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Abstract: Scaling caused by silicate in oilfield wastewater gathering system pipelines can cause
serious pipeline blockage. Therefore, this study adopts facile, effective and environment friendly
electrocoagulation method to remove the silicon in oilfield wastewater. After confirming the level of
factors through single factor experiments, the optimal scheme for electrocoagulation was selected by
orthogonal experiments and verification tests, the silicon content would be dramatically decreased
from 81.51 mg/L to 21.88 mg/L when pH = 6, reaction time = 20 min, current density = 27 mA/cm2

and wastewater temperature = 35 ◦C. In addition, the silicon removal rate would reach up to 85.90%
when the pH of oilfield wastewater was kept as its original condition without changing other optimal
factors; such an enhanced silicon removal effect could be attributed to the calcium ions chemical
coagulation after the mechanism investigation.

Keywords: high-silicon wastewater treatment; electrocoagulation; calcium ion; orthogonal experiment

1. Introduction

The recovery and reutilization of oilfield wastewater has attracted the attention of
researchers, especially in oil-producing countries where water resources are scarce [1].
Among this research field, scaling caused by silicon in gathering system pipelines can cause
severe pipeline blockage, which is an enduring research hotspot [2]. The silicon-containing
wastewater mainly comes from the steam throughput or steam drive extraction technology,
which is mostly used in the development of thick oil. A large amount of steam is injected
into the formation while the silicon rocks under the formation will be depolymerized by
hydrolysis to generate silicates, resulting in massive silicon-containing wastewater [3].
In sewage, silicon exists in three forms. (1) As dissolved silicon, it mainly exists in the
form of metasilicic acid (H2SiO3) and a certain amount of orthosilicic acid (H4SiO4) and
its ionized H3SiO4− and H2SiO4

2− plasma; (2) as colloidal silicon, the dissolved silicon is
inter-polymerized in supersaturated solution to form polymerization products composed
of polysilicic acid, such as di-polysilicic acid and tri-polysilicic acid, and forms colloidal
silicon through condensation and dehydration. (3) As particulate silicon, it is mainly
composed of sand and all kinds of suspended silicon-contained substances in water [4,5].
As for the formation mechanism of silicon scale, on the one hand, SiO3

2− from dissolved
silicon could self-polymerize and eventually generate hard silica crystals. On the other
hand, calcium or magnesium ions in the wastewater would transform as hydroxide and
precipitate with the colloidal silicon [6]. These two types of precipitations are most likely
to form mixed silicon scale, which eventually leads to blockage in the oilfield recovery
system. Among the current common methods for treating silicon-containing wastewater [7],
chemical flocculation requires additional flocculants and also produces a large amount of
sludge, which is not conducive to subsequent solid–liquid separation [8]. Reverse osmosis
is another method of removing silicon from the wastewater, which has the advantage of
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high filtration accuracy, but the disadvantage is that half or more of the water is wasted. At
present, in order to make it so that the reverse osmosis method can be applied to remove
the silicon in wastewater with a large scale, researchers have proposed many methods of
membrane modification, such as surface chemical modification, layer self-assembly, and
so on [9,10]. Ultrafiltration is effective for the removal of large diameter colloidal silicon
and particulate silicon in sewage, but it cannot remove dissolved silicon in wastewater [11].
However, the above two kinds of membrane methods cannot be used for a long time
due to the damage of silicon scale to the membrane life [12]. The ion exchange method
is only effective for the removal of dissolved silicon in wastewater and has no effect on
the colloidal silicon and particulate silicon. In addition, the ion exchange method has
high requirements for water quality, so the wastewater must be pretreated before the ion
exchange method treatment [13,14]. The flotation method is only effective for colloidal and
particulate silicon and cannot remove the dissolved silicon, so it is necessary to use other
methods to convert dissolved silicon into colloidal or particulate silicon. In order to remove
silicon in wastewater more economically and effectively, a new process with higher silicon
removal rate is urgently needed. In recent years, there has been an increasing number of
studies on applications of electrocoagulation as an environmental-friendly technology to
remove the silicon in wastewater [15,16]. However, not enough researches have focused on
silicon in oilfield wastewater [17,18], which is very important in oilfield production and
chemical engineering. Therefore, it is very necessary to systematically study the removal of
silicon in oilfield wastewater through electrocoagulation and consider the requirements of
environmental protection, economy and industrialization.

