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Abstract: The stress behavior of key parts of concrete dams is related to the safe operation of the 

dam. However, the stress sensors in concrete are susceptible to aging and failure with increasing 

service life. Estimating the structural stress under sensor failure or data loss scenarios for concrete 

dams in service is essential and complex. This study presents a stress estimation method driven by 

the observation data. Firstly, a one-to-one correspondence exists between dam deformation reflect-

ing the load effect and structural stress. Estimating the structural stress by simulating load effects 

with dam deformation is more convenient when it is hard to simulate complex load effects directly. 

Therefore, based on the observed data before stress sensor failure, the spatial–temporal relationship 

between structure stress and multi-point deformations of a concrete dam is developed using con-

volutional neural networks (CNN) and long short-term memory (LSTM). An improved particle 

swarm optimization algorithm combined with swarm information entropy (SIE–APSO) is proposed 

simultaneously for tuning the network’s hyperparameter and accelerating the convergence. Finally, 

the stress estimation of the target part of the concrete dam in service is obtained. The case shows 

that it is valid and feasible. The RMSE decreased by approximately 21–58%, MAPE decreased by 

19–58%, and ARV decreased by 22–94% compared with the load-stress relationship model. 

Keywords: concrete dam; stress estimate; data spatial–temporal association; CNN–LSTM;  

improved particle swarm optimization 

 

1. Introduction 

Structural health monitoring (SHM) systems utilize numerous sensors installed on 

dams to acquire timely and continuous data on the state of structures. Stress sensors are 

commonly embedded in key parts of the dam to obtain structural strength information. 

Hence, stress monitoring is important for dam safety assessment. However, stress sensors 

are susceptible to aging and failure due to slow processes such as corrosion and fatigue. 

Maintenance is also costly, since they are embedded in concrete. The research on stress 

estimating for scenarios such as sensor failure and data loss is essential in dam health 

monitoring.  

Many studies have been conducted for the above scenarios. Li et al. [1] searched for 

valid samples with the highest correlation with the default samples using the K-nearest 

neighbor (KNN) algorithm. They took the average value of the relevant samples as the 

target values. Zhang et al. [2] proposed a method for recovering missing data from long-

term measurements that considers the full-life monitoring of structures. Their method an-

alyzes the correlations of multiple strain sensors installed in a steel structure of a stadium 

building and restores the missing data by interpolating their relationships. Wang et al. [3] 
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proposed a missing value complementation method based on kernel-independent com-

ponent analysis (KICA) and relevant vector machine (RVM) models. They performed a 

nonlinear transformation of the correlated measurement points of the target measurement 

points to extract the independent components. The independent components and meas-

ured values of the target measurement points are then used as input and output for model 

training and applied to a concrete dam. Some scholars have also developed estimation 

models based on: the relationship between multiple factors of environmental loads (water 

pressure, temperature, and time factors) and structural responses [4], such as the conven-

tional hydrostatic–seasonal–time (HST) statistical model [5]; a machine learning (ML)-

based model, such as support vector regression (SVR) [6]; random forests (RF), based on 

random decision-making [7]; Gaussian process regression (GPR), based on the probability 

distribution [8]; boosted regression trees (BRT) combined with regression trees and an 

enhancement method [9]; recurrent neural network (RNN) and its improved algorithms, 

such as long-short term memory (LSTM) neural networks [10] and gated recurrent unit 

(GRU) neural networks [11]; and  temporal convolution network (TCN) [12]. 

The above studies estimate target values mainly (i) from the data of proximity time; 

(ii) from the data of adjacent measurement points of the same sensor type; or (iii) based 

on the relationship among the load factors and structure responses. However, the first 

type of method is only for data interpolation problems, which are not applicable for future 

values estimation after sensor damage. The second type of method does not involve the 

physical mechanism of the structure. It only estimates by interpolation, which is less reli-

able in the case of limited data from the same sensor type in the vicinity. The third type of 

method contains the load and structural response information. Nevertheless, it is tough 

to simulate complex load effects using load factors directly. Moreover, the estimation abil-

ity of this method is limited in dealing with situations beyond the experienced conditions.  

The monitoring data of various sensor types depict the operation information of the 

dam system from different aspects, and there is a one-to-one correspondence among them. 

At the same time, dam deformation data are the direct externalization of the load effect, 

and they have the advantage of convenient collection and maintenance compared with 

stress data. These premises open up an intriguing avenue of research: estimating struc-

tural stress by simulating the load effects with observed deformation data. Specifically, 

the spatial–temporal association among multiple relevant deformation sensors and target 

stress sensors can be utilized to support stress estimation at the target part of concrete 

dams. The spatial–temporal associations among the measured sequences of multiple mon-

itoring points are generally difficult to express with explicit functions. The recently devel-

oped deep learning (DL) models have provided an actionable solution to extract infor-

mation from various kinds of data [13,14]. The convolutional neural network (CNN), in-

spired by the visual system, includes network attributes such as convolution, pooling op-

erations, and shared weights, enabling it to capture data features from aspatial perspec-

tive [15]. The recurrent neural network (RNN) has a cyclic connection to the architecture, 

meaning it can update the current state based on past states and current input data [16]. 

