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Abstract: Irrigation has made a significant contribution to supporting the population’s expanding
food demands, as well as promoting economic growth in irrigated regions. The current investigation
was carried out in order to estimate the quality of the groundwater for agricultural viability in the
Algerian Desert using various water quality indices and geographic information systems (GIS). In
addition, support vector machine regression (SVMR) was applied to forecast eight irrigation water
quality indices (IWQIs), such as the irrigation water quality index (IWQI), sodium adsorption ratio
(SAR), sodium percentage (Na%), soluble sodium percentage (SSP), potential salinity (PS), Kelly
index (KI), permeability index (PI), potential salinity (PS), permeability index (PI), and residual
sodium carbonate (RSC). Several physicochemical variables, such as temperature (T◦), hydrogen
ion concentration (pH), total dissolved solids (TDS), electrical conductivity (EC), K+, Na2+, Mg2+,
Ca2+, Cl−, SO4

2−, HCO3
−, CO3

2−, and NO3
−, were measured from 45 deep groundwater wells.

The hydrochemical facies of the groundwater resources were Ca–Mg–Cl/SO4 and Na–Cl−, which
revealed evaporation, reverse ion exchange, and rock–water interaction processes. The IWQI, Na%,
SAR, SSP, KI, PS, PI, and RSC showed mean values of 50.78, 43.07, 4.85, 41.78, 0.74, 29.60, 45.65, and
−20.44, respectively. For instance, the IWQI for the obtained results indicated that the groundwater
samples were categorized into high restriction to moderate restriction for irrigation purposes, which
can only be used for plants that are highly salt tolerant. The SVMR model produced robust estimates
for eight IWQIs in calibration (Cal.), with R2 values varying between 0.90 and 0.97. Furthermore,
in validation (Val.), R2 values between 0.88 and 0.95 were achieved using the SVMR model, which
produced reliable estimates for eight IWQIs. These findings support the feasibility of using IWQIs
and SVMR models for the evaluation and management of the groundwater of complex terminal
aquifers for irrigation. Finally, the combination of IWQIs, SVMR, and GIS was effective and an
applicable technique for interpreting and forecasting the irrigation water quality used in both arid
and semi-arid regions.
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1. Introduction

Groundwater resources are essential natural resources for a country’s socioeconomic
growth. However, agriculture consumes a very high percentage of the global groundwa-
ter [1]. These natural resources are dealing with a variety of problems that endanger their
long-term viability, including the results of environmental issues, human impacts, and
natural forces [2–6]. In general, these issues degrade the physical and chemical composition
of groundwater, rendering it unfit for agriculture. Irrigation water availability is among the
decisive variables for the increase of agricultural output in arid and semi-arid countries,
both in terms of raising crop yields and expanding irrigated lands.

Semi-arid countries including Algeria are affected by water shortages associated with
the degradation of the chemical composition and water quality due to the fact of the
overexploitation of water resources. For instance, Algeria’s Saharan groundwater is the
second most important source for irrigation, industry, and drinking [7]. The population
increase, agricultural production, and heavy industries in this area have resulted in a
significant reduction in the aquifer system’s water level. The aquifer in the northeast
Algerian Sahara is one of the largest aquifers in the world, which consists of a Terminal
Complex aquifer (CT) and a continental intercalary aquifer (CI) [8].

The groundwater production in the study area (Souf Valley) increased from 600 to
2120 Mm3/y from 1970 to 2020. The groundwater extracted from the CT aquifer is utilized
for both drinking and irrigation, with continuous increases in the number of operating wells
(203 water wells in 2019) [9–11]. The regular observation and hydrochemical assessment
of the groundwater’s quality are necessary for the sustainable development and strategic
planning of groundwater resources under this semi-confined aquifer due to the fact of the
gradual decline in the groundwater resources’ availability and quality [12–20].

Hydrogeochemistry studies of groundwater have commonly been utilized to evaluate
and categorize the water quality. Therefore, some irrigation water’s hydrochemical ele-
ments can have a detrimental influence on crop productivity and soil degradation [21]. The
various parameters affecting water quality have already been evaluated by comparing to
established values among many hydrochemical investigations to properly assess the quality
of groundwater. This type of assessment cannot provide a complete description of the water
quality for decision makers who need quick information, particularly when various water
quality degraders exist at the same time. Application programming interfaces, such as the
USSL diagram, Doneen, and Wilcox diagram, assist in determining the appropriateness of
groundwater for irrigation use [22–24].