The principle of silicon removal by electrocoagulation is mainly under the action of
an electric field, where an active anode (such as aluminum) to produce a large number of
metal ions. After generation of hydrolysis at the anode, these ions would form hydroxides
(Equation (1)). As for dissolved silicon, the aluminum hydroxide in the solution further ag-
gregates itself to form as polymer, and eventually, it forms a stable hydroxy-aluminosilicate
with the metasilicic acid (Equation (2)), preventing the metasilicic acid converting to col-
loidal silicon and particulate silicon and eventually forming silicon scale when conditions
change. As for colloidal silicon and particulate silicon, the aluminum hydroxide could
chemically coagulate with other ions, colloids and other pollutants in the wastewater. Fi-
nally, hydroxy-aluminosilicate and coagulation would transform as hydroxide floc, which
could remove silicon from wastewater effectively [19–21]. The advantages of this method
are no extra-addition of chemical reagents, negligible amount of sludge, controllable silicon
removal rate, convenient operation and simple equipment [22–25].

Al − 3e− + 3OH− →Al (OH)3 (1)

[Al (OH)3]n + (H2SiO3)n → (AlO)n(SiO)n/2OH2n (2)

In this paper, orthogonal experiments and verification tests were implemented to
investigate the optimal scheme and mechanism for electrocoagulating the silicon, especially
for SiO3

2− and colloidal silicon, in Hongshan Oilfield wastewater. First, the single factor
experiments were carried out to study the influence of the initial pH, current density,
reaction time and wastewater temperature on the silicon removal rate, which could confirm
the level of each factor in the subsequent orthogonal experiments. Then, the optimal
scheme was verified through orthogonal experiments from rough range in this multi-factor
and multi-level research. Meanwhile, the silicon removal effect was explored through
the implementation of confirmatory tests under the optimal scheme. Last but not least,
the optimal scheme was optimized and the silicon removal mechanism was analyzed
towards practical high-silicon-content Hongshan oilfield wastewater. This paper aims to
find the optimal reaction conditions of removal of silicon in oilfield wastewater through
electrocoagulation and paves the way to apply this environmentally-friendly and economic
method in the practical oilfield production and chemical engineering industries.
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2. Materials and Methods
2.1. Material and Reagent

The investigated high silicon wastewater comes from the Hongshan Oilfield in Kara-
may, Xinjiang, China, and the silicon content in the wastewater (without special explanation,
the following silicon content is calculated as silicon dioxide) is as high as 83.69 mg/L, and
the specific concentrations of other ions are listed in Table 1. If the wastewater plans to be
reused as boiler feed water, process and product water, then the silicon content must be
controlled less than or equal to 30 mg/L after treatment.

Table 1. Ion contents of wastewater from the Hongshan Oilfield.

Chemicals Value

pH 8.08
HCO3

− (mg/L) 466.09
Cl− (mg/L) 19,126.29
Ca2+ (mg/L) 453.04
Mg2+ (mg/L) 167.00

SiO3
2− (mg/L) 628.20

K+ + Na+ (mg/L) 12,048.84
Mineralization degree(mg/L) 32,889.46

Density (g/cm3) 1.02
Silicon (mg/L) 83.69

The chemical reagents used in the process of water quality analysis meet the require-
ments of each index testing method. Hydrochloric acid (0.1 mol/L) and sodium hydroxide
(0.1 mol/L) were applied to adjust the pH of wastewater, and the reagents used were
analytically pure and bought from China National Pharmaceutical Group Corporation.

2.2. Experimental Setup

As shown in Figure 1, the reactor part of the experimental setup is a beaker with
volume of 250 mL, and the upper part is an electrocoagulation device, in which the anode
is a polished aluminum sheet and the cathode is a platinum electrode with an effective
area of 5 cm2, and the cathode and anode are connected by MP1005D (Maihao Electronic
Technology Co., LTD, Dongguan, China) type adjustable regulated constant current power,
while the wastewater served as electrolyte. Throughout the experiment, the beaker is in a
constant temperature (30–70 ◦C) water bath.