Unfortunately, RNN is unable to connect the relevant data when the input gap is large. 

Long short-term memory (LSTM), derived from RNN, aims to handle the problem of long-

term dependencies by providing gate functions for RNN [17]. It has been widely adopted 

in research areas concerned with sequential data because of its the powerful learning ca-

pacity [18–20]. Therefore, LSTM networks are introduced for processing the time series 

data in this work. 

Different deep learning (DL) architectures are suitable for different datasets [21]. 

Therefore, the hyperparameters must be specified to fit a DL model to the target task. The 

literature [22] suggests that the DL models will benefit from the tuning process since they 

often have many hyperparameters requiring selection. Hyperparameter tuning is an op-

timization problem. Particle swarm optimization (PSO) is a reasonable choice due to its 

simple structure and inexpensive computational cost [23]. However, this algorithm is 

prone to fall into the local optimum since the particles are only guided by the individual 
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and group optimal solutions during the iterative process [24]. Improvement to alleviate 

this problem is needed. 

Based on the advantages of the DL technique mentioned above, the CNN and LSTM 

networks are employed sequentially to extract the spatial–temporal association between 

the historical monitoring data of the failure stress sensor and multiple relevant defor-

mation sensors. An improved PSO algorithm combined with swarm information entropy 

(SIE–APSO) is also proposed for tuning the model hyperparameter during the training 

process. Then, the estimation value at the location of the failed stress sensor can be derived 

by feeding the trained learning model the existing deformation monitoring data. In addi-

tion, the effectiveness of combining the estimation model with the deformation data pre-

sented in this study is evaluated through comparison with HST, neural network (NN) 

with single hidden layer, and SVR established on the load–stress relationships. Some other 

algorithms are also introduced for the performance comparison of SIE–APSO. Further-

more, the estimation performance that depends on the model input configuration, that is, 

the length of the input sample, is examined.  

The rest of this paper is organized as below: the overall architecture of the proposed 

learning model for stress estimation is detailed in Section 2, and then we give a brief in-

troduction of the methodology involved; Section 3 presents the actual project and its mon-

itoring system mentioned in this study, followed by the data configuration process for 

model development; model architecture and estimation results are reported in Section 4; 

Section 5 discusses the performance comparison and further analysis of the model; finally, 

the conclusions and limitations are summarized in Section 6.  

2. Methodology 

The modeling framework of the presented stress estimation model of concrete dams 

is illustrated in Figure 1, and it contains four processes: 

1. Data configuration. Observations from dam deformation and stress sensors are col-

lected to provide learning data for the estimation model. The supposed failure time 

of the target stress sensor is considered to be the splitting point between the training 

and testing periods. The data samples are then configured via the sliding-window 

approach. 

2. Model development. Taking the deformation matrix as the model input and extract-

ing the spatial features among different deformation monitoring points via CNN 

each day produces the output sequence containing the temporal attributes. Take this 

sequence as the input of the single-layered LSTM to obtain the temporal representa-

tion of the sequence. Finally, set a fully connected (FC) layer to get the model output 

and take it as the value of concrete stress. 

3. Tuning and training. The training and validation subset are obtained via the time 

series cross-validation (CV) technique performed on the training data. Subsequently, 

taking the average accuracy of the validation set of each fold as the fitness function, 

the hyperparameter tuning of the estimation model is implemented via the proposed 

SIE–APSO. 

4. Evaluation. The estimation performance of the trained model is evaluated by feeding 

it the configured out-of-training data. Furthermore, the root mean square error 

(RMSE), average absolute percentage error (MAPE), and average relative variance 

(ARV) are utilized for model evaluation.  
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Figure 1. The process of the presented estimation model. 

2.1. The CNN–LSTM Estimation Model 

The stress estimation model of concrete dams utilizes data from multiple defor-

mation points to predict the stress response at the site of the failed stress sensor. Expressly, 

assume I is a two-dimensional matrix (n × m) composed of the deformation measured 

values, where n and m are the number of deformation sequences and the number of mon-

itoring times and represent the spatial and temporal dimensions of the data, respectively. 

Then, n CNN layers are adopted in parallel to perform convolution processing on the data 

of the first dimension (spatial dimension) of the matrix I. That is, m deformation data from 

the same monitoring time participate in the calculation of a convolutional layer. A spatial 

feature sequence is generated by extracting the spatial association between multiple de-

formation monitoring points each time. Notably, this sequence contains temporal attrib-

utes. The operation of the LSTM is performed subsequently on the temporal dimensions 

of this sequence and then obtains the spatial–temporal features of the data. The generated 

spatial–temporal features are connected to target stress values through a single-layer net-

work for estimation. The architectures of CNN and LSTM are briefly introduced as fol-

lows.  

