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Abstract: The Shapotou National Nature Reserve in the Ningxia Hui Autonomous Region is a typical
arid region in China. There is an exceptionally serious problem of surface water resource conservation,
and dynamic monitoring of surface water with the help of water indices can help to elucidate its
change patterns and impact mechanisms. Here, we analysed the characteristics of interannual
variation in surface water area in the study area from 1992–2021. The correlation coefficients of the
surface water area in the previous year and the contemporaneous water bodies of the Yellow River
with the total surface water area (TSWA) were calculated. The results show the following: 1© In
terms of the classification accuracy of the two methods, water indices and support vector machine
classification, water indices are more suitable for water body extraction in the study area. In particular,
the three water indices, NDWI, MNDWI and AWEIsh, were more effective, with average overall
accuracies of 90.38%, 90.33% and 90.36% over the 30-year period, respectively. 2© From the TSWA
extraction results from the last 30 years, the TSWA showed an increasing trend with an increase of
368.28 hm2. Among the areas, Tenggeli Lake contributed the most to the increase in TSWA. 3© The
highest correlation between the TSWA and the previous year’s TSWA was 0.89, indicating that the
better way to protect the water body is to maintain water surface stability year-round. The surface
water area of the Yellow River and TSWA also showed a strong correlation, indicating that the rational
use of Yellow River water is also an important direction for the future conservation of water resources
in the study area.

Keywords: water index; surface water area; remote sensing; interannual variation; trend variation;
correlation

1. Introduction

In arid and semiarid regions, water resources play a very important role in maintaining
surface vegetation and stabilising ecosystems [1–3]. With the dual effects of global warming
and human activities, the arid and semiarid regions of northwest China are gradually
showing warming–drying climate trends, and the importance of water resources has
become more significant [4,5]. In this context, the comprehensive development, utilisation
and protection of water resources in this region is particularly important. Quickly and
accurately extracting the surface water area is a prerequisite for monitoring watershed
changes [6–8].

Remote sensing technology has become a common tool for water resource monitoring
due to its advantages, such as a large sensing range and high timeliness [9,10]. Based on the
spectral reflectance difference between water bodies and other features, researchers have
constructed various water indices for the automatic extraction of water bodies [6,11,12].
McFeeters (1996) first proposed the normalised difference water index (NDWI), which uses
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the green and near-infrared bands of the Landsat thermal mapper (TM). This index can
weaken the influence of surface cover conditions, such as soil vegetation, while enhancing
the spectral characteristics of water to more effectively extract water bodies such as lakes
and reservoirs [13]. Nearly a decade later, Xu (2005) built the modified normalised differ-
ence water index (MNDWI) based on the NDWI, improving on the NDWI by extracting
town-wide water bodies and easily distinguishing between shadows and water bodies [14].
Since 2005, new water indices have been proposed for almost every year. Regarding surface
water extraction in semiarid areas of China, Yan (2007) proposed the enhanced water index
(EWI), which effectively distinguishes semidry rivers from background noise in semiarid
regions [15]. This is the first time that researchers have constructed a water index for water
bodies in China’s semiarid regions. Ding (2009) proposed the new water index (NWI) based
on the strong absorption abilities of water bodies in the NIR and mid-infrared bands and
verified that the NWI has strong generalisability to different water body types [16]. Feyisa
(2014) proposed a new automatic water extraction index (AWEI) and further developed
it into AWEIsh and AWEInsh by including and omitting a shadow-removal capability to
overcome the effects of low-reflectance image features on the extraction effect; these indices
have been used to extract water bodies from Landsat images [17]. AWEI’s two versions
of the water index explain some of the shadow and dark surface problems that the water
index has difficulty addressing [18]. Xu (2021) surmised that the most widely used indices
over the last 20 years have been the MNDWI and NDWI, while the AWEIsh ranks third,
and a review of water indices has been produced over the past two decades. [19]. The key
to water feature extraction based on the water index is threshold selection is to distinguish
water and non-water regions [20]. At present, the commonly used threshold selection meth-
ods include manual selection and image threshold algorithms [21–23]. However, with the
deepening of the research, it is difficult for the local optimal threshold to be universal. Due
to the influence of unavoidable factors such as atmospheric conditions and aerosols, the
threshold values of different time ranges and different types of water bodies are different.
Therefore, determining the threshold value has become the key point for the application of
the water index [24].

Since its launch in 1972, data have been obtained from Landsat satellites, where the
spatial resolution in the visible to shortwave infrared bands has undergone resolution
improvements from 80 m to 30 m, starting with the early multispectral scanner (MSS)
and evolving into the TM onboard Landsat 4/5, the Enhanced Thematic Mapper Plus
(ETM+) onboard Landsat-7 and the Operable Land Imager (OLI) onboard Landsat-8 [25–28].
Landsat-9 satellite with Operational Land Imager 2 (OLI-2) launched in 2021. The surface
water body results extracted using these data are very satisfactory [29]. For example, DU
et al. extracted the water body distributions in various regions of the Yangtze River basin
and Huaihe River basin in China from Landsat OLI images [30]. Rokni used LandsatTM,
ETM+ and OLI images to extract the area of Lake Urmia from 2000 to 2013 and explored its
spatial and temporal variations. G-EAU et al. used Landsat 5, 7 and 8 images to monitor
the areas of Xiaohu Lakes and small reservoirs [31]. Landsat imagery has been commonly
used in surface water monitoring research because these moderate resolution images are
continuously provided free of charge [32,33].

It is generally believed that different water indices have different extraction effects
on different types of water. Therefore, different water indices for water body information
extraction were chosen for different types of water bodies in the study area. Five remote
sensing water indices, NDWI, MNDWI, AWEIsh, EWI and NWI, were selected preliminarily.
At the same time, the accuracy sampling points were selected based on Google Earth
satellite images, and the confusion matrix was calculated to verify the extraction accuracy.
According to the results of visual extraction and confusion matrix verification, the best
water indices of TSWA, lake, reservoir and Yellow River extraction in the study area
were determined. The support vector machine (SVM) classification method was added to
further verify the reliability of the water index and avoid the subjectivity of human visual
observation. In this paper, LandsatTM, ETM+ and OLI series data collected in the past
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30 years (1992–2021) were used as remote sensing data sources to extract water bodies in
the study area. The work has three main objectives. The first objective is to obtain a 30-year
time series surface water area dataset through the water index. The second objective is to
analyse the characteristics of surface water changes over many years. The third objective is
to analyse the correlation between TSWA change in the study area and the surface water
area of the Yellow River and the previous year TSWA to study its influencing mechanism.
The results of this study can help support researchers’ understanding of the long-term and
dynamic surface water changes occurring in the study area and have important practical
significance for the scientific management of water resources in the study area.