The IWQIs are derived from the chemical parameters that are effective methods to
detect the water’s suitability for irrigation by combining various water quality metrics into
a single value that assists decision makers and managers [25–29]. Irrigation water quality
(IWQ) for agricultural applications is routinely analyzed using a variety of indices and pa-
rameters based on Food and Agriculture Organization (FAO) criteria [30]. The eight indices,
including the IWQI, Na%, SAR, SSP, PS, KI, PI, and RSC, have been utilized to categorize
the appropriateness of water resources for irrigation in which the solutes concentration in
the soil may lead to change in the soil permeability and crop productivity [24,31–35]. Sev-
eral investigations have been undertaken to assess water quality for agricultural utilization
through the integration of IWQIs and geographic information systems (GIS) technology,
which enables the separation of quality zones for irrigation via creating thematic maps of
groundwater quality [36–38].

Traditional irrigation water quality assessment methods are frequently costly and time
consuming for agricultural producers, especially in developing countries. Machine learning
(ML) implementations, such as SVMR, can address this issue by predicting and evaluating
aquifer irrigation water quality indices based on chemical and physical parameters [39,40].
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Moreover, new and cost-effective technologies for analyzing and predicting groundwater
quality are required for long-term groundwater management strategies. As a consequence,
prediction-based techniques in groundwater administration and management could be
useful in resolving this issue. The prediction of water quality indices is critical for safe
environmental management. Several deterministic models have previously been used in
this domain in recent times [40–42].

However, because real-world natural ecosystems are commonly very difficult and
complicated for these cutting-edge models, their statistical effectiveness is frequently poor.
As a result, several techniques and methodologies for evaluating groundwater quality
have been applied with positive outcomes. For quantifying and tracking groundwater
quality, these methodologies involve index-based methods, statistical measures, and GIS
techniques. Furthermore, it is important to determine the capabilities of ML models such as
SVMR to forecast the different IWQIs in deep aquifers in the Algerian Desert using physical
and chemical factors as input variables.

Therefore, this research study was conducted to (i) investigate the chemistry, types of
groundwater, and the geochemical governing processes using physicochemical variables
and imitative approaches; (ii) evaluate the groundwater appropriateness for irrigation
purpose utilizing multiple irrigation water quality indices; and (iii) detect the precision of
applying ML, especially SVMR models, to estimate the groundwater IWQI, SAR, Na%, PS,
SSP, PI, KI, and RSC.

2. Materials and Methods
2.1. Site Descriptions and Hydrogeological Settings

The Souf valley research area is located in the Debila and El-Oued Districts of the
Algerian Sahara’s northeast. The Souf valley is located between longitude 6◦40′00”/7◦5′00”
E and latitude 33◦12′00”/33◦35′00” N and has a population of approximately 900,000 [10].
The research location has a hot, dry summer environment, with evapotranspiration of
1224 mm/y. The sampling sites were largely concentrated in El-Oued areas and Debila
areas, with some samples taken outside of these areas to examine the significant variations
in the groundwater flow path (Figure 1).
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The hydrogeological system of the northeastern Sahara of Algeria consists of three ma-
jor aquifers, arranged from top to bottom as follow: shallow Quaternary aquifer, CT aquifer,
and CI aquifer [43–45]. The CT aquifer consists of three formations (Figure 2): limestone
and dolomite (Senonian–Eocene), gravel (lower Pontian), and sandstone (Mio–Pliocene).
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The average thickness of the CT aquifer in the Souf Valley is approximately 300 m, with
an average depth of 220 m. The groundwater’s regional flow is from the southwest to the
northeast. The Mih-Ouensa recorded the maximum piezometric level, which decreased
in the direction of the El-Oued and Trifaoui [9]. The water level that was measured in
15 observation wells illustrates that most locations had significant drawdown in the water
level due to the fact of over pumping of groundwater for irrigation. The regions of Trifaoui
and El-Oued (Figure 3) were affected by the depletion in the piezometric head.
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2.2. Sampling and Analysis