2.1.1. Convolutional Neural Network 

CNN is a feedforward neural network that has the characteristics of autonomously 

extracting data features and excellent classification capabilities [25]. The convolution op-

eration is implemented through the convolutional layer, which means the network can 

conveniently process the data with a net structure. The two-dimensional discrete convo-

lution formula is as follows: 

( , ) ( )( , ) ( , ) ( , )
m n

S i j I K i j I i m j n K m n  
(1) 

where  S  is the feature mapping;  I  is the two-dimensional input;  K  is the convo-

lution kernel;  ,m n  are the element index of  K  and less than the number of rows and 



Water 2023, 15, 59 5 of 20 
 

 

columns of the convolution kernel, respectively;  ,i j  are the element index of  S  and 

less than the number of rows and columns of the feature mapping, respectively.  

A basic CNN architecture consists of input, convolutional, pooling, fully connected, 

and output layers, as shown in Figure 2. Among them, the convolutional layer and the 

pooling layer can be stacked repeatedly according to the complexity of the net structure 

data. During this process, the features of net structure data are extracted through convo-

lution operations in the convolutional layer. Then, the dimension of the features is re-

duced in the pooling layer to improve the calculation accuracy, effectively avoiding over-

fitting and reducing the computational load. Finally, the classification or regression re-

sults of the data are obtained by the well-trained model according to its features. The fea-

ture extractor, composed of the convolutional layer and the pooling layer, is automatically 

optimized during the network training process without additional intervention. 

 

Figure 2. Basic structure of the Convolutional Neural Network. 

Both the convolution and pooling operations of CNN are linear. Therefore, some im-

provements, such as activation functions and regularization, are frequently introduced to 

enhance the model’s performance. There are activation functions for non-linearities; reg-

ularization is introduced via normalizations and dropout to counteract the exploding gra-

dient problem and prevent overfitting.  

2.1.2. Long Short-Term Memory Network 

LSTM is an improved architecture of Recurrent Neural Networks (RNNs), which in-

troduce three control units of input, output, and forget gates to intervene in the cell state 

[26]. The input gate and the output gate can regulate the input and output vectors of the 

unit, respectively; the forget gate will evaluate whether the memory cell’s state conforms 

to the rules to perform the state’s retaining or discarding operation. These gate structures 

can keep track of arbitrary long-term dependencies from time series data, making them 

more insensitive to gap length than RNNs. The function of the cell state is roughly the 

same as the hidden layer vector in the traditional neural network. The basic architecture 

of the LSTM unit is depicted in Figure 3. 
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Figure 3. The architecture of the LSTM. 

Given, an input vector  x d

t , the output vector  h
t
 of the single hidden layer 

LSTM unit can be expressed as in the following formulas: 

i W x U h b( ) ( ) ( )

1
( )i i i

t t t  (2) 

f W x U h b
( ) ( ) ( )

1
( )f f f

t t t  (3) 

c W x U h b( ) ( ) ( )

1
tanh( )c c c

t t t  (4) 

i fc D c D c( ) ( )

1t t t t t  (5) 

o W x U h b( ) ( ) ( )

1
( )o o o

t t t  (6) 

oh D c( ) tanh( )
t t t  (7) 

where i (0,1)h

t , f (0,1)h

t  and o (0,1)h

t  are the activation vector of the input, for-

get, output gate, respectively; h ( 1,1)h

t  is the hidden state vector or output vector; 

c ( 1,1)h

t  and c h

t  are the cell input activation vector and cell state vector, respec-

tively; W ( )i h d  and U ( )i h h  are the weight matrices, and b( )i h  is the bias vec-

tor of the network parameters that need to be learned during training; the superscripts d  

and h  refer to the number of input features and number of hidden units, respectively; 
iD i( ) diag( )

t t , 
fD f( ) diag( )

t t  and 
oD o( ) diag( )

t t  where diag( )  is the diagonal oper-

ator; the sigmoid function ( )  and hyperbolic tangent function tanh( )  are applied el-

ement-wise to the vector.  

2.2. Improvement of the Particle Swarm Optimization 

Particle swarm optimization (PSO) is a heuristic technique inspired by cooperative 

predation behavior among individuals in a bird swarm. Detailed and rigorous descrip-

tions can be found in [27]. Assume  
( )k D

i
v  and  

( )k D

i
x  are the velocity and posi-

tion (candidate solution) of the  i -th particle in the  k -th generation, respectively, and  

D  is the dimension of the position, which in this paper is the number of the optimized 

hyperparameters in the DL model. The calculation formula is then [27]: 

 
( 1) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )k k k k k k k

i i p p i i g g g i
v v r p x r p x  (8) 
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( 1) ( ) ( 1)k k k

i i i
x x v  (9) 

where  
( )k d

i
p  and  

( )k d

g
p  is the historical best position of the  i  -th particle and 

all particles, respectively;   is the inertia weight of the particle;  p  and  g  are the 

cognitive coefficient and social coefficient. The algorithm gives the particle three behavior 

patterns according to the formula above:  

• inheritance of its inertia; 

• the particle’s cognitive behavior, which represents the thinking of the particle itself; 

• the population’s social sharing behavior represents the information sharing and co-

operation between particles. 

