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Abstract: Nanoscale zero-valent iron (nZVI) has become a new and ecofriendly adsorbent material
with promising applications. Herein, hydrotalcite-supported nanoscale zero-valent iron (nZVI@H)
is synthesized for the first time and used for testing the removal of methylene blue (MB) in an
aqueous solution. The successful fabrication of nZVI@H is characterized by SEM, BET, XRD, FTIR
and zeta-potential analyses. The results showed that 99.6% of MB is removed using nZVI@H after
30 min of reaction at an initial MB concentration of 40 mg·L−1, while the bare nZVI is only at 71.2%.
The kinetic analysis yielded that the removal process of MB using nZVI@H is consistent with the
Langmuir model and the quasi-second-order kinetic model. According to the Langmuir model, the
maximum adsorption of nZVI@H on MB is 81 mg·g−1. This study provides a new idea about the
mechanism of MB removal, namely, MB is converted to the colorless LMB through an Fe0 redox
reaction and simultaneously attached at the surface of nZVI@H through an adsorption process, and
finally removed via complexation precipitation.

Keywords: hydrotalcite-supported nanoscale zero-valent iron; removal; mechanism; methylene blue

1. Introduction

Dyes are commonly utilized in the material and chemical industries, especially in
printing, dyeing, textiles and cosmetics [1]. Global annual production of dyes has exceeded
700,000 tons, of which 2~15% are discharged into the environment with industrial wastew-
ater during the printing and dyeing process [2]. Most synthetic dyes are highly polluting,
meaning environmentally durable, non-biodegradable and toxic [3]. As a result, the release
of untreated dye wastewater streams into the environment can pose a considerable risk to
a wide range of creatures and humans [4]. Among the many dye contaminants, the most
frequently used basic cationic dye is MB, which is also a popular model for water pollu-
tants. According to research, even minimal concentrations of MB into a body will cause
serious damage including elevation of blood pressure, gastrointestinal pain, headaches and
vomiting [5,6]. For the above reasons, it is particularly important to develop an efficient
method for the remediation of dye wastewater.

At present, to remove dyes from wastewater, many approaches have been researched
such as electrolysis [7], catalytic reduction [8], photocatalysis [9–11], membrane separa-
tion [12], chemical oxidation [13], and particularly adsorption, since it is preferred because
of its simplicity of operation, low energy consumption, non-selectivity to hazardous con-
taminants, and high efficiency [14]. Principally, nNZVI particles are superior to other
adsorbent materials because of their large specific surface area, high reducibility and activ-
ity [15,16]. Unfortunately, several technical issues remain in the application of nZVI. On the
one hand, because of van der Waals forces and magnetic interactions between the particles,
nZVI tends to agglomerate, resulting in a significant loss in dispersibility [17]. On the other
hand, nZVI is rapidly oxidized to other substances, which reduces its activity. [18].

Water 2023, 15, 183. https://doi.org/10.3390/w15010183 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15010183
https://doi.org/10.3390/w15010183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://doi.org/10.3390/w15010183
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15010183?type=check_update&version=1


Water 2023, 15, 183 2 of 16

To address these drawbacks, the high dispersion strength of nZVI is the key to in-
creasing its activity. A series of supported nZVI particles has been investigated, such as
carbonaceous materials-supported nZVI (including biochar and activated carbon), mineral
materials-supported nZVI (including kaolin and bentonite) and high polymer-supported
nZVI (including polyacrylamide and sodium carboxymethyl cellulose) [19,20]. Compared
to non-modified nZVI, the modified nZVI can be exhibited to perform better in treating
contaminants (i.e., azo dyes and phenols) [21].