Water 2023, 15, x FOR PEER REVIEW 4 of 12 
 

 

 

Figure 1. Schematic diagram of electrocoagulation setup. 

2.3. Experimental Method 

First, the silicon containing wastewater was prepared according to the silicon content 

of the wastewater from the Hongshan Oilfield. After insulation treatment and pH adjust-

ment (pH was tested by pH-100, Tuohe Electromechanical Technology Co., LTD, Shang-

hai, China), samples were taken for silicon determination. Second, the aluminum sheets 

were polished and soaked in hydrochloric acid to remove the oxide layer. After drying 

and weighting, the aluminum sheets were applied as an anode while the platinum elec-

trode served as a cathode. The current was set from 0.05 A to 0.2 A, and the reaction time 

was controlled from 10 min to 30 min. Finally, the aluminum sheet was dried and 

weighted after electrocoagulation while the treated wastewater was filtered, and samples 

were taken for the determination of silicate. 

Subsequent experiments on simulated wastewater only need to use Na2SiO3·9H2O 

and KHCO3 to prepare simulated wastewater according to the content of ions in 

Hongshan Oilfield wastewater, and repeat the other steps mentioned above. 

2.4. Analysis Method 

According to GB/T 12149-2017 “Determination of silica in industrial circulating cool-

ing water and boiler water”, UV-6000 (Yuanxi Instrument Co., LTD, Shanghai, China) UV-

Visible spectrophotometer was used for the determine the silica concentration in this ex-

periment through the silica-molybdenum blue photometric method. Detailed analysis 

steps could be seen in supporting information. Each sample was tested three times, and 

the average value was taken as the final result. 

Before and after the electrocoagulation, the silicon content of the wastewater was 

measured, and the silicon removal rate was calculated with the following formula; silicon 

removal rate (%) = (C0 − Ct)/Ct, C0 represents the silicon content before electrocoagulation 

test (mg/L), and Ct represents the silicon content after the electrocoagulation test (mg/L). 

3. Results and Discussions 

3.1. Single Factor Experiment 

The initial pH has a significant effect on the silicon removal effect. It can be seen in 

Figure 2a that the silicon removal rate was first increased and then decreased with the 

increase of pH; the silicon removal rate reached the top as 79.35% when pH was 6.11. A 

different pH and different concentration of hydroxide would result in the different mor-

phology of aluminum hydroxide. When the solution is acidic, the main products in the 

solution are Al(OH)2+ and Al(OH)+ 

 2; while the solution is alkaline, the main hydrolytic 

products are Al(OH) - 

 4. In other words, the existence form of alumina hydroxide flocs in 

the solution is closely related to the pH of the solution because the initial pH of the solu-

tion directly determines the existence form of alumina hydroxide in the initial reaction 

stage [16,26]. In addition, the solubility of silicon in water is greatly affected by pH. When 

pH is greater than 9.5, a small increase in pH can lead to a substantial increase in the 

solubility of silicon in water. When the solution pH is greater than 8.0 but less than 9.5, 

Figure 1. Schematic diagram of electrocoagulation setup.

2.3. Experimental Method

First, the silicon containing wastewater was prepared according to the silicon content of
the wastewater from the Hongshan Oilfield. After insulation treatment and pH adjustment
(pH was tested by pH-100, Tuohe Electromechanical Technology Co., Ltd., Shanghai,
China), samples were taken for silicon determination. Second, the aluminum sheets were
polished and soaked in hydrochloric acid to remove the oxide layer. After drying and
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weighting, the aluminum sheets were applied as an anode while the platinum electrode
served as a cathode. The current was set from 0.05 A to 0.2 A, and the reaction time was
controlled from 10 min to 30 min. Finally, the aluminum sheet was dried and weighted
after electrocoagulation while the treated wastewater was filtered, and samples were taken
for the determination of silicate.

Subsequent experiments on simulated wastewater only need to use Na2SiO3·9H2O
and KHCO3 to prepare simulated wastewater according to the content of ions in Hongshan
Oilfield wastewater, and repeat the other steps mentioned above.

2.4. Analysis Method

According to GB/T 12149-2017 “Determination of silica in industrial circulating cool-
ing water and boiler water”, UV-6000 (Yuanxi Instrument Co., Ltd., Shanghai, China)
UV-Visible spectrophotometer was used for the determine the silica concentration in this
experiment through the silica-molybdenum blue photometric method. Detailed analysis
steps could be seen in supporting information. Each sample was tested three times, and
the average value was taken as the final result.