The above formula shows that the particles will approach the individual or group’s 

optimal position from the initial stage of iteration. As a consequence, particles are suscep-

tible to falling into local optimum. In fact, the swarm system will be disturbed by envi-

ronmental changes, and the swarm objective has yet to be specific. Some birds will move 

in different directions from others. This phenomenon, called alienation here, is especially 

evident in the early stages of swarm development. Simulating this behavior is an exciting 

avenue in dealing with the problem of getting stuck in the local optimum. Therefore, we 

consider adopting particles’ alienation to simulate this behavior, which produces the ref-

erence and possibility to search in other directions. This process was implemented by 

combing three random dissimilar particles in this study. Suppose  
alienation

x  represents the 

position of the alienation particle; the alienation strategy proposed is then: 

 
1 2 2

0.5 ( )
alienation r r r

x x r x x  (10) 

where  
1 1 1
, ,

r r r
x x x  are the position vectors of the three particles, and  

1 2 3
r r r ;  r  is 

a random number from 0 to 1. Notably, the bounds are still working, although the expec-

tations of the position vector still fall within the set range.  

Subsequently, we proposed an approach for evaluating the swarm alienation rate 

considering multi-dimensional entropy. This process makes the swarm adaptively and 

probabilistically accept particle alienation behavior. Suppose  
( )

,

k

i j
x  is the  j  -th dimen-

sion value of  
( )k

i
x . The alienation rate is calculated as follows. 

 ( ) ( )

1

Dk k

dd
R E D  (11) 

 ( ) ( ) ( )

, ,1
( ) ln ( ) ln

Nk k k

d i d i di
E p x p x N  (12) 

where the alienation rate  (0,1)R ;  
( )k

d
E  is the entropy of the swarm in the  d  -thdi-

mension;  
( )

,
( )k

i d
p x  is the distribution probability of particles when the  d  -th dimension 

interval is divided equally according the number of particles; and  N  is the number of 

particles.  

Moreover, a greedy strategy is used for current particles to update the particle posi-

tion:  

 
,     ( ) ( )

,
alienatio n original

original

n alienatio
x x if fitness x fitness x

x
x x otherwise

 (13) 

The pseudo code of the proposed swarm information entropy-based alienation par-

ticle swarm optimization (SIE–APSO) is presented in Figure 4. 
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Figure 4. Pseudo code of the SIE–APSO algorithm. 

Improvement in the above can achieve the following effectiveness compared to the 

standard PSO: 

• Reduce the probability of falling into a local optimum. With the preform of iteration, 

the diversity of particles will continue to decrease, and it is easy to fall into the local 

optimum. Simulation of particle alienation behavior can reduce the probability of this 

phenomenon. 

• Balance the global and local search capabilities of the algorithm. The particles are 

uniformly distributed in the early iteration with a larger swarm information entropy. 

At this stage, the higher alienation rate effectively prevents the particles from moving 

directly to the current optimal solution, giving it a better global exploration ability. 

While in the later stage, the particles are gradually concentrated. The decreasing of 

the alienation rate provides better local development of the particles. 

2.3. Time Series Cross-Validation Technique 

The cross-validation (CV) technique is used for robustly choosing the best ML model. 

It is achieved by tuning hyperparameters on training subsets and evaluating them on the 

complementary subset of the data. Unlike other data types, temporal dependencies exist 

in time series data, making the order of the data vital in time series-related problems. 

Hence, we must withhold all data about events that occur chronologically after the events 

used for fitting the model [28]. We therefore adopt the time series CV technique on a roll-

ing basis for the hyperparameter tuning of the DL model [29]. Figure 5 gives a depiction 

of this approach where the fold is 3. This process starts with splitting the data set into a 

training and a testing set. The testing set is preserved for evaluating the cross-validated 

model. The training set is split temporally into k folds containing the training subset and 

validation subset in time series CV. The data after the validation subset will never be used 

for model training in each fold. Then the validation error obtained on all folds is averaged 

for evaluating the model under the specific hyperparameter combination. 

 

Figure 5. The time-series cross-validation technique on a rolling basis. The fold is three. 
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2.4. Evaluation Metrics 

The root mean square error (RMSE) and average absolute percentage error (MAPE) 

are frequently used as evaluation indicators of the regression model, computed as Equa-

tions (14)–(15).  

 
( ) ( ) 21

1
RMSE ( )

N i i

o pN i
y y  (14) 

 
1

1
MAPE

i i
o p

i
o

y yN

i yN
 (15) 

where  
( )i

o
y  is the i-th observed value;  

( )i

p
y  is the i-th predicted value; N is the number 

of data. Given that RMSE is measured in the same units as the target variable, MAPE is 

measured in the relative percentage of error; these provide a practical accuracy evaluation. 