Hydrotalcite is a layered anionic clay mineral with excellent physicochemical proper-
ties. It has been widely considered as a promising dispersant due to its obvious advantages
including appreciable stratified structure, large specific surface area and high mechanical
strength [22,23]. More importantly, hydrotalcite weighs less than other dispersants such
as activated carbon and bentonite. This feature allows for a long floating time on liquid
surfaces rather than rapid precipitating. When hydrotalcite is successfully supported as a
carrier, it exhibits suspension in the liquid and facilitates full contact between the adsorbent
and wastewater [24]. However, there are few studies on using hydrotalcite as the carrier
for nZVI and its removal of dye wastewater. Thus, the main goals of this work were to:
(1) prepare and characterize analysis of nZVI@H; (2) investigate different factors affecting
the adsorption of MB; (3) perform kinetic analysis; and (4) investigate the mechanism of
MB adsorption.

2. Materials and Methods
2.1. Materials and Chemicals

Sodium borohydride (>99%), ferric chloride hexahydrate (>97%), methylene blue
(>99%), and ethanol (>99.5%) were purchased from Tianjin Fuchen Chemical Company
(Tianjin, China) and hydrotalcite (Al2Mg6(OH)16CO3·4H2O) was purchased from Shandong
Youso Chemical Technology Co. Ltd., (Linyi, China) with the purity of 99.6%. All reagents
used in the studies were of analytical quality, and the water used was deionized water.

2.2. Synthesis of nZVI@H

The liquid-phase reduction process was used to prepare the nZVI, and nZVI@H
was synthesized by adding hydrotalcite as a support material with synthesis of different
nZVI@H by varying mass ratios of hydrotalcite and iron (Mhydrotalcite:Miron = 1:2, 1:1 or
2:1). Briefly, in a 500 mL three-neck flask, a 100 mL mixture of ethanol and deionized
water (80%, v/v) was added to dissolve 1.21 g of FeCl3·6H2O, and various amounts of
hydrotalcite (0.125 g, 0.25 g, or 0.50 g) were added into the solution under a mechanical
stirring condition. Then, the above solution was dropwise added with a freshly prepared
NaBH4 solution (0.34 g of NaBH4 in 50 mL) to reduce the nZVI particles. Finally, the
obtained nZVI@H contained 0.25 g of nZVI. The reaction is shown in Equation (1).

4Fe3+ + 3BH4
− + 9H2O→4Fe0(s)↓ + 3H2BO3

−(aq) + 12H+ + 6H2(g)↑ (1)

After the addition of NaBH4, the blended solution was stirred for another 30 min
at room temperature without interruption. The obtained black particles were segregated
using vacuum suction filtration and washed with anhydrous ethanol two times. Finally,
the solid was dried at 60 ◦C under a vacuum condition for 48 h.

2.3. Materials Characterization

The morphology, particle size and specific surface areas were analyzed using scanning
electron microscopy (SEM, JSM-7500F, Applied Scientific Instruments Co., Ltd. (Shanghai,
China)) and a Brunauer–Emmett–Teller (BET, PM7240, Huapu Hengchuang Instruments
Co., Ltd. (Beijing, China)) analyzer before and after supporting, and the composition
and chemical bonding of the supported materials were identified using X-ray diffraction
(XRD, D8-ADVANCE, Beijing Softron Biotechnology Co., Ltd., Beijing, China) and Fourier
infrared spectroscopy (FTIR, 6600, Jiangsu Skyray Instrument Co., Ltd., Kunshan, China).
In addition, zeta potential was used to detect the surface charge of the material (Malvern
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Zetasizer Nano ZS90, Foshan Nanbeichao Electronic Commerce Co., Ltd., Foshan, China),
and a vibrating sample magnetometer was used to measure magnetic properties (VSM,
YPC7-VSM-130, Shiya Technology (Guangdong) Co., Ltd., Guangzhou, China). A UV-
Vis spectrophotometer measured the absorbance of the MB solution (UV-4800, UNICO
(Shanghai) Instrument Co., Ltd., Shanghai, China,) after centrifugation at high speed before
and after the treatment of the removed material. The MB solution was heated using a water
bath heating pot (DF-101S, Yuhua Instrument Co., Ltd., Gongyi, China).