2. Materials and Methods

To achieve the research objectives of this paper, the main operation steps are as follows:
collection of the data from the study area from 1992 to 2021 (mainly including Landsat data,
meteorological data and Google Earth satellite images); image pre-processing of Landsat
series data (radiometric calibration, atmospheric correction). The water index layer is
calculated. The optimal water index is determined based on the confusion matrix, and the
surface water area during the 30-year period is extracted in order to analyse the variation
characteristics and influencing mechanism of surface water. To better explain the surface
water extraction method, a working flow chart is shown in Figure 1.
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2.1. Study Area

The study area considered herein is located in Shapotou National Nature Reserve,
Zhongwei city, Ningxia Hui Autonomous Region, China, with a total area of 273.49 km2.
This region is located at the south-eastern edge of the Tengger Desert, with geographical
coordinates of 104◦49′25′′~105◦09′24′′ E and 37◦25′58′′~37◦37′24′′ N. It has a typical conti-
nental arid climate, with an average annual temperature of 9.13 ◦C (1959–2021, the same
as below) and an average annual precipitation total of 185.94 mm. The average annual
evaporation over the past 10 years was 2051.52 mm (2008–2017), approximately 10 times the
average annual precipitation and precipitation has been concentrated from May–August;
evaporation greater than 150 mm occurs in all months. The average temperature in the last
ten years was 10.39 ◦C (2012–2021, the same below), and the average annual precipitation
was 215.02 mm; this precipitation was low and mostly concentrated in summer. Since the
reserve is located on the northern edge of the East Asian monsoon region, the climate is
highly susceptible to changes in the strength of the East Asian monsoon, thus resulting
in large interannual temperature and, especially, precipitation variations. In addition, the
variabilities in this climate system lead to the increased vulnerability of the regional eco-
logical environment. (Precipitation data were obtained after calculation. The evaporation
data were referenced from the research results of the Ningxia Zhongwei Shapotou National
Nature Reserve Administration and the Institute of Cold and Arid Zone Environment and
Engineering of the Chinese Academy of Sciences. In the “Ningxia Zhongwei Shapotou Na-
tional Nature Reserve-Phase III Comprehensive Scientific Investigation Report” prepared
in 2021).

The water resources in the study area mainly include atmospheric precipitation,
surface runoff, groundwater and water stored in lakes, ponds and reservoirs. There are few
perennial rivers in the area; only in the western part of the protected Chang Liushui area do
springs outcrop to form rivers, and these rivers are intercepted by reservoirs and dams; in
addition, there are many breaks in the Chang Liushui area. There are many lakes and ponds
in the protected area, and the largest lakes include Tenggeli Lake, Xiaohu Lake, Gaodun
Lake, Qiandao Lake and Machang Lake. The reservoirs include Mengjiawan Reservoir and
Changliushui Reservoir. Considering the influence of groundwater volume interactions on
the water area in this protected area, it is necessary to analyse the concurrent changes in
the water area of the Yellow River. The Yellow River flows through Zhongwei City, with
a length of 182.4 km in Zhongwei City. It is close to Shapotou National Nature Reserve.
In order to present a complete picture of the location of the Yellow River in relation to
the study area, we have extended the display area to include all the towns in the city of
Zhongwei through which the Yellow River flows, so the area shown in Figure 1 includes
the whole area of the Yellow River flowing through Zhongwei city (Figure 2).
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2.2. Data
2.2.1. Landsat Series Data

This paper uses the Landsat Collection2 Level-1 dataset with a time series of 1992–2021,
with one period selected each year (March data), with April and May data substituted
for individual years in which March images are missing (Table 1). The main reasons for
selecting data from this period are as follows: during this period, the temperature in
the study area warmed, frozen waters thawed and the waters were in a more abundant
state, which facilitated the detection of long-time sequences of waters, while the study by
Chen et al. [34] pointed out that spring represents the lowest cloud period of the year in
the Ningxia region, which mitigates the effects of clouds on water extraction. (Data for
1993 and 1996 are missing from this paper).

All images were obtained from the United States Geological Survey (USGS) web-
site. To control the influence of cloudiness on the water extraction accuracy, all images
were controlled to below 5% cloudiness and pre-processed by radiometric calibration and
atmospheric correction, thus ensuring good data quality [35,36].

Table 1. Data used in the present study.

Type of Data Source Date

Landsat-5 TM USGS
1992/04/01; 1994/03/06; 1995/03/25; 1997/03/30; 1998/04/02;
1999/04/05; 2002/03/28; 2005/03/04; 2007/05/13; 2008/04/13;

2009/03/15; 2010/04/03

Landsat-7 ETM+ USGS

2000/03/30; 2001/03/17; 2003/03/23; 2004/03/25; 2006/03/15;
2011/03/29; 2012/03/31; 2013/04/03; 2014/03/21; 2015/03/24;
2016/03/26; 2019/03/03; 2020/03/21; 2021/02/20; 2021/03/08;

2021/05/11; 2021/11/03

Landsat-8 OLI USGS 2017/04/22; 2018/03/08; 2021/01/11; 2021/06/04; 2021/07/22;
2021/08/07; 2021/09/08; 2021/11/03; 2021/12/13

Landsat-7 ETM+ data are missing after 2003 due to a malfunction of the ETM scanline
corrector; thus, the problem of missing strips occurs, but the data still preserve good
radiometric and geometric properties [37]. In this paper, we use ENVI 5.3 software to
implement the corresponding gap-fill correction, as shown in Figure 3.
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2.2.2. Google Earth Satellite Imagery

Google Earth satellite imagery is used in this paper, mainly due to its higher spatial
resolution of 0.5 m covering the entire watershed of the reserve. Since Google Earth
images are stitched together from multisensor data, large-area images are not temporally
consistent [38]. The image depicting the eastern main lake waters used in this paper was
taken on 21 March 2019, and the image acquisition time for both Mengjiawan Reservoir
and Changliushui Reservoir in the western study area was 12 July 2018. These images are
shown in Figure 4. The remaining years of Google Earth satellite imagery are obtained
from Google Earth software and can be directly mapped in the software surface boundary.
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Figure 4. Google Earth satellite imagery of water bodies. To present the best display image, some
areas without water bodies are not shown. Each individual area shown is a Google Earth satellite
imagery. The complete main image in the middle is the March 2019 Landsat-7 data.