Moreover, the average relative variance (ARV) adopts as a measure of accuracy in this 

study [30]: 

 

( ) ( ) 2

1

2( ) 2

1

( )
ARV

( )

N i i

o pi

N i

o oi

y y MSE

y y
 (16) 

where 
o

y  
o

y  is the mean of the observed data. Given that ARV represents the ratio be-

tween the mean squared error and the variance, it considers both the magnitude and the 

deviation of the target variable. Furthermore, a model with ARV = 1 is as accurate an es-

timate as the mean of the observed. 

3. Case Study 

3.1. Project Description 

An engineering project in southwestern China contains the water retaining structure, 

flood discharge, energy dissipation structure, and diversion (tail) water power generation 

system, as shown in Figure 6. This dam is a roller-compacted concrete (RCC) gravity dam 

composed of the left and right retaining dam section, the left and right middle-hole dam 

section, and the discharge dam section with a 5-hole at the river bed. The dam crest ele-

vation is 1334.0 m, and the maximum dam height is 168.0 m, with a normal storage level 

of 1330.0 m and a total storage capacity of 760 million m3. The dam is located in a high 

mountain and valley area, with steep slopes and a relatively complex geological structure. 

The overall slopes of the terrain on the bank sides are relatively neat and have an asym-

metrical "V" shape in the valleys. The monitoring object of the dam monitoring system 

mainly includes:  

• environment variables;  

• horizontal and vertical displacement of the dam;  

• the inclination of the dam foundation and dam body; 

• the stress and strain of the dam concrete. 

  

Figure 6. The geographical location and picture of the dam in this study. 
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Considering the representativeness of monitoring points and the completeness of the 

sequence, we selected the measured values of two deformation monitoring points and one 

stress monitoring point of the 9# dam section for model development. Figure 7 gives the 

cross-section of the 9# dam section and the layout of the monitoring points. The height 

and the foundation elevation of this dam section are 148.0 m and 1186.0 m, respectively. 

 

Figure 7. The layout of the monitoring project for 9# section of the dam. 

The monitoring points LA9 and IP3 are installed at the 1334 m elevation of the crest 

and 1205 m elevation of the dam foundation corridor of the 9# dam section, respectively, 

to monitor the displacement along and perpendicular to the river. LA9 is monitored by 

vacuum laser alignment (LA), and IP3 is monitored by inverted plumb lines (IP). Figure 

8 depicts the working principle of the vacuum laser and inverted plumb line for dam de-

formation monitoring. LA systems are commonly used to monitor relative movement 

from the dam crest to the bank. The light spot at the receiving end changes with the move-

ment of the zone plate on the measuring point. Therefore, the relative displacement of the 

measuring point can be calculated via the positional relationship among the transmitting 

end, the zone plate (measuring point), and the receiving end. At the same time, the abso-

lute displacement of the vacuum laser measuring point can be obtained by superimposing 

the absolute displacement of the endpoint. IP systems are generally used to monitor rela-

tive movement from the dam’s rock foundation to the dam’s gallery level. The IPs include 

the floating ball group, the plumb line, and the anchoring point. The buoyancy of the 

floating ball keeps the vertical line in a vertical state. By regularly monitoring the move-

ment of the floating ball, the displacement of the inspection gallery relative to the vertical 

line or the bottom of the borehole (assumed to be a fixed point of horizontal displacement) 

can be obtained. In addition, a stress sensor S9 was installed at the 1275 m elevation to 

measure the concrete stress of vertical and downstream direction in this area, which is the 

principal direction of interest for the stress monitoring of gravity dams. 

  

(a) (b) 

Figure 8. Instrument schematic of the dam deformation monitoring system (X-direction, Y-direc-

tion represent the direction along the river and the direction perpendicular to the river, respec-

tively). (a) Inverted plumb line, (b) Vacuum laser. 
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3.2. Data Configuration 

The observed value curves of the selected monitoring points are presented in Figure 

9. For model validation, this paper assumed that the stress sensor S9 in dam section 9# 

was damaged at a specific time on 11 April 2015. In other words, the monitoring data of 

the 9# dam section from 7 November 2014 to 4/ November 2015 (containing 275 days of 

continuous data) and 4 December 2015 to 7 December 2015 (containing 90 days of contin-

uous data) are selected for model training and testing, respectively. Then, the estimation 

model was trained with an input matrix size of 10 × 4 (4 sets of deformation monitoring 

values in 10 consecutive days of monitoring points LA9 and IP3) and output size of 1 × 1 

(one of the two direction stress values on the 11th day of sensor S9). So the training set 

size is 275 − 10 = 265, and the test set size is 90. 

  
(a) 

  
(b) 

  
(c) 

Figure 9. Time curves of the monitoring data (X-direction, Y-direction represent the direction along 

the river and the direction perpendicular to the river, respectively). The shaded area is the sensor 

failure period. (a) Vacuum laser alignment monitoring point LA9, (b) Inverted plumb line monitor-

ing point IP3, and (c) Stress sensor S9. 