Before and after the electrocoagulation, the silicon content of the wastewater was
measured, and the silicon removal rate was calculated with the following formula; silicon
removal rate (%) = (C0 − Ct)/Ct, C0 represents the silicon content before electrocoagulation
test (mg/L), and Ct represents the silicon content after the electrocoagulation test (mg/L).

3. Results and Discussions
3.1. Single Factor Experiment

The initial pH has a significant effect on the silicon removal effect. It can be seen in
Figure 2a that the silicon removal rate was first increased and then decreased with the
increase of pH; the silicon removal rate reached the top as 79.35% when pH was 6.11.
A different pH and different concentration of hydroxide would result in the different
morphology of aluminum hydroxide. When the solution is acidic, the main products in the
solution are Al(OH)2+ and Al(OH)2+; while the solution is alkaline, the main hydrolytic
products are Al(OH)4−. In other words, the existence form of alumina hydroxide flocs
in the solution is closely related to the pH of the solution because the initial pH of the
solution directly determines the existence form of alumina hydroxide in the initial reaction
stage [16,26]. In addition, the solubility of silicon in water is greatly affected by pH. When
pH is greater than 9.5, a small increase in pH can lead to a substantial increase in the
solubility of silicon in water. When the solution pH is greater than 8.0 but less than 9.5, the
solubility of silicon increases slightly with the increase of temperature. When the solution
pH is greater than 6.0 but less than 8.0, the solubility of silicon is almost constant with the
increase of temperature [26,27].

The silicon removal effect is also affected by current density. As depicted in Figure 2b,
the silicon removal rate was boosted when the current density was increased from 10
mA/cm2 to 20 mA/cm2, and the silicon removal rate was remained unchanged at around
93% when the current density was 40.4 mA/cm2, such phenomenon was accorded with
related research. According to Faraday’s law of electrolysis, the amount of aluminum
dissolved by the anode is directly proportional to the current density. With the increase of
current density, the number of aluminum ions in solution and the volume of aluminum
hydroxide was augmented, which raised the silicon removal rate as a result. However,
too high of a current density would lead to extra cost and little enhancement of the silicon
removal effect [28,29].

The influence mechanism of the reaction time on the silicon removal effect is similar
to that of the current density. As shown in Figure 2c, the silicon removal rate increased
with the extension of reaction time. The silicon removal rate was increased rapidly in the
first 15 min and gradually slowed down after 15 min. With the raising of reaction time,
the aluminum ions in solution and the aluminum hydroxide floc volume would increase,
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which leads to the enhancement of silicon removal. However, too long reaction time would
result in growth of operation cost due to long voltaic time [30].
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As for the impact of wastewater temperature on silicon removal effect, a high temper-
ature would boost the Brownian motion and improve the collision probability of silicon
ion and aluminum ion, which would accelerate the generation of flocculation. As the
temperature rise further, too high of a temperature could decrease the structural stability
of flocculants according to the DLVO (Derjaguin-Landau-Verwey-Overbeek) theory [31].
Wastewater temperature also affects the solubility of silicon; the solubility of silicon in-
creases gradually with the increase of temperature. Sheikholeslami and Tan demonstrated
that the solubility of silicon increases with increasing temperature in the range of 20 ◦C
to 50 ◦C. However, there are two problems with too high temperature. On the one hand,
inter-polymerization of the dissolved silicon would be accelerated, which is not conducive
to silicon removal. On the other hand, the solubility of calcium carbonate decreases with
increasing temperature, and calcium carbonate could provide crystal nuclei for the silicon
scale and accelerate the formation of the silicon scale [27]. In this experiment, the silicon
removal rate reached the highest value of 77% at 50 ◦C (Figure 2d).