2.4. Batch Experiments

Batch studies were conducted in a 500 mL flask holding 500 mL of MB solution me-
chanically stirred at 300 rpm at room temperature. The experiment reaction was activated
when the nZVI@H was added. At regular time intervals (2 min, 5 min, 10 min, 20 min
and 30 min), 10 mL of the solution was collected and centrifugated for later analysis. The
main reaction conditions involved in this experiment were as follows: removal of the MB
solution with a pH of 9 and a concentration of 40 mg·L−1 at 20 ◦C using nZVI@H material
with a mass ratio of hydrotalcite to nZVI solid (supporting ratio) of 1:1 at a dosage of
0.5 g L−1, and a series of effect parameters, including the hydrotalcite/iron mass ratio
(bare, 1:2, 1:1, and 2:1), the pH of MB (5, 7, 9, and 11), the initial concentration of MB
(40 mg·L−1, 100 mg·L−1, and 200 mg·L−1), the amount of adsorbent added (0.1 g·L−1,
0.3 g·L−1, 0.5 g·L−1, and 0.7 g·L−1), and the adsorbent temperature (20 ◦C, 40 ◦C, and
60 ◦C). The concentration of MB after centrifugation at the specified times was measured
using a UV-Vis spectrophotometer.

The treated MB solution was poured into a 25 mm cuvette to measure absorbance at
664 nm using a UV-Vis spectrophotometer (the maximum UV absorption spectrophotome-
try of MB was 664 nm) [25]. The removal rate of MB can be calculated from Equation (2):

R =
ρ0 − ρt

ρt
× 100% (2)

where R is the removal rate (%), ρ0 is the initial mass concentration (mg·L−1), and ρt is the
mass concentration at reaction time t (mg·L−1).

The absorbance was different for different concentrations of MB solution at 664 nm;
the lower the concentration of MB, the lower the absorbance and the lighter the color of the
solution, the better the removal effect. The results are shown in Figure 1, and the treatment
times are 2 min, 5 min, 10 min, 20 min and 30 min from left to right. All degradation
experiments were repeated thrice.
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2.5. Isothermal Equation

1. The Langmuir model represents a monolayer adsorption equilibrium on the surface
of a homogeneous medium and can be described in linearized form by Equation (3):

Ce
Qe

=
1

bQm
+

Ce
Qm

(3)

where Ce is the concentration of the pollutant at equilibrium (mg·L−1), Qe is the equilibrium
adsorption of the pollutant by the material (mg·g−1), Qm is the maximum adsorption of the
pollutant by the material (mg·g−1), and b is the Langmuir adsorption constant (L·mg−1).

2. The Freundlich model describes multilayer adsorption processes on material inter-
faces. The linearized form of the Freundlich model can be described by
Equation (4) [26]:

log Qe = log K f +
1
n

log C (4)

where Kf, the Freundlich constant ((mg·g−1)/(L·mg−1)1/n), represents the adsorption
capacity of the adsorbent, n is the constant (if n > 1, the reaction process could promote the
adsorption reaction), Qe is the amount of adsorption at equilibrium (mg·L−1), and Ce is the
concentration at equilibrium of the reaction (mg·L−1).

2.6. Adsorption Kinetics

The experimental data for the removal of MB at different concentrations using nZVI@H
were fitted using a quasi-first-order kinetics equation (see Equation (5)) and quasi-second-
order kinetics equation (see Equation (6)) to study the characteristics of the adsorption
process, where the quasi-first-order kinetics model represents the physical adsorption
process while the quasi-second-order kinetics model describes the chemical adsorption
processes. The Weber–Morris model analyzes intraparticle diffusion mechanisms (see
Equation (7)).

ln(qe − qt) = ln qe − k1t (5)

t
qt

=
1

k2q2
e
+

1
qe

t (6)

qt = kdt
1
2 + C (7)

where qe is the equilibrium adsorption (mg·g−1), qt is the adsorption at time t (mg·g−1), t
is the adsorption time (min), k1 is the quasi-first-order kinetics equation adsorption rate
constant (min−1), k2 is the quasi-second-order kinetics equation adsorption rate constant
(g·mg−1·min−1), kd is the intraparticle diffusion rate (mg·(g·min1/2)−1), and C is the inter-
cept distance (mg·g−1).