2.3. Methods
2.3.1. Water Indices

From the above review of water body indices developed over the past two decades, it
can be found that NDWI, MNDWI and AWEIsh are the most widely used water indices that
have undergone experiments by a large number of researchers, verifying their efficiency
in water body extraction with sufficient guarantees of reliability. However, the creators
of EWI point out in their study that EWI can distinguish water bodies from background
noise in arid regions. Our study area is arid; similarly, for NWI, its creators note that it can
effectively distinguish between various types of water bodies and the study area of this
paper contains a variety of water bodies, such as lakes and reservoirs. Finally, we decided
to use NDWI, MNDWI, EWI, AWEIsh and NWI for the initial extraction of water bodies
in the study area, mainly including Tenggeli Lake, Xiaohu Lake, Gaodun Lake, Machang
Lake, Mengjiawan Reservoir and the Yellow River (flowing through the study area). The
calculation formula of each water body index is as follows [13–17]:

NDWI =
ρGREEN − ρNIR
ρGREEN + ρNIR

(1)

MNDWI =
ρGREEN − ρSWIR
ρGREEN + ρSWIR

(2)
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EWI =
ρGREEN − ρNIR− ρMIR
ρGREEN + ρNIR + ρMIR

(3)

AWEIsh = ρBLUE + 2.5ρGREEN − 1.5(ρNIR + ρSWIR1)− 0.25ρSWIR2 (4)

NWI =
ρBLUE− ρNIR− ρSWIR1− ρSWIR2
ρBLUE + ρNIR + ρSWIR1 + ρSWIR2

(5)

where NDWI is the normalised differential water index; MNDWI is the modified normalised
differential water index; EWI is the enhanced water index; AWEIsh is the automatic water
body extraction index; NWI is the new water index; ρBLUE is the surface reflectance in the
blue band; ρGREEN is the surface reflectance in the green band; ρNIR is the surface reflectance
in the NIR band; ρMIR is the surface reflectance in the SWIR band; ρSWIR1 is the surface
reflectance in SWIR band 1; and ρSWIR2 is the surface reflectance in SWIR band 2.

2.3.2. Accuracy Verification

To verify the accuracy of the water extraction results, this paper determines the final
extraction effect by constructing a confusion matrix [39]. The calculation of the confusion
matrix is carried out with the help of sampling points. Sampling points were obtained
from higher resolution images. In high-resolution satellite images, it is relatively easy to
visually distinguish between surface and non-surface, so it is reliable to verify the accuracy.
Confusion matrices were calculated for each extraction result using ENVI software and
sampling point data to obtain the overall accuracy and Kappa coefficients, which were
used to demonstrate the accuracy of the results.

The selection of sampling points in this paper is based on the Google Earth satellite
image with a resolution of 0.5 m. Except for Google Earth satellite imagery data purchased
manually in 2019 (TIFF format), Google Earth satellite imagery was obtained from Google
Earth software and the surface boundary was directly depicted in the software. First,
based on Google Earth satellite images, the surface boundary is visually depicted and the
surface boundary vector layer is generated. Then, the random point creation tool in ArcGIS
10.7 software was used to randomly generate sampling points on the vector layer of the
water surface.

To ensure the accuracy of accuracy verification, through the comparison of Landsat
image data over the years, it was found that there were three major periods of water body
area change in the study area, namely, 1992–2003, 2004–2009 and 2010–2021. Since the
overall water area did not change in a large area in each period, three sets of precision
sampling points were constructed in this paper. In the year of the construction of sampling
points, the year with the largest water area in each period is judged according to the vision
to ensure the maximum number of sampling points to avoid the phenomenon of excessive
accuracy caused by the small number of sampling points. The specific information of the
sampling points is shown in Table 2. The sampling points in 2019 are mapped (Figure 5),
and the main water bodies are enlarged and displayed.

Table 2. Number of sampling points.

Time
Range

Sampling
Point Year

Tenggeli
Lake

Xiaohu
Lake

Gaodun
Lake

Machang
Lake

Qiandao
Lake

Mengjiawan
Reservoir

Changliushui
Reservoir

Yellow
River

1992–2003 2003 100 75 100 60 0 20 5 104

2004–2009 2009 100 100 100 52 100 22 4 102

2010–2021 2019 100 100 100 47 74 18 4 102
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2.3.3. Threshold Selection

The selection of the threshold is related to the accuracy of the final water extraction.
In this paper, a confusion matrix is used to determine the optimal threshold for the water
index in every year. Usually, 0 is set as the initial threshold, but every time the threshold
starts from 0, it needs to invest a lot of time. Based on the data in 2019, this paper conducted
the first threshold experiment, taking 0.05 and 500 as step sizes to determine the optimal
thresholds of each water index in this year. Then, based on the results of the threshold
experiment in 2019, the optimal threshold was set as the initial threshold of the threshold
experiment in other years due to the similar spectral characteristics of interannual water
bodies, thus saving the time spent for each threshold starting from 0. According to the
above experimental design, the optimal threshold of the time series for 30 years was
determined and the water body was extracted to obtain the time series dataset of surface
water in the study area.

2.3.4. Support Vector Machine Classification

Support vector machines not only satisfy the classification requirements by establish-
ing the optimal classification hyperplane but also ensure that the classification accuracy is
maximised [40]. At the same time, the SVM uses the training error as a constraint on the
optimisation problem and minimises the confidence interval as the optimisation objective,
with the solution being the only optimal solution [41]. Unlike the extraction of water bodies
with the help of water indices, SVM does not require the determination of thresholds but
only the selection of training samples. Since we have already determined the locations of
various water bodies in the study area and can visually determine the water body areas
with the help of Google Earth satellite imagery and Landsat data, the accuracy of sample
selection is guaranteed, which is why we have chosen the support vector machine method.
Another purpose of choosing the support vector machine classification method is to com-
pare it with the water index method. The final results of the SVM can verify the feasibility
of the water index method.

The support vector machine classification method was manipulated through the ENVI
software. The final accuracy validation method still uses the confusion matrix to calculate
the overall accuracy and the determination of the Kappa coefficients.
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2.3.5. Trend Slope Analysis Method

The slope of the interannual rate of change in the water body area time-series in the
study area is calculated as follows [34]:

Slope =

n×
n
∑

i = 1
(i× Si)−

n
∑

i = 1
i

n
∑

i = 1
Si

n×
n
∑

i = 1
i2 −

(
n
∑

i = 1
i
)2 (6)

where Si is the water body area in year i and n is the total number of years; when slope > 0,
the water body area exhibits an increasing trend during the study period and when slope < 0,
the water body area exhibits a decreasing trend during the study period.