Forty-five groundwater samples from wells with depths that varied from 139 to 526 m
were collected during the year 2020 from the semi-confined Mio–Pliocene and Lower
Pontian aquifers. The water samples were collected in acidified polyethylene bottles after
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filtration for laboratory analysis. The T◦, pH, TDS, EC, and ground elevation were all
measured in the field. The pH and EC were measured using a portable multi-meter (HI
9829 type, YSI Professional Plus, Portugal). The major ions, Ca2+, Na+, Cl−, Mg2+, K+,
HCO3

−, SO4
2−, CO3

2−, and NO3
−, were analyzed in the laboratory. NO3

−, SO4
2−, and

Cl− were measured using a HACH (DR2000 type, Loveland, CO, USA) spectrophotometer,
while Ca2+, K+, and Na+ were measured using a flame spectrophotometer (ELEX 6361,
Eppendorf AG, Hamburg, Germany). Mg2+ was analyzed using the complexometric
method, while CO3

2− and HCO3
− were measured using the titrimetric method. The

location map and spatial distribution map for the various parameters were created using
quantum geographic information system (QGIS) and Surfer software’s (Version 3.28.2).
Graphical representations that included the Piper plot, Durov diagram, Gibbs plot, USSL
diagram, Wilcox diagram, and binary plots were created using DIAGRAMMES software
(version 6.77) and Excel (version 2010). According to Equation (1), the confirmation of
the analytical error of the analyzed ions’ concentration, in meq/L−1, was cross-checked
utilizing the charge balance error (CBE) within the limit of 5% [48]. The analytical processes
were validated in regard to quality control by conducting adequate device calibration and
evaluating the accuracy of the samples analyzed.

CBE =

[
∑ eq cations −∑ eq anions
∑ eq cations + ∑ eq anions

]
× 100 (1)

2.3. Indexing Approach
2.3.1. Irrigation Water Quality Indices (IWQIs)

The physicochemical data from the groundwater samples were used to generate the
eight WQIs (Table 1).

Table 1. The formula and references of the IWQIs.

Index Formula Reference

IWQI ∑n
i=1 QiWi [45]

Na% [(Na2+ + K+)/(Ca2+ + Mg2+ + Na2+ + K+)] × 100 [46]
SAR ( Na+√

(Ca2++ Mg2+)/2
) × 100 [47]

SSP [Na2+/(Ca2+ + Mg2+ + Na2+)] × 100 [46]
KI KI = Na+/(Ca2+ + Mg2+) [48]
PS Cl− + (SO4

2−/2) [49]
PI [(Na2+ +

√
HCO3

−)/(Ca2+ + Mg2+ + Na2+)] × 100 [49]
RSC (HCO3

2− + CO3
−)-(Ca2+ + Mg2+) [50]

Note: The IWQI was calculated in mg/L and the rest of the indices in meq/L.

2.3.2. Irrigation Water Quality Index (IWQI)

Using a non-dimensional scale, the IWQI measures from 0 to 100, which was computed
in relation to variables such as EC, SAR, Na+, Cl−, and HCO3

2− [31,49], as per the equation:

IWQI = ∑n
i=1QiWi (2)

where Wi is the calculated weight of every variable, and Qi is the quality measurement
value based on the permissible limits (Table 2).

Qi = Qmax −


[(

Xij − Xinf
)
×Qimap

]
Xamp

 (3)

where Xij is each parameter’s observed value, Xinf is the value that correspond to the lower
limit of the class, Qimap is the class amplitude, and Xamp is the class amplitude to which the
parameter belongs.
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Table 2. Limiting values for the variables used in the computation of quality measurement (Qi).

Qi EC (µs/cm) SAR Na+ (emp) Cl− (emp) HCO32− (epm)

85–100 200 ≤ EC < 750 2 ≤ EC < 3 2 ≤ Na < 3 1 ≤ Cl < 4 1 ≤ HCO3 < 1.5
60–85 750 ≤ EC < 1500 3 ≤ EC < 6 3 ≤ Na < 6 4 ≤ Cl < 7 1.5 ≤ HCO3 < 4.5
35–60 1500 ≤ EC < 3000 6 ≤ EC < 12 6 ≤ Na < 9 7 ≤ Cl < 10 4.5 ≤ HCO3 < 8.5
0–35 EC < 200 or EC ≥ 3000 SAR > 2 or SAR ≥ 12 Na < 2 or SAR ≥ 9 Cl < 1 or Cl ≥ 10 HCO3 < 1 or HCO3 ≥ 8.5

Finally, the value of Wi was computed via Equation (4):

Wi =
∑k

j=1 FjAij

∑k
j=1 ∑n

i=1 FjAij
(4)

where F is the component 1’s auto value; A is the degree to which factor j can explain
parameter i, which is the number of physicochemical variables chosen by the model,
ranging from 1 to n; and j is the number of factors to choose in IWQI, ranging from 1 to k.