2.7. nZVI@H Reusability and Stability Study

Currently, any adsorbent has the advantages of low cost, environmental friendliness,
and strong adsorption capacity; but lacking excellent reusability, it is useless. Therefore,
studying the reproducible use of nZVI@H is a crucial issue. The reusable test was as follows:
at the end of each adsorption cycle, nZVI@H was collected using an external magnet,
washed with ethanol, and reused in the following process (MB solution parameters per
cycle: C = 100 mg·L−1, dosing amount = 0.5 g·L−1, pH = 9, and T = 20 ◦C).

3. Results and Discussion
3.1. Investigation of the Properties of nZVI@H

Figure 2a shows that the bare nZVI particle is mostly spherical with the size of 90 nm.
However, the nZVI particles are simple to heap and eventually form cluster-like aggregates
due to van der Waals forces and magnetic interactions. These findings are congruent with
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those of Arabi et al. [27]. Figure 2b shows the nZVI is clearly discrete on the layered surface
of the hydrotalcite after stabilization. Thus, this suggests that the hydrotalcite is essential to
the dispersal and stabilization of nZVI. Table 1 shows the BET results of hydrotalcite, nZVI
and nZVI@H, respectively. As seen from the table, the nZVI particles are better dispersed
due to the support of hydrotalcite, and its particle diameter decreases significantly, so its
specific surface area increases from 11.6 m2·g−1 to 28.7 m2·g−1. The specific surface area
of hydrotalcite decreases from 31.2 m2·g−1 to 28.7 m2·g−1 due to the attachment of nZVI
particles in the lamellar structure of hydrotalcite, which block the pores.
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Figure 2. SEM images of (a) nZVI and (b) nZVI@H.

Table 1. The BET surface area of hydrotalcite, nZVI and nZVI@H.

Sample Hydrotalcite nZVI nZVI@H

Surface area m2·g−1 31.2 11.6 28.7

Figure 3 shows the XRD results of hydrotalcite, nZVI and nZVI@H, respectively. It
is observed that the elements corresponding to the central characteristic peaks (2θ = 7.6◦,
22.8◦, 34.5◦, and 38.5◦) of the hydrotalcite spectra are C, Mg, and Al, respectively. The
spectra of both nZVI and nZVI@H appear as diffraction peaks on the crystalline surface of
α-Fe (110) in the body-centered cubic structure, proving that Fe0 is the main component of
both, with the characteristic diffraction peak of 2θ = 45◦~46◦. Due to the weak crystallinity
of Fe, a weaker Fe0 peak is observed in nZVI@H. In the XRD spectrum of nZVI@H, the
appearance of C, Mg, and Al characteristic peaks, in addition to Fe0 peaks, indicates that
the preparation of the composite was successful.

The Fourier spectra of the surface groups of nZVI and nZVI@H are shown in Figure 4,
where nZVI and nZVI@H have peaks ranging 3400~3500 cm−1 that are attributed to the
bonding of O–H to Fe0 or its oxide–hydroxide. The common spectrum at 1630~1640 cm−1

comes from the vibration at C = O, which is caused by the adsorption of CO2 in the air. The
weaker peaks in nZVI and nZVI@H are 1534.21 cm−1 and 1548.78 cm−1, which come from
the oxidation of Fe0 to form Fe3O4, Fe2O3 and FeOOH on the surface, or the introduction
of the anhydrous ethanol group during the preparation of the material. At the same time, a
high intensity band less than 700 cm−1 is not detected on the surface of nZVI@H compared
with that of nZVI, indicating that the antioxidant properties of nZVI@H are enhanced. The
enhanced oxidation resistance helps the adsorbent to remain active for a longer period of
time and improves the adsorption capacity [28].
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Figure 4. FTIR images of nZVI and nZVI@H.