3.2. Orthogonal Experiment

Through the above single factor experiments for initial pH, current density, reaction
time and wastewater temperature, the optimal ranges of the four influencing factors were
obtained on the premise of ensuring an appropriate silicon removal rate. Furthermore,
orthogonal experiments were implemented to find the best experimental scheme from such
a rough range in this multi-factor and multi-level study. In summary, the four factors of
pH, current density, reaction time and wastewater temperature were selected as the main
parameters of the orthogonal experiments with the silicon removal rate, silicon content
after degradation and anode mass loss as evaluation indexes, and the specific levels of each
factor are listed in Table 2.
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Table 2. The level of each parameter.

pH Current Density
(mA/cm2) Reaction Time (min) Wastewater

Temperature (◦C)

5 18 14 35
6 21 17 40
7 24 20 45
8 27 23 50

According to the design rules of the orthogonal experiment statement heading, the
smallest table should be selected when the number of factors is less than or equal to the
number of columns of the orthogonal table and the number of factor levels is consistent with
the orthogonal table. In this experiment, the interaction between factors is not considered,
and four factors and four levels of orthogonal experiments have been determined, and
an empty column, as the error column, should be preferably needed in the orthogonal
experiment table. Therefore, the five-factor, four-level orthogonal table L16(45) was finally
chosen [32]. According to the experimental conditions provided by the orthogonal table,
the electric flocculation silica removal experiments were implemented (Table S1).

Considering the evaluation indexes of the silicon removal rate (Table S2), silicon
content after degradation (Table S3) and anode mass loss (Table S4), the theoretical optimal
scheme of the orthogonal experiment was verified as pH = 6, reaction time = 20 min,
current density = 27 mA/cm2 and wastewater temperature = 35 ◦C (Table 3), which could
economically make silicon-containing wastewater meet the national discharge standard
under the mild reaction conditions and within a limited reaction time. Based on the
above theoretical optimal scheme of the orthogonal experiment, a verified experiment was
conducted and the results are shown in Table S5. The silica removal effect is better than
any data in the orthogonal table, the silicon removal rate reached up to 73.16%, and the
post-experimental silicon content was 21.88 mg/L (below the national regulation 30 mg/L),
which proves that this scheme is indeed the optimal scheme for this orthogonal experiment.

Table 3. Optimal scheme of the orthogonal experiment.

Evaluation
Indexes

Silica
Removal

Rate

Post-
Experimental
Silica Content

Anode
Mass Loss

Theoretical
Optimal
SchemeInfluencing

Factor

pH 6 6 8 6
Current Density (mA/cm2) 27 27 18 27

Reaction time (min) 23 23 14 20
Temperature (◦C) 40 35 50 35

3.3. Changes in Silicon Scale during Electrocoagulation

In order to further investigate the change of silicon scale particles during the process of
silicon removal by electrocoagulation, under the above theoretical optimal scheme, only the
reaction time was changed to 10 min, 20 min and 30 min, and the flocs after each experiment
was taken and the size of silicon scale particles were observed under a 20 ×microscope.
Meanwhile, blank groups were set up, the silicon in the wastewater was replaced by sodium
sulfate while other conditions remained unchanged. As can be seen from Figure 3a,c,e, the
blank control group on the left does not generate silica precipitation, only the flocs formed
by the aluminum hydroxide colloid. Comparing with the electrocoagulation groups on the
right side, it is obvious that there are black dots in the aluminum hydroxide flocs in the
electrocoagulation group, which are the silicon precipitates formed. Under the microscope,
the diameter of silicon precipitation is about 15 um at 10 min (Figure 3b), the diameter
of silicon precipitation grows to about 18 um at 20 min (Figure 3d), and the diameter of
silicon precipitation grows further and becomes about 24 um at 30 min (Figure 3f). The
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above experimental results prove that silicon precipitation could be achieved through
electrocoagulation, and the longer the deposition time, the better the precipitation effect.
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3.4. Experiment on Wastewater from the Hongshan Oilfield

In practical application, for the Hongshan Oilfield wastewater with pH = 8.08, it
requires a large amount of acidic solution to adjust the pH to around 6.0, which would
greatly increase the cost of silica removal by electrocoagulation. Therefore, it is of vital
necessity to investigate the silica removal effect of the optimal solution of electrocoagulation
without adjusting the pH. Under the conditions of pH = 8.0, reaction time = 20 min, current
density = 27.2 mA/cm2 and wastewater temperature = 35 ◦C, the silicon content decreased
from 76.22 mg/L to 10.75 mg/L, with a silicon removal rate of 85.90% and the anode mass
loss was 0.0209 g, which was comparable to other relevant researches [7,33]. Obviously, the
silicon removal effect was better than that of the optimal scheme of orthogonal experiments.
However, it is known that the silicon removal effect of electrocoagulation decreases if the
solution is alkaline during the electrocoagulation process according to relevant researches.
We thought the enhanced silicon removal effect might be owing to the fact that other ions in
the wastewater exhibit a significant contribution to the silica removal effect under alkaline
conditions despite the decreased silica removal effect of electrocoagulation.