The Mann–Kendall method is used to test the significance of the areal change in each
water body type during the study period; this method does not require the samples to obey
a certain regular distribution and can prevent interference resulting from a few outliers.
It is a nonparametric statistical test method that has been widely used in climate ecology
research and other related fields [42,43]. The calculation formulas are as follows:

S =
n−1

∑
k = 1

n

∑
j = k+1

Sgn
(
xj − xk

)
(7)

Sgn
(
xj − xk

)
=


1

(
xj − xk

)
> 0

0
(
xj − xk

)
= 0

− 1
(
xj − xk

)
< 0

(8)

where S is a normal distribution function with a mean of 0 and a variance of
var(S) = n(n− 1)(2n + 5)/18. When S > 0, the standard normal statistic variable is calculated
using the following equation:

Z =



S−1√
var(S)

(S > 0)

0 (S = 0)

S+1√
var(S)

(S < 0)

(9)

where Z is a statistical value; the trend is increasing when Z is greater than 0 and decreasing
when Z is less than 0. Absolute values of Z greater than 1.645, 1.960 and 2.576 indicate that
the significance test is passed at the 90%, 95% and 99% confidence levels, respectively.

2.3.6. Pearson Correlation Coefficient

Pearson correlation coefficients were analysed to assess the correlation degrees be-
tween the TSWA and precipitation, temperature, the previous-year TSWA and the contem-
poraneously extracted Yellow River area results using the following equation:

r =
∑n

i = 1 (xi − x)(yi − y)√
∑n

i = 1(xi − x)2 ×
√

∑n
i = 1(yi − y)2

(10)

where r is the Pearson correlation coefficient, n is the total number of years and x and
y are the variables sought. When |r| ≥ 0.7, the two variables are considered to be
strongly correlated; when 0.4 ≤ |r| < 0.7, they are considered to be moderately corre-
lated; when 0.2 ≤ |r| < 0.4, they are weakly correlated; and when |r| ≤ 0.2, the two
variables are considered to be extremely weakly correlated or not correlated. The same
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significance test was carried out at the 95% and 99% significance levels (p < 0.05 and p < 0.01,
respectively) [44,45].

3. Results and Discussion
3.1. Initial Experimental Threshold Selection Results

Based on the Landsat data from March 2019, the threshold experiments of each water
index were conducted. For the first time, 0 was taken as the threshold for each water
index. Except for AWEIsh, which took 500 as the step size, all the other water indices took
0.05 as the step size. The extraction results were calculated using the sampling points to
calculate the confusion matrix and the precision results are shown in Figure 6, indicating
that with an increase in the threshold value, the extraction accuracies of all five indices
showed trends of first increasing and then decreasing. The NDWI had the highest accuracy
at the threshold value of −0.2, with an overall accuracy of 93.63% and a Kappa coefficient
of 0.87. The MNDWI had the highest accuracy at the threshold value of −0.15, with an
overall accuracy of 96.32% and a Kappa coefficient of 0.93. The EWI had the highest
accuracy at a threshold value of −0.50, with an overall accuracy of 96.35% and a Kappa
coefficient of 0.89. The AWEIsh had the highest accuracy at the threshold value of −2000,
with an overall accuracy of 96.24% and a Kappa coefficient of 0.92. Finally, the NWI had
the highest accuracy at the threshold value of −0.75, with an overall accuracy of 94.32%
and a Kappa coefficient of 0.89. Compared with setting the initial experimental threshold
as 0, the selection efficiency of the optimal threshold can be further improved through the
experimental results of the threshold. In subsequent experiments, the initial experimental
thresholds of NDWI, MNDWI, EWI, AWEIsh and NWI started from −0.2, −0.15, −0.50,
−2000 and −0.75, respectively.
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3.2. Water Index and SVM Water Extraction Accuracy

Using the water index and Landsat data from the last ten years, the water index
threshold method and SVM method were used to extract the TSWA in the study area.
The reliability of the water index is verified by comparing the overall accuracy of the two
methods by calculating the confusion matrix combined with the total sampling points.

3.2.1. Extraction Accuracy of Water Index

Based on the initial threshold of each water index determined in Section 3.1, the TSWA
was extracted from the study area during 2012–2021. Except for the AWEIsh step size
of 500, the rest of the water index step sizes are still 0.05. By calculating the confusion
matrix, the optimal threshold value is determined when the precision value is the highest
and surface water extraction is completed, as shown in the Table 3. Among them, the
average accuracies of NDWI, MNDWI, EWI, AWEIsh and NWI in the last ten years were
91.14% (kappa = 0.84), 91.33% (kappa = 0.85), 81.03% (kappa = 0.71), 90.05% (kappa = 0.84)
and 81.15% (kappa = 0.75), respectively. Among them, EWI has the lowest accuracy. The
analysis of the reasons shows that in the construction process of EWI, the near-infrared
(NIR) and mid-infrared (MIR) bands are combined together, and the ratio calculation is
carried out with the green light band. As the concentration of suspended solids in water
increases, the reflectance of NIR and MIR to water increases, so it is no longer applicable
to turbid water. As the study area is mostly lakes and reservoirs, the relatively closed
environment makes the suspended algae easy to develop in large quantities, resulting in
low extraction accuracy. Although the NWI index is pointed out by its builder as having
strong applicability to different types of water bodies, the extraction effect in this study area
obviously does not meet the extraction requirements through the experiment in this paper.

Table 3. Extraction accuracy of the water index.

Date
NDWI MNDWI EWI

Threshold OA Kappa Threshold OA Kappa Threshold OA Kappa

2012/3/31 −0.15 90.16% 0.83 −0.15 90.42% 0.84 −0.5 79.15% 0.68

2013/4/3 −0.15 90.89% 0.83 −0.1 92.15% 0.87 −0.45 80.73% 0.74

2014/3/21 −0.15 93.37% 0.85 −0.15 89.34% 0.83 −0.4 83.65% 0.75

2015/3/24 −0.15 92.51% 0.86 −0.1 93.68% 0.89 −0.5 82.96% 0.77

2016/3/26 −0.15 89.65% 0.80 −0.1 89.56% 0.87 −0.5 80.18% 0.64

2017/4/22 −0.15 89.91% 0.84 0 89.30% 0.76 −0.5 82.45% 0.79

2018/3/8 −0.15 90.22% 0.81 −0.1 89.36% 0.85 −0.45 84.71% 0.78

2019/3/3 −0.2 91.72% 0.86 −0.15 94.23% 0.90 −0.5 81.22% 0.72

2020/3/21 −0.2 90.78% 0.88 −0.1 93.75% 0.88 −0.5 73.87% 0.54

2021/3/8 −0.15 92.16% 0.83 −0.1 91.48% 0.85 −0.5 81.36% 0.73

AWEIsh NWI

2012/3/31 −2000 88.10% 0.8 −0.75 81.38% 0.72

2013/4/3 −2000 92.78% 0.81 −0.75 79.51% 0.75

2014/3/21 −2000 91.15% 0.90 −0.6 84.02% 0.75

2015/3/24 −2000 86.42% 0.86 −0.65 86.97% 0.83
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Table 3. Cont.