2.3.3. Support Vector Machine Regression (SVMR)

In the current study, the SVMR models were applied to forecast the eight IWQIs. The
eight IWQIs models were built by utilizing unscramble X software (version 10.2). The
SVMR models used all of the selected parameters (Table 1) as the input data information to
forecast the eight IWQIs as output data (Figure 4). The SVMR aims to compute a function
from the supplied dataset (x, y) [20] in which x denotes the input vector (where x represents
the water quality parameter), and y is the outcome (y represents the predicted IWQIs).

The following is a description of the SVMR function:

f (x) = ωT ϕ(x) + b (5)

in which f (x) is a representation of the output of the model, and ϕ(x) is a representation
of a nonlinear mapping function. The weight vector (ω) and the bias (b) term should be
optimized according the regularized function as follows:

min R(ω, ξ, ξ∗, ε) = 1
2‖ v ‖2 + C

[
vε + 1

l

l
∑

i=1

(
ξi + ξ∗i

)]
subjectto :yi −vT ϕ(xi)− b ≤ ε + ξi

vT ϕ(xi) + b− yi ≤ ε + ξi
ξi, ε ≥ 0

(6)

where C is the correction parameter needed to counterbalance the overfitting and the
model normalization component ‖ v ‖2; ξi and ξ∗i are the positive slack variables. Utilizing
Lagrange multipliers, the aforementioned SVR model is resolved.

max R
(

ai, a∗i
)
=

l
∑

i=1

(
a∗i − ai

)
− 1

2

l
∑

i=1

l
∑

j=1

(
ai − a∗i

)(
aj − a∗j

)
K
(
xi , xj

)
subjective to :

l
∑

i=1

(
ai − a∗i

)
= 0

0 ≤ ai, a∗i ≤
C
l

l
∑

i=1

(
ai + a∗i

)
≤ C.ν

(7)

In this case, the kernel function is K
(
xi , xj

)
, and the positives Lagrange multipliers

are ai and a∗i , accordingly.
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After achieving the desired solution for the objective function, the SVM parame-
ter models were ultimately established; thus, in the following regression, the regression
formula was used to represent an input vector x.

f (x) =
l

∑
i=1

(a∗i − ai) K
(
xi , xj

)
+ b (8)

Three metrics were utilized to evaluate how accurately the SVMR models predicted
the six IWQIs: R2 coefficient, RMSE, and equation slope.

Data Analysis and Processing

For the physicochemical characteristics and IWQIs, statistical analyses were per-
formed using SPSS software, version 22 (SPSS Inc., Chicago, IL, USA). A Piper trilinear
diagram [50] was created using Windows software (GWW, Lake Forest, IL, USA), version
1.30, to determine the hydrochemical evolution and water types according to cation and
anion compositions. For anions and cations, a Gibbs diagram is usually used to depict
the association with both the water chemistry and the aquifer metrics features using an
Excel sheet [51,52]. For the graphical representations, different plots, including binary plots,
Durov, Wilcox, and USSL diagrams, Excel and DIAGRAMMES software were used. Inverse
distance weighting (IDW, San Diego, CA, USA) was utilized in ArcGIS 10.2 to determine
the spatial distribution of the IWQIs.
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3. Results and Discussion
3.1. Physicochemical Parameters of Groundwater

The physicochemical characteristics of the groundwater resources in the CT aquifer
contributed significantly to the assessment of their quality and fitness for irrigation use,
and they served as a useful method for determining the specific environmental issues,
identifying patterns, and disseminating information concerning the groundwater resources,
water quality, and geochemical processes. The following variables were used to categorize
the groundwater fitness for agricultural purposes in the chosen aquifer. The chemical
parameters, such as T◦, EC, pH, TDS, Na+, K+, Mg2+, Ca2+, Cl−, HCO3

−, SO4
2−, CO3

2−,
and NO3

−, altered the soil productivity and soil quality. Table 3 shows the statistical
methods of the main variables in the groundwater samples.