The following experiments were conducted to determine whether the increased silicon
removal effect at pH = 8 was related to calcium and magnesium ions or not. Three sets
of experiments were designed based on the presence of 453.04 mg/L calcium ions and
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167.00 mg/L magnesium ions in the wastewater from the Hongshan Oilfield, and the
experiments were implemented on simulated wastewater with no addition of magnesium
ions, no addition of calcium ions, and no addition of calcium or magnesium ions while
other conditions for silica removal by electrocoagulation remain unchanged. As shown
in Figure 4, the silicon removal rates of calcium or magnesium or neither are less than
that of normal conditions, which proves that calcium and magnesium ions do contribute
to the final silica removal effect at pH = 8. In addition, the promoting effect of calcium
ions was more efficient than that of magnesium ions. In detail, calcium ions could re-
duce the post-experimental silicon content by about 9 mg/L compared with that without
addition while magnesium ions could only reduce it by about 4 mg/L. After literatures
review [8,34,35], calcium ions exist in the form of calcium hydroxide and calcium carbonate
under alkaline conditions, which could flocculate the silicon in the wastewater together.
Meanwhile, magnesium ion exists as magnesium hydroxide under alkaline condition,
which has poor flocculation ability; this is the reason why promoting the silicon removal
effect of magnesium ions was less efficient than that of calcium ions.
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3.5. Mechanism Investigation

In order to clearly explain the mechanism of silicon removal by electrocoagulation,
the relevant mechanism is shown in the Figure 5. In this experiment, polished aluminum
sheet was applied as the anode while the platinum sheet served as the cathode. As for
the sacrificial anode, the aluminum sheet lost electrons to form Al3+, which then combine
with hydroxide ions produced at the cathode to form aluminum hydroxide. Thus, the
Al(OH)3 could coagulate with silicon and colloids, as well as other impurities. In addition,
calcium ions and magnesium ions in sewage, as well as calcium ions introduced from high
calcium acetate containing wastewater, could also form flocculants of Ca(OH)2, CaCO3
and Mg(OH)2 in the reaction tank and carry out chemical flocculation treatment for other
impurities such as silicon in sewage [19–21]. Therefore, the flocculants formed by the above
two flocculation treatments would eventually be transformed into precipitates, and the
silicon in sewage can be completely removed by subsequent filtration and other treatments.
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4. Conclusions

In conclusion, the innovation of this paper lies in the systematic experimental methods
to obtain the best experimental scheme for the treatment of high-silicon oilfield wastewater
by electrocoagulation, analyze the mechanism of silicon removal and then apply it to the
practical wastewater after optimization the scheme. First, the optimal silicon removal
scheme towards simulated wastewater was selected as pH = 6, reaction time 20 min,
current density 27 mA/cm2 and wastewater temperature 35 ◦C through the single factor
and orthogonal experiments. Secondly, the silicon content of Hongshan Oilfield wastewater
would decrease from 76.22 mg/L to 10.75 mg/L under the conditions of pH = 8.0, reaction
time 20 min, current density 27.2 mA/cm2 and wastewater temperature 35 ◦C, with a
silicon removal rate of 85.90% and 0.0209 g mass loss of the pole plate. Last but not the
least, the experimental results prove that calcium and magnesium ions do contribute to the
final silica removal effect at pH = 8. We hope this study would be useful for the industrial
application of electrocoagulation to remove silicon from oilfield wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15010206/s1, Table S1. Specific data of orthogonal experiment;
Table S2. Silicon removal rate analysis after electrocoagulation; Table S3. Silicon content data analysis
after electrocoagulation; Table S4. Anode mass loss analysis after electrocoagulation; Table S5. Verified
experiment for theoretical optimal scheme.
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