Date
NDWI MNDWI EWI

Threshold OA Kappa Threshold OA Kappa Threshold OA Kappa

2016/3/26 −2000 88.28% 0.81 −0.7 73.42% 0.66

2017/4/22 −2000 90.91% 0.80 −0.75 81.12% 0.80

2018/3/8 −2000 89.77% 0.82 −0.75 81.36% 0.76

2019/3/3 −2000 92.16% 0.89 −0.75 83.25% 0.77

2020/3/21 −2000 90.66% 0.86 −0.7 88.85% 0.85

2021/3/8 −1500 90.31% 0.85 −0.75 71.57% 0.65

3.2.2. SVM Extraction Accuracy

Support vector machine classification was performed using Landsat data for the last
ten years from 2012–2021. In the classification process, the water body of interest (water
samples) was selected with reference to Google Earth satellite images and the classification
accuracy and Kappa coefficients are shown in Table 4. The same sampling points as the
water index are used in the accuracy verification process. Comparing Table 3, it is easy to
determine that the accuracy of the classification method using support vector machines
is low, although in 2012, 2013 and 2014, the accuracy is high, but the performance of the
Kappa coefficient is still not optimal. Although the SVM method avoids this stage of
threshold selection, it is equally important for the selection of training samples, which is
directly related to the level of classification accuracy. As seen in Table 4, the average overall
accuracy was 88.46% over the last ten years. The SVM extraction effect in this paper is still
lower than that of the water index method.

Table 4. Support vector machine classification accuracy (2012–2021).

Date OA Kappa

2012/03/31 91.11% 0.68

2013/04/03 90.93% 0.73

2014/03/21 91.75% 0.79

2015/03/24 84.33% 0.54

2016/03/26 84.56% 0.54

2017/04/22 89.67% 0.57

2018/03/08 87.58% 0.48

2019/03/03 87.82% 0.56

2020/03/21 87.44% 0.62

2021/03/08 89.37% 0.72

3.3. Water Index Accuracy of Different Types of Water Bodies

By comparing the SVM classification results, it has been determined that the water
index in this study has a better extraction effect. For different types of water, each water
index has a different extraction effect. To extract different types of water bodies (lake,
reservoir and Yellow River) in the study area more accurately, the sampling points of the
lake, reservoir and Yellow River are used to calculate the extraction accuracy of different
types of water bodies in the last ten years and the group with the highest accuracy is
tabulated, as shown in Table 4. It can be seen that for lakes, reservoirs and the Yellow River
in the study area, the highest extraction accuracies are for the MNDWI, AWEIsh and NDWI,
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and the average overall accuracies are 91.68%, 90.79% and 90.97, respectively. However, to
determine the final water index, artificial visual judgement is needed to extract the effect.

3.4. Extraction Effect of Different Types of Water

For the visual extraction effect, the accurate extraction of small water bodies is an
important basis for judgement. Based on the data in 2019, the extraction effects of each
water index on different types of water bodies were analysed, and the applicable water
index was finally determined.

3.4.1. Total Surface Water Area (TSWA)

The optimal threshold of each water index was used to extract the TSWA of the study
area. Since lakes occupy a large proportion of the total surface water area of the study area
and there are many small water bodies in the Tengger Lake area, the TSWA will be more
accurate if lakes and small water areas can be accurately extracted. Therefore, Tengger
Lake, Gaodun Lake and Machang Lake are taken as examples to show the extraction effect
of each water index, as shown in Figure 7. Compared to Figure 4, the NDWI-extracted
water body areas are small compared to the other water body index extraction results;
thus, the NDWI failed to accurately reflect the distribution of water bodies in the protected
area, while the NWI-extracted water body area was relatively large and exhibited a partial
misclassification phenomenon (the obvious hardening of a road was classified as a water
body). The Tenggeli Lake, Gaodun Lake and Machang Lake areas are shown separately.
The MNDWI-extracted results show good extraction effects for the fine water bodies around
the lake, while the rest of the indices could not completely extract these water bodies. The
MNDWI uses the SWIR band instead of the NIR band in the NDWI, which weakens the
influence of soil and buildings, thus making the extraction results of fine water bodies in
the Tenggeli Lake area more accurate; therefore, the MNDWI index was used to extract the
total water body area in the protected area.
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3.4.2. Lakes

The extraction results in Figure 6 show that the MNDWI could accurately extract the
overall water bodies and, at the same time, extract the lake boundaries, especially the fine
water bodies in the Tenggeli Lake area; thus, the MNDWI was used to extract the typical
lakes in the study area.

3.4.3. Reservoirs

The main reservoirs in the study area are Mengjiawan Reservoir and Changliushui
Reservoir. Mengjiawan Reservoir is a rocky, hilly area with a slightly undulating surface
and the extraction of this water body can be easily affected by the shadows caused by
the mountains on either side of the reservoir. The Changliu River Reservoir is located
upstream of Mengjiawan Reservoir, and compared to Mengjiawan Reservoir, the two sides
of the Changliu River Reservoir are narrower valleys, which is unfavourable for water
body extraction; thus, the applicability of each of the five water body indices was verified
separately to study the reservoir area extraction process, as shown in Figure 8. The black
boundary in the figure below represents the manually depicted water body boundaries
based on Google Earth satellite imagery taken during the same period: the figure shows that
the EWI and AWEIsh achieve the best extraction effects, but when comparing the manually
depicted reservoir boundaries, the EWI extraction results clearly exceed the manually
depicted reservoir boundaries, while the AWEIsh can better fit these water boundaries. An
important reason is that AWEIsh has a better ability to identify mountain shadows on both
sides of the river, which is the main reason for the better extraction effect. Thus, reservoir
information is ultimately extracted in the study area based on the AWEIsh.
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3.4.4. Yellow River

As seen from Table 5, the water index with the highest extraction accuracy in the Yellow
River is NDWI, with an average accuracy of 90.97% and an average Kappa coefficient of
0.84. In the past ten years, it was the index with the best extraction effect among the five
water indices. Similarly, for NDWI, MNDWI, EWI, AWEIsh and NWI, the results are shown
in Figure 9. It can be seen that NDWI is the most complete extraction of water bodies, while
other indicators all show a certain degree of misclassification. In particular, AWEIsh is the
most severe, misdiagnosing large areas of shadow on either side as bodies of water. At
the same time, NDWI with the help of NIR bands makes water bodies more visible. The
Yellow River has a wide water surface, and its water information is prominent. NDWI was
superior to other indices in extracting large water bodies. Combined with the table, the
NDWI was used to extract the Yellow River surface water area in a long time series.
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Table 5. Extraction accuracy of different types of water bodies.