4. Results 

4.1. Hyperparameter Tuning Result of the Model 

Lesser layers and a concise structure can maintain crucial features in the training pro-

cess of the DL model with a small sample size [31]. Considering the amount of data in-

volved, we set the domains of the model hyperparameters to small values to maintain a 

concise structure. Moreover, the training set was divided into five folds containing subsets 



Water 2023, 15, 59 12 of 20 
 

 

for the time series CV. The hyperparameter combinations of the presented model tuned 

via SIE–APSO and time series CV technique are reported in Table 1. Notably, the CNN 

layer is implemented on each day’s data. Hence, the number of CNN filters is a vector of 

size 10 for the model with ten consecutive days’ worth of data of the input matrix. See the 

Appendix for more details about the hyperparameter results. 

Table 1. The hyperparameters of the presented model (take the vertical direction as an example). 

Layers Parameters 
Domain (Upper Limit, Lower 

Limit) 

Optimization 

Value 

CNN filter number of each layer (2, 64) (27, 35, …, 23) 

LSTM 
unit number (2, 32) 11 

dropout rate (0, 0.5) 0.187 

FC unit number (2, 32) 15 

Optimiz-

ers 

algorithms 

learning rate 

- 

(10−8, 105) 

Adagrad 

0.300 

- batch size (32, 256) 76 

CNN: convolutional neural network; LSTM: long short-term memory network; FC: fully connected 

layer. 

4.2. Estimation Stress Results Evaluation 

The estimated curve of the proposed learning model for the normal stress of vertical 

and downstream directions is presented in Figure 10. The shaded part indicates the failure 

period of the target stress sensor. Figure 11 depicts the error-epoch charts of training and 

testing sets. The evaluation results of the training and testing periods are presented in 

Table 2. The results show that the estimation model maintains a good estimate of accuracy 

in both the training and testing periods. Specifically, the estimation performance of the 

vertical direction does not show degradation in the testing period, while the RMSE in-

creased by around 40% of the direction along the river. We suspect the reason is that the 

stress observations on the direction along the river were subjected to greater perturbations 

than those in the vertical direction, as shown in the time curves. This perturbation may be 

caused by observation errors. Nevertheless, the estimated curves still appropriately dis-

play the approximate variation of stresses without any overfitting phenomena.  

 
(a) 

 
(b) 
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Figure 10. Predictions of the proposed estimation model (lines) versus observed data (circles). The 

residuals between them are shown in the bar chart. Shaded part is the testing period. (a) Direction 

along the river. (b) Vertical direction. 

  
(a) (b) 

Figure 11. Error-epoch charts of training and testing sets of the proposed estimation model. (a) Di-

rection along the river. (b) Vertical direction. 

Table 2. Evaluation results of the proposed model. 

Index RMSE MAPE ARV 

Direction 
Training 

Period 

Testing Pe-

riod 

Training 

Period 

Testing Pe-

riod 

Training 

Period 

Testing Pe-

riod 

Direction along 

the river 
0.016 0.021 1.195% 1.678% 0.319 0.378 

Vertical direction 0.024 0.032 0.678% 0.973% 0.055 0.387 

RMSE: root mean square error; MAPE: average absolute percentage error; ARV: average relative 

variance. 

5. Discussion 

5.1. Estimation Performance Comparison 

In this section, three conventional models established based on the load-stress rela-

tionship—HST, SVR, and NN—are adopted for the performance comparison of the esti-

mation models proposed. The model factors of SVR and NN are the same as HST. Detailed 

and rigorous descriptions can be found in [30]. The hyperparameters of SVR and NN have 

been tuned as in the proposed model. Considering the limited monitoring points and the 

method reliability, this work does not adopt the method estimated from the data of adja-

cent points of the same sensor type as a comparison. Due to space constraints, Figure 12 

gives the estimation results of different models in the Z-direction only. The performance 

evaluation results of each model are shown in Figure 13. The following can be deduced 

from the comparison results.  

HST and NN fitting performances are barely satisfactory during the training period, 

while the difference comes in the prediction performance compared with the proposed 

model. The curve of the HST model exhibits significant cyclical variation throughout, re-

sulting in an overall more considerable estimated value than the observed value in the 

testing period. In addition, the curves of the HST and NN models both show two signifi-

cant fluctuations during the testing period. The analysis suggests that the water level 

change, which is not experienced during the training period, as in Figure 12(d), results in 

significant fluctuations in the model estimates at the corresponding moments, but the ob-

served fluctuations are relatively stable. SVR models perform poorly in both the training 

and testing periods. For the performance gain, from the evaluation index perspective, the 

RMSE of the two-directional stress estimated from the proposed model has decreased by 

approximately 0.016(21%)–0.044(58%); compared with three comparison models, the 
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MAPE decreased by 0.443%(19%)–1.355%(58%), and the ARV decreased by 0.470(22%)–

1.303(94%).  