Zeta-potential measurements are taken to better illustrate the role of the adsorbent
in the adsorption of MB. Figure 5 shows the zero-charge point (ZCP) of nZVI@H at pH
5.7. As a result, the surface of nZVI@H will be positively charged at a pH less than 5.7 and
negatively charged at a pH greater than 5.7. This reflects the fact that the negative charge
on the nZVI@H surface favors the adsorption of positively charged cationic dyes such as
MB at pH > 5.7. In contrast, at pH < 5.7, the surface of nZVI@H has a positive charge,
causing electrostatic repulsion between the two particles of nZVI@H and MB.

3.2. Removal of MB

Figure 6a shows that the removal of MB using nZVI@H is significantly more effective
than hydrotalcite and nZVI. The removal rates for nZVI@H reached 99.6%, while that of
hydrotalcite and nZVI were 27.8% and 71.2%, respectively. This is because hydrotalcite
is poorly dispersed in aqueous solutions and mostly floats on the surface of the solution.
Moreover, its specific surface area is relatively small, and the adsorption sites are lower than
those of nZVI, which makes it less effective, while nZVI is more prone to agglomeration
and oxidation than nZVI@H, resulting in reduced activity. After supporting, the layered
structure of hydrotalcite is able to trap the nZVI particles between its layers, effectively
slowing down the oxidation rate and agglomeration and significantly improving the mate-
rial dispersion, thus improving the efficiency of MB removal. The equilibrium adsorption
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of the three materials in Figure 6b also shows that the nZVI after hydrotalcite supporting
has a larger adsorption capacity and improves the removal rate of MB.
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Figure 6. (a) Comparative degradation of MB using different materials. The dosage of hydrotalcite,
nZVI and nZVI@H (hydrotalcite:Fe = 1:1) are 0.5g·L−1 with a pH of 9, an initial MB concentra-
tion of 40 mg·L−1, and a temperature of 20 ◦C; (b) equilibrium adsorption of different materials;
(c) comparative degradation of MB using nZVI@H with various ratios (hydrotalcite/iron mass). The
dosages of nZVI and nZVI@H are 0.5g·L−1 with pH of 9, an initial MB concentration of 40 mg·L−1,
and a temperature of 20 ◦C; (d) equilibrium adsorption of different supported ratios.
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As indicated in Figure 6c,d the removal rate and adsorption capacity of MB increases
as the mass ratio of aluminum hydroxide/iron increases, indicating that hydrotalcite could
prevent nZVI from aggregating together and helps nZVI@H keep a higher adsorptivity
at the same time. The removal of MB reaches 99.6% after 30 min at the mass ratio of
hydrotalcite to iron of 1:1. When the mass ratio of both is increased to 2:1, the removal
of MB is not significantly improved. Meanwhile, the adsorption capacity rises slightly
from 79.68 mg·g−1 to 79.76 mg·g−1. Thus, the optimal ratio for completing subsequent
experiments is determined to be 1:1.

4. Analysis of Factors
4.1. Effect of pH

As illustrated in Figure 7a, the removal rate and adsorption capacity of the nZVI@H
are greatly enhanced when the pH of the MB solution is adjusted from 5 to 11, with the
removal rate improving from 80.7% to 99.8% and the adsorption capacity increasing from
64.56 mg·g−1 to 79.84 mg·g−1. This is due to the fact that, under acidic conditions, a large
number of H+ competes for the adsorption sites with the cationic dyes [29]. Simultane-
ously, nZVI@H possesses a positive surface charge at low a pH, resulting in electrostatic
repulsion between the adsorbent and dye. Conversely, the number of negative charge sites
increases with the enhanced alkalinity of the solution, which promotes a strong electrostatic
interaction between MB molecules and nZVI@H [30,31].
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on degradation of MB, at the original pH (9) and temperature (20 ◦C) using 0.5g·L−1 nZVI@H;
(c) effect of dosage on degradation of MB, with a pH of 9, an initial MB concentration of 40 mg·L−1

and a temperature of 20 ◦C; (d) effect of temperature on degradation of MB, in the context of 0.5 g·L−1

nZVI@H with a pH of 9 and an initial MB concentration of 40 mg·L−1.
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4.2. Effect of Initial Concentration