Table 3. Statistical analysis of the physical and chemical variables of the groundwater in the
CT aquifer.

Parameter T ◦C pH EC TDS K+ Na+ Mg2+ Ca2+ Cl− SO42− HCO3− CO32− NO3−

Deep Groundwater Aquifers, Algeria (n = 45)

Min. 13.9 7.0 2640 1702 12.00 210.00 24.30 168.33 560.15 532.20 105.80 0.00 0.83
Max. 38.8 7.8 4360 2790 42.00 540.00 157.90 340.68 1127.40 840.27 195.20 1.03 31.53
Mean 26.6 7.4 3646 2342 33.30 364.38 109.70 258.98 822.25 697.53 135.50 0.12 15.82
SD 5.6 0.2 524 337 7.67 56.51 28.52 43.80 158.73 82.25 20.79 0.21 10.66

Note: All parameters are expressed in mg/L, except EC (µs/cm), temperature (T ◦C), and pH.

The minimum value of TDS was 1702 mg/L, which was greater than the irrigation
water’s permissible limits [30]. Freeze and Cherry [53] state that the groundwater of the
CT aquifer is classified as brackish water. The water samples’ pH values ranged from 7 to
7. 89 (neutral to slightly alkaline), and it did not exceed the standard limits for irrigation
water [30]. The calcium concentration in all of the samples collected met irrigation water
standards [30] and fell within a range of 168.33 and 340.68 mg/L. The water analysis in
the Debila region had the highest Ca2+ concentration value. Approximately 4.5% of the
groundwater samples had a low concentration value of Mg2+ and were within irrigation
water’s permissible limits, while the rest were above the standard limits, with an average
concentration value of 109.7 mg/L [30]. The K+ concentration of in all sites were above
the permissible irrigation water standard, with a maximum value of 24 mg/L and a
minimum value of 12 mg/L [30]. The groundwater of the CT aquifer had an acceptable
concentration of Na+ for irrigated agriculture, with values varying from 210 to 540 mg/L.
The collected samples from the western part were more Na+ enriched. Cl and SO4 ions were
the main dominant anions of the collected water samples, with average values of 822.25
and 697.53 mg/L, respectively. The concentrations of sulfate, chloride, and bicarbonate ions
in all groundwater samples were acceptable for irrigation water [30]. In general, chemical
pollution is linked with an excess of NO3 ions in groundwater resources. In addition to the
nitrogen cycle, other nitrate sources in groundwater come from agricultural and industrial
drainage, livestock facilities, and chemical fertilizers [54]. The nitrates results revealed that
71.1% of the collected samples were greater than the irrigation water standard limit [30].
The primary concentration value of NO3 ions that originate in groundwater naturally
should not be over 10 mg/L. The mean concentration value of the NO3 ions in the Souf
Valley was 15.2 mg/L, which refers to the significant effect of anthropogenic activities in
the chemical pollution of groundwater in the CT aquifer [55].

3.2. Groundwater Facies and Controlling Geochemical Processes

A Piper plot was developed to classify groundwater hydrochemical facies [50]. The
cationic triangle showed that 15.5% of all of the collected samples (south of El-Oued
and west of Debila) belonged to the Na+ + K+ class, while the remaining were in the
nondominant class. In the anionic triangle, Cl− was the dominant class in 93.3% of the
samples, while three water samples in the Robbah, Mih-Ouensan, and west Debila areas
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were in a nondominant class. In the Piper diagram’s diamond shape, the groundwater
samples of the CT aquifer are divided into three main hydrochemical facies (Figure 5a).
Approximately 31 samples fell within the Ca-Mg-SO4 water type with permanent hardness
owing to reverse ion exchange. The high salinity of the water samples was due to the
elevated concentration of chloride and calcium ions, especially in the region of Debila.
Six samples from El-Oued and Debila had Na+-Cl− facies because evaporation was the
primary factor controlling the groundwater chemistry. The remaining were in the mixed
Ca2+-Mg2+-Cl− class zone and distributed across Hassi Khalifa, El-Oued, and Debila. A
Chadha diagram was applied to verify the main dominant geochemical process controlling
the groundwater chemistry in the current study [56]. Approximately 88% of the samples
were in the reverse ion exchange zone. Due to the evaporation process, 12% of the samples
fell in the field of seawater and was distributed in Debila, Hassi-Khalifa, and Trifaoui
(Figure 5b).