We speculate that the reasons are as follows. The input factors of the above models 

were frequently unable to describe the dam’s load-stress relationship comprehensively. 

The estimation results of these models have a greater probability of exaggerated fluctua-

tions facing an unexperienced load (water level fluctuation), which is not the case for the 

actual structure. In comparison, dam deformation and stress are symbiotic responses of 

the structure, and the relationship between the two is more constrained by the system's 

intrinsic state. Therefore, describing the association among these responses is more favor-

able for estimation than the relationship between structural stress and external loads.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12. Time curve of each estimation model and water level. Shaded part is the testing period. 

(a) HST. (b) SVR. (c) NN. (d) Time curve of water level. HST: hydrostatic-seasonal-time statistical 

model; SVR: support vector regression; NN: neural network with single hidden layer. 



Water 2023, 15, 59 15 of 20 
 

 

  
(a) (b) 

Figure 13. Evaluation metrics for each model. The results correspond to the testing period. (a) Di-

rection along the river, (b) Vertical direction. 

The comparison analysis demonstrates that the proposed estimation model combin-

ing deformation data performs better in dealing with the stress estimation under sensor 

failure and data loss scenarios, and especially in dealing with dam responses under unex-

perienced conditions.  

5.2. Evaluation of Tuning Algorithms SIE–APSO 

In this section, we analyze the performance of the SIE–APSO proposed in this paper 

via other algorithms for algorithm verification. The SIE–APSO is compared to the stand-

ard PSO [32], linear descent inertia weight strategy PSO (LDIW–PSO) [33], the standard 

grey wolf optimizer (GWO) [34] as SI (swarm intelligence)-based technique, and the grav-

itational search algorithm (GSA) [35] as a physics-based algorithm. Note that all algo-

rithms were run on Intel (R) Core (TM) i5-8400 with 16 G memory, and the software en-

vironment is python 3.7. The population number of each algorithm was set to 20; the max-

imum number of iterations was 50; and the maximum particle velocity was set to 10% of 

the search domain. The convergence curve of each tuning algorithm is reported in Figure 

14. Regarding the dataset in this work, the convergence curve shows that the GSA and 

GWO algorithms converge slowly and have a poor optimization result. In contrast, the 

PSO and its improved algorithms show a faster convergence process. Moreover, the SIE–

APSO algorithm can jump out of the local solution and achieve more satisfactory results 

when the PSO and LDIW–PSO algorithms reach the convergence bottleneck. 

  
(a) (b) 

Figure 14. Performance comparison of SIE–APSO (swarm information entropy-based alienation 

particle swarm optimization), PSO (particle swarm optimization), LDIW–PSO (linear descent inertia 

weight strategy particle swarm optimization), GSA (gravitational search algorithm), and GWO 

(standard grey wolf optimizer). Convergence curve of each tuning algorithm. (a) Direction along 

the river, (b) Vertical direction. 

In order to evaluate the algorithms’ efficiency, we further give the time cost of each 

algorithm in the same experimental environment in Table 3. We are informed from this 
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result that the performance improvement brought by SIE–PSO inevitably results in a 

slight increase of the time cost of 19.8% and 23.9% in two directions. However, the cost is 

still within an acceptable range compared to GWO and GSA, and the its performance is 

improved by 38.0% and 71.3% in two directions compared to others. Consequently, the 

proposed SIE–APSO algorithm is preferred for hyperparameter tuning of the estimation 

model, considering the algorithm’s performance and efficiency. 

Table 3. Time cost of optimization (unit: second). 

Direction SIE–APSO PSO LDIW–PSO GSA GWO 

Direction along the river 1283.1 1074.7 1473.2 6050.2 1887.6 

Vertical direction 1755.4 1236.7 963.8 6738.8 2493.7 

Average 1519.2 1155.7 1218.5 6394.5 2190.7 

SIE–APSO: swarm information entropy-based alienation particle swarm optimization; PSO: particle 

swarm optimization; LDIW–PSO: linear descent inertia weight strategy particle swarm optimiza-

tion; GSA: gravitational search algorithm; GWO: standard grey wolf optimizer. 

5.3. Effect Analysis of the Input Sample Length 

In order to further analyze the effect of the input sample length on the estimated 

model, 4 sample sets with different input lengths from 10 to 80 are used for evaluation. 

The evaluation indexes of the model estimation results with different input lengths are 

given in Figure 15. The model error tends to fluctuate and increase with the more consid-

erable input length, as shown in the trend line marked by the dashed line in this figure. 

The analysis results indicate that the length of the input samples affects the model estima-

tion accuracy, and too lengthy periods will be more unfavorable. 

  
(a) (b) 

Figure 15. Estimation results of proposed model with different input sample lengths. The dashed 

line is the fitted trend line. (a) Direction along the river, (b) Vertical direction. 