Date
MNDWI (Lake) AWEIsh (Reservoir) NDWI (Yellow River)

OA Kappa OA Kappa OA Kappa

2012/3/31 87.66% 0.81 92.27% 0.82 97.29% 0.83

2013/4/3 92.51% 0.89 86.54% 0.81 90.81% 0.83

2014/3/21 94.63% 0.87 87.19% 0.87 92.08% 0.83

2015/3/24 86.44% 0.85 89.63% 0.84 84.33% 0.79

2016/3/26 87.57% 0.90 94.40% 0.90 92.66% 0.87

2017/4/22 92.65% 0.91 87.74% 0.86 90.12% 0.84

2018/3/8 95.12% 0.93 94.65% 0.89 82.18% 0.82

2019/3/3 87.39% 0.86 91.11% 0.83 89.25% 0.81

2020/3/21 95.38% 0.92 89.20% 0.84 96.49% 0.92

2021/3/8 97.41% 0.82 95.15% 0.85 94.46% 0.83

Average Value 91.68% 0.88 90.79% 0.85 90.97% 0.84

3.4.5. Optimal Threshold and Accuracy Verification Results

Through the above experiments, it has been confirmed that the MNDWI, AWEIsh and
NDWI are used for water feature extraction for the TSWA (including lakes), reservoirs and
Yellow River in the study area. Through the optimal threshold experiment, the optimal
threshold of each period of data was determined and the confusion matrix was calculated
to obtain the extraction accuracy. The summary is shown in Table 6. The results showed
that the average accuracies of the MNDWI, NDWI and AWEIsh were 90.38% (kappa = 0.85),
90.33 (kappa = 0.78) and 90.36% (kappa = 0.82), respectively. The accuracy of the three
water indices met the requirements and the extraction of surface water in the time series
was completed according to the threshold value in the table.
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Table 6. The optimal threshold and precision of time series.

Date
MNDWI (TSWA) NDWI (Yellow River) AWEIsh (Reservoir)

Threshold OA Kappa Threshold OA Kappa Threshold OA Kappa

1992/4/1 −0.15 89.54% 0.80 −0.15 87.96% 0.74 −2000 90.53% 0.65

1993/3/19 −0.15 90.09% 0.83 −0.15 86.68% 0.73 −2000 84.75% 0.84

1994/3/6 −0.15 93.36% 0.91 −0.15 95.01% 0.85 −2000 91.41% 0.82

1995/3/25 −0.2 93.12% 0.87 −0.15 90.27% 0.81 −2000 90.57% 0.82

1997/3/30 −0.15 89.35% 0.87 −0.15 93.47% 0.77 −2000 86.80% 0.79

1998/4/2 −0.15 94.75% 0.91 −0.15 93.85% 0.79 −2000 92.82% 0.90

1999/4/5 −0.15 90.23% 0.88 −0.15 92.45% 0.73 −2000 91.62% 0.82

2000/3/30 −0.15 92.41% 0.82 −0.15 89.12% 0.58 −2000 95.13% 0.84

2001/3/17 −0.2 86.93% 0.81 −0.15 97.51% 0.93 −2000 91.89% 0.86

2002/3/28 −0.15 89.10% 0.81 −0.15 90.16% 0.68 −2000 86.14% 0.84

2003/3/23 −0.15 86.14% 0.84 −0.2 89.91% 0.68 −2000 95.64% 0.88

2004/3/25 −0.15 90.60% 0.87 −0.15 92.40% 0.76 −2000 90.77% 0.88

2005/3/4 −0.15 85.13% 0.83 −0.15 94.77% 0.85 −2000 91.77% 0.88

2006/3/15 −0.15 92.14% 0.82 −0.15 92.78% 0.78 −2000 90.39% 0.89

2007/5/13 −0.15 87.60% 0.86 −0.2 87.17% 0.62 −1500 82.33% 0.78

2008/4/13 −0.15 84.33% 0.81 −0.2 80.97% 0.62 −1500 89.72% 0.8

2009/3/15 −0.15 90.13% 0.81 −0.15 86.57% 0.73 −2000 90.25% 0.81

2010/4/3 −0.15 90.46% 0.81 −0.15 93.63% 0.87 −2000 89.94% 0.88

2011/3/29 −0.15 91.22% 0.88 −0.15 89.41% 0.79 −2000 90.17% 0.88

2012/3/31 −0.15 90.42% 0.84 −0.15 97.29% 0.83 −2000 92.27% 0.82

2013/4/3 −0.1 92.15% 0.87 −0.15 90.81% 0.83 −2000 86.54% 0.81

2014/3/21 −0.15 89.34% 0.83 −0.15 92.08% 0.83 −2000 87.19% 0.87

2015/3/24 −0.1 93.68% 0.89 −0.15 84.33% 0.79 −2000 89.63% 0.84

2016/3/26 −0.1 89.56% 0.87 −0.15 92.66% 0.87 −2000 94.40% 0.9

2017/4/22 0 89.30% 0.76 −0.15 90.12% 0.84 −2000 87.74% 0.86

2018/3/8 −0.1 89.36% 0.85 −0.15 82.18% 0.82 −2000 90.65% 0.89

2019/3/3 −0.15 94.23% 0.90 −0.2 89.25% 0.81 −2000 91.11% 0.83

2020/3/21 −0.1 93.75% 0.88 −0.2 96.49% 0.92 −2000 89.20% 0.84

2021/1/11 −0.1 95.37% 0.85 −0.2 90.79% 0.82 −1500 90.28% 0.79

2021/2/20 −0.1 85.41% 0.85 −0.2 93.63% 0.87 −1500 89.52% 0.8

2021/3/8 −0.1 91.48% 0.85 −0.15 90.97% 0.84 −1500 90.79% 0.85

2021/5/11 −0.15 92.34% 0.88 −0.2 90.56% 0.81 −1500 93.90% 0.81

2021/6/4 −0.15 91.56% 0.90 −0.2 92.33% 0.85 −2000 94.02% 0.82

2021/7/22 −0.15 84.90% 0.87 −0.2 83.42% 0.67 −2000 90.66% 0.7

2021/8/7 −0.15 91.20% 0.79 −0.2 80.12% 0.61 −2000 90.54% 0.69
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Table 6. Cont.