Figure 7b shows the removal rates of nZVI@H for different concentrations of MB. The
maximum decolorization efficiencies after 30 min are 99.6%, 96.1% and 90.2% at initial
concentrations of 40 mg·L−1, 100 mg·L−1 and 200 mg·L−1, respectively. It is evident that the
removal rate of MB using nZVI decreases with an increase in the initial concentration of MB.
This is because the adsorption point on the nZVI@H surface saturates due to the increase
in the initial concentration of MB. The adsorption amounts of nZVI@H corresponding to
each concentration are 79.7 mg·g−1, 191.0 mg·g−1 and 368.8 mg·g−1. This behavior occurs
because the increase in the initial concentration of MB enhances its driving force and thus
exceeds the mass transfer resistance of MB molecules to reach the nZVI@H surface [32,33].
Therefore, as the starting concentration of MB increased, so did the adsorption capability
of nZVI@H.

4.3. Effect of Dosage

Figure 7c shows the removal rates of MB with the nZVI@H addition of 0.1 g·L−1,
0.3 g·L−1, 0.5 g·L−1 and 0.7 g·L−1. It follows that the higher the nZVI@H dosage, the higher
the removal rate of MB. After 30 min, 99.6% of MB is removed using a 0.5 g·L−1 dosage of
nZVI@H, while the removal rate is only 57.2% when the dosage of nZVI@H is decreased
to 0.1 g·L−1. This is because the adsorption process happens at the Fe0–H2O interface,
and the adsorption surface area and the number of active sites rise as the nZVI@H dose
increases. However, when the dose of nZVI@H exceeds 0.5 g·L−1, it has little effect on the
final removal rate. Therefore, 0.5 g·L−1 is chosen as the appropriate dose combining the
cost of nZVI@H and the removal rate of MB.

4.4. Effect of Temperature

Figure 7d shows that the final removal percentages of MB are 99.6%, 99.7%, and 99.7%,
respectively. In the 20 min of the reaction, the removal percentage of MB increased with
increasing temperature, and the adsorption amounts were 73.48 mg·g−1, 75.68 mg·g−1,
and 79.76 mg·g−1. This indicates that the adsorption capability of nZVI@H increases as
temperature rises (an increase from 20 ◦C to 60 ◦C). It also confirms the endothermic
character of the adsorption reaction. With temperature increases, the activation energy
barrier decreases the increased rate of diffusion of MB molecules into adsorbent, thus
increasing the adsorption rate and the adsorption capacity [34,35]. However, because
adsorption is close to equilibrium, the final removal rate shows no significant difference
between the different temperatures.

4.5. Isothermal Equation Analysis

The experimental data on the effect of temperature on the removal rate is used to fit
the isothermal equation. The fitting results are shown in Figure 8a,b. The fitting correlation
coefficient R2 of the Langmuir model is 0.99 at different temperatures, as shown in Figure 8
and Table 2, while the R2 of the Freundlich model is only 0.75~0.85 at different temperatures.
Therefore, the Langmuir model can better describe the removal process of MB using
nZVI@H. In addition, the Qmax calculated from the Langmuir model is 79.897 mg·g−1,
80.189 mg·g−1, and 81.024 mg·g−1, respectively. Furthermore, the basic properties of the
Langmuir model can also be described using the dimensionless constant separation factor
RL (RL = 1·(1 + bC0)−1, where C0 is the initial concentration of the pollutant (mg·L−1), and b
is the Langmuir adsorption constant (L·mg−1)) [36]. According to this calculation, the RL at
three temperatures is 0.009, 0.004, and 0.001, respectively. All three RL values ranged from
0 to 1, indicating that removing MB by nZVI is a reaction process that favors adsorption.
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Figure 8. Linear fitting of (a) Langmuir model and (b) Freundlich model.

