1007/s00521-019-04375-7
http://doi.org/10.1002/stc.2012
http://doi.org/10.1002/stc.2548
http://doi.org/10.1155/2019/6792189
http://doi.org/10.1002/stc.3090
http://doi.org/10.1162/neco_a_00990
http://doi.org/10.1016/j.ymssp.2017.11.024
http://doi.org/10.1109/CVPR.2015.7298965
http://doi.org/10.1016/0893-6080(88)90007-X
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1162/neco_a_01199
http://doi.org/10.1109/ACCESS.2017.2684186
http://doi.org/10.1109/LGRS.2017.2780843


Water 2023, 15, 59 19 of 19

21. Zöller, M.-A.; Huber, M.F. Benchmark and Survey of Automated Machine Learning Frameworks. J. Artif. Intell. Res. 2021, 70,
409–472. [CrossRef]

22. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

23. Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems: A review. Evol.
Comput. 2017, 25, 1–54. [CrossRef]

24. Zhan, Z.-H.; Zhang, J.; Li, Y.; Shi, Y.-H. Orthogonal Learning Particle Swarm Optimization. IEEE Trans. Evol. Comput. 2010, 15,
832–847. [CrossRef]

25. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in
convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

26. Cho, K.; Van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder
approaches. In Proceedings of the Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (SSST-8), Doha,
Qatar, 25 October 2014; pp. 103–111. [CrossRef]

27. Bratton, D.; Kennedy, J. Defining a Standard for Particle Swarm Optimization. In Proceedings of the 2007 IEEE Swarm Intelligence
Symposium, Honolulu, HI, USA, 1–5 April 2007; pp. 120–127. [CrossRef]

28. Tashman, L.J. Out-of-sample tests of forecasting accuracy: An analysis and review. Int. J. Forecast. 2000, 16, 437–450. [CrossRef]
29. Bergmeir, C.; Benítez, J.M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. 2012, 191, 192–213.

[CrossRef]
30. Salazar, F.; Toledo, M.A.; Oñate, E.; Morán, R. An empirical comparison of machine learning techniques for dam behaviour

modelling. Struct. Saf. 2015, 56, 9–17. [CrossRef]
31. Smith, L.N.; Topin, N. Deep convolutional neural network design patterns. arXiv 2016, arXiv:1611.00847. [CrossRef]
32. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]
33. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on

Evolutionary Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [CrossRef]
34. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
35. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1613/jair.1.11854
http://doi.org/10.1016/j.neucom.2020.07.061
http://doi.org/10.1162/EVCO_r_00180
http://doi.org/10.1109/TEVC.2010.2052054
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.3115/v1/w14-4012
http://doi.org/10.1109/SIS.2007.368035
http://doi.org/10.1016/S0169-2070(00)00065-0
http://doi.org/10.1016/j.ins.2011.12.028
http://doi.org/10.1016/j.strusafe.2015.05.001
http://doi.org/10.48550/arXiv.1611.00847
http://doi.org/10.1109/ICNN.1995.488968
http://doi.org/10.1109/ICEC.1998.699146
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.ins.2009.03.004

	Introduction 
	Methodology 
	The CNN–LSTM Estimation Model 
	Convolutional Neural Network 
	Long Short-Term Memory Network 

	Improvement of the Particle Swarm Optimization 
	Time Series Cross-Validation Technique 
	Evaluation Metrics 

	Case Study 
	Project Description 
	Data Configuration 

	Results 
	Hyperparameter Tuning Result of the Model 
	Estimation Stress Results Evaluation 

	Discussion 
	Estimation Performance Comparison 
	Evaluation of Tuning Algorithms SIE–APSO 
	Effect Analysis of the Input Sample Length 

	Summary and Conclusions 
	Appendix A
	Appendix B
	References