Date
MNDWI (TSWA) NDWI (Yellow River) AWEIsh (Reservoir)

Threshold OA Kappa Threshold OA Kappa Threshold OA Kappa

2021/9/8 −0.15 90.23% 0.91 −0.2 89.79% 0.67 −2000 90.78% 0.7

2021/11/3 −0.15 93.12% 0.81 −0.2 89.66% 0.71 −2000 90.41% 0.69

2021/12/13 −0.15 90.23% 0.89 −0.15 91.91% 0.76 −2000 91.53% 0.74

3.5. Annual Variation Pattern of the TSWA

To illustrate the intra-annual variability characteristics of the TSWA, the year with the
most complete data was chosen: 2021, and the results are shown in Figure 10. The optimal
threshold values are determined by threshold experiments, as shown in the Table 6.

It can be seen that there is a trend of increasing and then decreasing TSWA during
the year. Although the data for April are missing, it is easy to tell from the folding trend
that February, March and April of this year are the most abundant periods of the TSWA
and that surface water resources are the most abundant phase of the year. It reaches its
lowest value in July, August and September of the year, which is also due to the strong
evaporation in the study area during that period. It can be deduced that without artificial
irrigation, the situation will worsen, with water resources continuing to deteriorate and
even drying up during this period. In autumn, however, evaporation gradually decreases as
the temperature drops, and with artificial recharge, the water area gradually increases again
at this time. It is thus easy to see that artificial recharge of the study area is important during
the summer months of each year. At the same time, our choice of data near March each
year for the extraction of interannual variability features of the water bodies is accurate.
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3.6. Interannual Variation Pattern of the Water Body Area

Surface water area was extracted from TSWA, lakes and reservoirs in the study area
between 1992 and 2021 to obtain a dynamic change curve of the surface area of water
bodies over a thirty-year period. Based on Equation (6), a slope value > 0 indicates that
the water body area has increased, while a slope value < 0 indicates that the water body
area has decreased. The TSWA trend change calculation results obtained for the study
area and the water body area change trends corresponding to each lake and reservoir are
shown in Table 5; the results are all greater than 0. Based on the Mann–Kendall significance
test results, all extractions passed the 99% significance test except those for Mengjiawan
Reservoir, which did not pass the significance test, and Machang Lake, which passed the
significance test at the 90% confidence level (Table 7).
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Table 7. Results of Trend Slope Analysis.

Water Body Slope Man-Kendall

TSWA 0.2293 5.34

Tenggeli Lake 0.0946 5.73

Gaodun Lake 0.0155 3.73

Machang Lake 0.0059 1.59

Xiaohu Lake 0.0516 4.87

Qiandao Lake 0.0057 4.43

Mengjiawan Reservoir 0.0016 −0.23

Changliushui Reservoir 0.0003 3.32

3.6.1. Interannual TSWA Variation

The TSWA analysis for the study area shows the following. For the 30-year TSWA for
the period 1992–2021, a slope value of 0.2293 was calculated and passed the significance
test. This reveals an increasing trend in the TSWA, as shown in Figure 11a. The TSWA in
1992 was 223.78 hm2 and in 2021, the TSWA was 606.06 hm2, representing an increase of
382.28 hm2 over 30 years and a combined multiyear average TSWA of 447.98 hm2. The
main time point of area increase was in 2004 at 471.97 hm2, with a subsequent increase to a
maximum of 752.71 hm2 in 2015. The area then changed less and gradually stabilised at
approximately 650 hm2. The TSWA in 2004 showed a dramatic increase, which is to be
explained in the context of the reality of the study area to better explain the changes that
occurred during that period. One of the main reasons for this is the expansion of the area of
the lakes during this period, with Tenggeli Lake showing the largest expansion, followed
by Gaodun Lake and Machang Lake. Second, aquaculture in the study area gradually
increased in size with socioeconomic development, and the large number of new fishponds
built during this period is also an important reason for the increase in surface water area.
At the same time, the citation of water from the Yellow River and the influence of artificial
recharge also led to a further expansion of the water surface area.

3.6.2. Interannual Variations in the Areas of Major Lakes and Reservoirs

In this paper, we analysed the interannual variation characteristics of the water body
areas of five major lakes and two reservoirs in the study area and the calculation results
of each typical lake and reservoir are shown in Figure 11. Overall, the area of each lake
and reservoir increased and there was no obvious reduction phenomenon. The water body
areas increased the most for Tenggeli Lake, Xiaohu Lake and Qiandao Lake. Combining
these results with those in Table 5, the areas of Tenggeli Lake and Xiaohu Lake increased
the most, with slope values of 0.0946 and 0.0516, respectively. This paper analyses the
interannual variation characteristics of the water area of five major lakes and two reservoirs
in the study area during the period 1992–2021, and the calculated results for each typical
lake and reservoir are shown in Table 2 and Figure 10.

Tenggeli Lake is the largest artificial lake in the study area, increasing by 257.27 hm2

between 1992 and 2021, with a multiyear average area of 184.09 hm2; the main increases
in area since 1992 occurred at three time points, 1997, 2002 and 2010, from 31.55 hm2 to
73.60 hm2 and 111.76 hm2. From 1992 to 2009, the Tenggeli Lake area was an artificial
fishpond during this period. The increase in area in 1997 and 2002 was mainly due to the
expansion of fish farming by local residents and thus the expansion of fishponds, which led
to an increase in the area of water bodies in the area. The fishponds were further deepened
and enlarged after 2009, resulting in the gradual formation of Tenggeli Lake. After 2010,
the area of the water body remained stable, with an average area of 292.27 hm2 over the
last five years.
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Xiaohu Lake and Qiandao Lake are typical seminatural lakes in the study area; these
lakes were formed through artificial transformation while maintaining the original lake
basin. The artificial transformation of Xiaohu Lake started mainly in 2003, and its area
increased by nearly 15 hm2 relative to the same period in 2002; then, the lake experienced
a larger increase in area in 2005, growing by 66.82 hm2 compared to the previous year’s
area (21.74 hm2). The increases in the areas of Qiandao Lake and Xiaohu Lake occurred at
the same stage, with large increases observed in 2005 compared to the previous year (the
2004 area of Qiandao Lake was 1.40 hm2, indicating an increase of 17.48 hm2). In general,
the area of Xiaohu Lake has increased significantly since 2002, increasing by 15.08 hm2 by
2003 for an increase of approximately 250% and then increasing to 162.91 hm2 by 2021. In
contrast, the main phase of the increase in the area of Qiandao Lake occurred in 2005, and
since then, the lake has essentially not increased significantly again, in stark contrast to
Xiaohu Lake. Considering this difference, we conclude that in addition to both lakes being
artificially recharged, the continued increase in the area of Xiaohu Lake is also explained
by the lateral infiltration of residual irrigation water from the surrounding poplar forests,
which resulted in the rapid expansion of the lake in 2003 and the maintenance of this
expanded lake area thereafter.