Table 2. Fitting results of isothermal equation at different temperatures.

T (◦C)
Langmuir Freundlich

Qmax
(mg·g−1)

B
(L·mg−1) R2 Kf

((mg·g−1)/(L·mg−1)1/n)
n−1

(mg·L−1) R2

20 79.897 2.638 0.9914 73.394 0.0552 0.7543
40 80.189 6.313 0.9960 74.290 0.0416 0.7607
60 81.024 20.985 0.9988 75.872 0.0273 0.8145

4.6. Adsorption Kinetic Analysis

The kinetic fitting results are shown in Figure 9, and the kinetic parameters for dif-
ferent initial MB concentrations (Figure 9a,b) are summarized in Table 3. As shown in
Table 3, compared to that of the quasi-first-order kinetics model, the correlation coeffi-
cient (R2) of the quasi-second-order kinetics model ranged from 0.99 to 1, which indicates
that the adsorption process is mainly chemisorption, and the chemisorption process of
its surface active site and MB is the main limiting factor of the adsorption rate. The
equilibrium adsorption amounts fitted by the quasi-second-kinetics model are closer to
the experimental values. The rate constants k2 of the quasi-second-order kinetic equa-
tion are equal to 0.097 g·mg−1·min−1 for 40 mg·L−1, 0.035 g·mg−1·min−1 for 100 mg·L−1

and 0.019 g·mg−1·min−1 for 200 mg·L−1, respectively. The increase in MB concentration
slows down the adsorption rate, demonstrating that MB’s adsorption occurs mainly at the
interface with nZVI@H.
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Table 3. Fitting results of kinetic equation under different concentrations.

CMB
(mg·L−1)

Qe,exp
(mg·g−1)

Quasi First-Order Kinetics Equation Quasi Second-Order Kinetics Equation
Qe,cal

(mg·g−1)
k1

(min−1) R2 Qe,cal
(mg·g−1)

k2
(g·mg−1·min−1) R2

40 79.7 43.1 0.172 0.937 79.4 0.097 0.986
100 191.0 121.1 0.185 0.959 190.8 0.035 0.988
200 368.8 250.9 0.188 0.962 369.1 0.019 0.991

As can be seen from Figure 10, the adsorption process of MB by nZVI@H can be
divided into the following three steps: (1) diffusion of MB molecules through the boundary
layer across the adsorbent surface; (2) diffusion of MB molecules within the adsorbent
particles by liquid filling; and (3) MB molecules reaching adsorption equilibrium. The first
and second steps are generally considered extremely fast, as seen from the slopes in Table 4.
Therefore, the most significant effects on the adsorption rate are boundary layer diffusion
and intraparticle diffusion. The three linear stages indicate that a single diffusion mode
does not control the particle diffusion rate. According to the intercept values, the absorption
process of MB proceeds from diffusion across the boundary layer to intraparticle diffusion.
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Table 4. Diffusion model parameters.

Diffusion Model
Main Parameters

kd(mg·(g·min1/2)−1)
C

(mg·g−1) R2

Boundary layer diffusion 42.79 1.20 0.973
Intraparticle diffusion 3.48 59.01 0.917

Adsorption equilibrium 0.69 73.92 0.976

Table 5 shows the adsorbent adsorption amounts to MB from previous studies. After
comparison, nZVI@H has a strong adsorption capacity.
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Table 5. Comparison of adsorption capacity of MB on diversified adsorbents.