6. Summary and Conclusions 

A learning model based on CNN and LSTM was developed for response estimation 

of concrete dams under stress sensor failure and data loss scenarios. This model presented 

the estimation result based on the spatial–temporal association of data between the target 

stress sensor and multiple deformation sensors. Simultaneously, an improved PSO algo-

rithm for hyperparameter tuning was studied. The presented estimation model was vali-

dated on the monitoring data of an actual engineering project. The main conclusions are 

as follows: 

1. By comparing three conventional models established with load-stress relationships, 

this work verified the feasibility of the proposed estimation model based on the 

data’s spatial–temporal association among the multiple monitoring points of dam 

deformation and stress. 
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2. The proposed tuning algorithm SIE–APSO, which maintains higher computational 

accuracy and stability without losing efficiency compared with the standard PSO, is 

presented and has been tested on the target dataset. 

3. The estimation method provides reliable data supplements for the strength evalua-

tion of concrete dams under the scenario of sensor failure and data loss, especially 

dealing with the dam responses under unexperienced conditions.  

However, like all data-driven estimation models currently, the association con-

sistency among structural stress and deformation and the estimation accuracy may be 

partially affected by the integrity of the concrete. Therefore, limitations of this method 

exist. The period in this work is one year, and the application scenario is specified to a 

short-term range where the structure is not subject to significant disturbances, such as 

damage. This means that estimating over a more extended period needs to consider 

changes in the structural state. In addition, fewer data samples are commonly insufficient 

for tuning and training deep network models. 

Future research can combine inversion and forward calculation for timely updating 

of the model to achieve longer-term estimation for the above limitation. Some investiga-

tions may also benefit from the advancement of algorithms in the deep learning (DL) field, 

such as combining transfer learning with numerical models to supplement data samples 

for real structures. 
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Appendix A 

Table A1. The hyperparameters of the proposed model (direction along the river). 

Layers Parameters 
Domain [upper limit, 

lower limit] 
Optimization Value 

CNN 
filter number of each 

layer 
(2, 64) 

(13, 19, 10, 9, 16, 15, 17, 14, 

15, 12) 

LSTM 
unit number (2, 32) 19 

dropout rate (0, 0.5) 0.335 

MLP unit number (2, 32) 23 

Optimizers 
algorithms 

learning rate 

- 

(10-5, 10-1) 

Adagrad 

0.100 

- batch size (32, 256) 165 

Table A2. The hyperparameters of the proposed model (vertical direction). 

Layers Parameters 
Domain [Upper Limit, 

Lower Limit] 
Optimization Value 
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CNN 
filter number of 

each layer 
(2, 64) 

(27, 35, 21, 12, 24, 33, 26, 31, 

20, 23) 

LSTM 
unit number (2, 32) 11 

dropout rate (0, 0.5) 0.187 

MLP unit number (2, 32) 15 

Optimizers 
algorithms 

learning rate 

- 

(10-5, 10-1) 

Adagrad 

0.300 

- batch size (32, 256) 76 

Appendix B 

The following is the code of the CNN–LSTM model implemented based on Keras 

2.6.0. 

def buildModel(param): 

    # param: the network hyperparameter 

    # output dimension 

    output_dim = 1 

    # cnn 

    cnn_input = layers.Input(shape = (sample_length, feature_size_cnn, 1)) 

    # split layer 

    split_cnn_input = layers.Lambda(lambda x: tf.split(x, sample_length, axis = 

1))(cnn_input) 

    # single cnn layer 

    for i in range(sample_length): 

        locals()['cnn_spf' + str(i + 1)] = layers.Conv2D(filters = int(param[i]), ker-

nel_size = cnn_filters_size, padding = padding_method)(split_cnn_input[i]) 

        locals()['cnn_spf' + str(i + 1)] = layers.Flatten()(locals()['cnn_spf' + str(i + 1)]) 

        locals()['cnn_spf' + str(i + 1)] = layers.Dense(1)(locals()['cnn_spf' + str(i + 1)]) 

    # concatenate layer 

    cnn_spf_all = locals()['cnn_spf1'] 

    for i in range(sample_length-1): 

        cnn_spf_all = layers.concatenate([cnn_spf_all, locals()['cnn_spf' + str(i + 2)]], 

axis=-1) 

    cnn_spf_all = tf.expand_dims(cnn_spf_all, axis = −1) 

    # single layer LSTM_spf 

    lstm_spf_tpf = layers.LSTM(units=int(param[sample_length]), activation = 

'softsign', dropout = param[sample_length + 1])(cnn_spf_all) 

    # Flatten 

    f = layers.Dense(param[sample_length + 2])(lstm_spf_tpf) 

    # output 

    out = layers.Dense(output_dim)(f) 

    # model compile  

    model = Model([cnn_input], out) 

    optimizer = optimizers. Adagrad(learning_rate = 10. ** param[sample_length + 

3]) 

    model.compile(loss='mse', optimizer=optimizer) 

    return model 
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