Gaodun Lake and Machang Lake are natural lakes in the study area that have been
watered since 1992, for which complete 30-year data were extracted. The multiyear averages
for these two lakes are 30.81 hm2 and 11.78 hm2, respectively, with larger averages of
36.57 hm2 and 14.89 hm2 for the last five years. Both lakes have increased in size to
some extent, and their water areas have been effectively maintained in recent years. The
maintenance of the water area of Machang Lake has mainly been due to the local residents
developing this lake as a fishpond for water storage and aquaculture. Gaodun Lake, on the
other hand, benefits from local ecotourism and maintains its water area through artificial
water injections. In both cases, a better water surface is maintained, and the water body
areas can hardly be sustained without artificial intervention together with the natural state
of lateral seepage, the transpiration of aquatic plants and evaporation from the land surface.
In addition, the southern sections of Machang Lake and Gaodun Lake are adjacent to
Tenggeli Lake and are thus affected by the lateral leakage of the high water level of Tenggeli
Lake, allowing them to maintain highly stable water body areas under the influence of the
high water level of Tenggeli Lake in recent years.

Mengjiawan Reservoir and Changliushui Reservoir are the main reservoirs in the study
area. Mengjiawan Reservoir has been monitored, as it has not been dry, with a multiyear
average area of 3.31 hm2 and a recent five-year average area of 3.38 hm2. Changliushui
Reservoir has been dry for many years, with a multiyear average area of 0.55 hm2 and a
recent five-year average area of 1.09 hm2. The recent five-year average areas of these two
reservoirs are higher than their multiyear average areas, further indicating the relative
stability of these reservoir areas in recent years. Regarding the interannual variation
characteristics of these reservoirs, both are located in the western Changliushui area within
the study area, a river region formed by outcropping springs, and the reservoirs have
limited water storage sources and are responsible for holding irrigation water and domestic
drinking water used by people living in Mengjiawan and Changliushui villages, thus
resulting in their large fluctuations over the years with very little recharge or production
and their application for domestic water use.
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3.6.3. Characteristics of Interannual Variation in Surface Water Area of the Yellow River

The multiyear average surface water area of the Yellow River flowing through Zhong-
wei city from 1992 to 2021 was 1732.75 hm2, and the surface water area in 2021 was
1746.04 hm2. In general, the 30-year average surface water area was 1732.75 hm2, and
the area shows an increase. This is generally consistent with the results of Li’s surface
water area monitoring for the whole Yellow River basin [46]. At the same time, there is
a minimum value in 2003, the year in which Li’s study noted a significant reduction in
surface water area in the Yellow River source area and we speculate that it is this that has
led to the phenomenon of a minimum value in this paper. The area of water bodies has been
relatively stable over the last five years, with an average area of 1841.39 hm2 (Figure 12).
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3.7. Correlation Analysis

According to Equation (10), correlations were calculated between the TSWA and prior
year TSWA and surface water area of the Yellow River for each year from 1992–2021. The
results were calculated as 0.89 and 0.71 respectively (Figure 13)
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The correlation coefficient derived between the current and previous-year TSWAs
reached a maximum value of 0.89 and showed significance at the 0.01 level, mainly because
the previous-year TSWA played a crucial role in the maintenance of the water body area
from that time forwards, allowing the overall storage size in the previous year to have
continuity; this continuity influenced the water body area in the second year and there
were very few natural recharge sources in the study area, causing the water body areas to
be dependent only on artificial recharge. This condition caused the previous-year TSWA to
play a crucial role with respect to the total water body area.

The correlation between the surface water area of the Yellow River and TSWA for the
same period is second only to that between TSWA and TSWA of the previous year, with
the former showing a correlation coefficient of 0.71, showing significance at the 0.01 level.
This is partly because the study area is adjacent to the Yellow River, which recharges most
of the water bodies in the study area, especially the typical lakes in the study area. On the
other hand, it is also due to the combined effect of the Yellow River and the major water
bodies in the study area in terms of topographic conditions and permeability, which has
produced contemporaneous groundwater volume interactions that have had a positive
effect on maintaining the water body area in the study area. The subsequent use of the
Yellow River water source to recharge the water resources of the study area in a more
rational way deserves deeper reflection with respect to the water scarcity dynamics of the
study area, especially during the summer months when evaporation is strong due to rising
temperatures and great instability in the TSWA.
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4. Conclusions

It is still unclear how to address the problem caused by the characteristics of long-
term dynamic changes in surface water area and the influence mechanism of TSWA trend
changes in the Sha Botou National Nature Reserve of Ningxia. In this paper, we produce a
time series dataset of TSWA and each typical water body in the study area at 30 m resolution
from 1992 to 2021 based on long time series Landsat data and water indices and reveal the
characteristics of interannual changes affecting local water bodies and the associated impact
mechanisms. This work complements the existing methods for extracting information on
surface water resources in the study area and is also of great practical importance for the
scientific management of water resources in the study area.

The main conclusions of this study are as follows:

(1) The validation results of the selected water body samples from Google Earth satellite
imagery show that the three water body remote sensing indices NDWI, MNDWI
and AWEIsh considered in this paper have high confidence in the extraction of water
bodies in the study area, with average overall accuracies of 90.38%, 90.33% and 90.36%,
respectively, and that the extraction results can adequately reflect the interannual
dynamic trajectories of various surface water bodies. Compared with the support
vector machine classification method, the water index method is more reliable after a
strict threshold selection.

(2) The TSWA in the study area showed an overall increasing trend between 1992 and
2021, from 223.78 hm2 in 1992 to 606.06 hm2 in 2021, with a multiyear average TSWA of
447.98 hm2. The main increase in area was caused by Tenggeli Lake, which increased
by 257.27 hm2 by 2021.

(3) Pearson correlation coefficients were used to evaluate the correlation between each
consideration and TSWA, and the correlation between water body extraction results
and previous year TSWA and surface water area of the Yellow River over a 30-year
period was analysed. The results showed that the correlations between the previous
year TSWA and the TSWA were greater than those between the surface water area
of the Yellow River and the TSWA. The influence of the previous year TSWA on the
TSWA was the largest at 0.89, followed by the surface water area of the Yellow River
at 0.71 for the same period. This also suggests that current water conservation in the
study area should focus more on anthropogenic impacts.
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