Adsorbent Qmax (mg·g−1) Reference

Fly ash 5.57 [37]
Biochar-CNT 6.20 [38]
MWCNT-SH 10.00 [39]

Lignin and chitosan 36.00 [40]
PFB-mZVI adsorbent 42.80 [37]

Straw BC 62.50 [41]
nZVI@H 81.02 This study

4.7. Reusability and Stability of nZVI@H

Figure 11a shows the results of magnetic detection of bare nZVI and nZVI@H using
VSM. From (a), it can be seen that the saturation magnetization intensity of nZVI@H formed
through the combination of magnetic nZVI with non-magnetic hydrotalcite decreased
by nearly half (from 72.50 emu·g−1 to 39.36 emu·g−1). This confirms the SEM results
that hydrotalcite contributes to the reduction of the magnetic properties of nZVI and the
reduction of nZVI agglomeration. In addition, the coercivity magnetization of nZVI@H
is above 20 G, which proves that it is a soft ferromagnetic material. Figure 11b shows the
results of the repeated use experiment (6 cycles) of nZVI with nZVI@H. At the initial use, the
removal rates of MB by nZVI and nZVI@H are 71.2% and 99.6%, respectively. Apparently,
after three cycles, the removal rate of nZVI decreases to 10.1%, while nZVI@H can maintain
a 93.9% rate. After six cycles, nZVI@H still has more than half of the removal rate, and
this result suggests that nZVI@H has excellent stability and reusability. Furthermore,
the material remains magnetic following cycles (nZVI@H-MB in Figure 11a), creating
conditions for subsequent nZVI@H recycling and reuse.
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4.8. MB Removal Mechanisms

Removal of MB from the solution is closely related to redox reactions, chemical
adsorption and precipitation processes [28]. The removal process of MB involves the
oxidation of Fe0 (Equation (8)) followed by the chemical reduction of MB [42]. MB obtains
electrons emitted from Fe0 and turns itself into colorless leuco-methylene blue (LMB)
(Figure 12). This is consistent with the kinetic analysis. As shown in Figure 12, the bond
energies of 1©~ 5© are 615, 536, 389, 305, and 272 kJ·mol−1, respectively. The C=N and C=S
with high-bond energies are broken into C–N and C–S with low-bond energies by the release
of electrons from the Fe0. At the same time, the N in the MB molecule forms a bond with
the H+ in the water (N–H) to produce the LMB. It is the main reason for the decolorization
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of the dye. Then a series of small molecular substances are generated and separated using
adsorption coprecipitation through the following reactions (Equations (10)–(13)):

Fe0 → Fe2+ + 2e− (8)

nZVI + MB and LMB→ nZVI-(MB and LMB) (9)

nZVI@H + MB and LMB→ nZVI@H(MB and LMB) (10)

Fe2+ + MB and LMB→ Fe(II)(MB and LMB) (11)

Fe3+ + MB and LMB→ Fe(III) (MB and LMB) (12)

nFex(OH)y
(3x−y) + MB and LMB→ (MB and LMB)[Fex(OH)y

(3x−y)]n (13)
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5. Conclusions

In this study, hydrotalcite is treated as a potential supporter, and nZVI@H is suc-
cessfully prepared using the liquid-phase reduction process method. Using nZVI@H, the
removal mechanism of MB has been insightfully investigated, in conjunction with a series
of characterized methods, such as SEM, BET, XRD, FTIR, zeta-potential analyses and VSM.
The results showed that hydrotalcite contributes to the dispersion characteristic of nZVI
particles, which is in favor of the removal of MB. Compared to the bare nZVI, nZVI@H
shows the higher removal of MB. After 30 min of reaction, the removal rate of MB can reach
99.6% at an initial MB concentration of 40 mg·L−1, while the removal rate of bare nZVI is
only 71.2%. According to this mechanistic study, the adsorption process of nZVI@H on MB
matches well with the Langmuir and quasi-second-order kinetics models. The maximum
adsorption capacity of nZVI@H is calculated to be 81 mg·g−1 based on the Langmuir model,
which is highly superior to most reported adsorbent materials. Simultaneously, MB can be
converted to colorless LMB through the Fe0 redox reaction process, and finally precipitated
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with nZVI@H. Therefore, the removal process of MB by nZVI@H can be involved in three
processes: a redox reaction, chemical adsorption and complexation precipitation. In ad-
dition, reusability experiments confirm the good reusability of nZVI@H, and it remains
magnetic after six cycles, which facilitates subsequent recycling.
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