Water 2023, 15, 182 9 of 24 
 

 

tural and industrial drainage, livestock facilities, and chemical fertilizers [54]. The ni-

trates results revealed that 71.1% of the collected samples were greater than the irrigation 

water standard limit [30]. The primary concentration value of NO3 ions that originate in 

groundwater naturally should not be over 10 mg/L. The mean concentration value of the 

NO3 ions in the Souf Valley was 15.2 mg/L, which refers to the significant effect of an-

thropogenic activities in the chemical pollution of groundwater in the CT aquifer [55]. 

3.2. Groundwater Facies and Controlling Geochemical Processes 

A Piper plot was developed to classify groundwater hydrochemical facies [50]. The 

cationic triangle showed that 15.5% of all of the collected samples (south of El-Oued and 

west of Debila) belonged to the Na+ + K+ class, while the remaining were in the non-

dominant class. In the anionic triangle, Cl− was the dominant class in 93.3% of the sam-

ples, while three water samples in the Robbah, Mih-Ouensan, and west Debila areas were 

in a nondominant class. In the Piper diagram’s diamond shape, the groundwater samples 

of the CT aquifer are divided into three main hydrochemical facies (Figure 5a). Ap-

proximately 31 samples fell within the Ca-Mg-SO4 water type with permanent hardness 

owing to reverse ion exchange. The high salinity of the water samples was due to the 

elevated concentration of chloride and calcium ions, especially in the region of Debila. Six 

samples from El-Oued and Debila had Na+-Cl− facies because evaporation was the pri-

mary factor controlling the groundwater chemistry. The remaining were in the mixed 

Ca2+-Mg2+-Cl− class zone and distributed across Hassi Khalifa, El-Oued, and Debila. A 

Chadha diagram was applied to verify the main dominant geochemical process control-

ling the groundwater chemistry in the current study [56]. Approximately 88% of the 

samples were in the reverse ion exchange zone. Due to the evaporation process, 12% of 

the samples fell in the field of seawater and was distributed in Debila, Hassi-Khalifa, and 

Trifaoui (Figure 5b). 

 

Figure 5. Graphical representation of the hydrochemical facies and the mechanism controlling the 

water chemistry: (a) Piper diagram; (b) Chadha diagram. 

By applying the Gibbs plot to understand the effects of the various mechanisms that 

control the water chemistry, the diagram was classified into three fundamental zones 

Figure 5. Graphical representation of the hydrochemical facies and the mechanism controlling the
water chemistry: (a) Piper diagram; (b) Chadha diagram.

By applying the Gibbs plot to understand the effects of the various mechanisms that
control the water chemistry, the diagram was classified into three fundamental zones
(Figure 6a). The first zone is predominately precipitation that has low TDS and a high ratio
of Na+/(Na+ + Ca2+) and Cl−/(Cl− + HCO3

−). The second domain is distinguished by
medium TDS and the abovementioned cation/anion ratio, which represents rock weather-
ing. The evaporation/crystallization domain in the upper half of the Gibbs diagram with
extremely high TDS is the last mechanism [51].

The diagram showed that the groundwater of the CT aquifer was controlled by the
evaporation/crystallization process. The water started to precipitate the oversaturated min-
erals with increasing TDS, and reverse ion exchange can play a significant factor controlling
the groundwater chemistry. A Durov diagram, which connects pH, TDS, and major ions,
has been utilized as a visualization technique in hydrogeology by various researchers [57].
The Durov diagram can explain three major processes: mixing/dissolution, ion exchange,
and reverse ion exchange (Figure 6b). With a TDS greater than 1500 mg/L, all of the samples
fell within the reverse ion exchange zone, proving the previous statistical explanation.
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The statistical analysis was utilized to illustrate the main processes governing the
chemistry of the groundwater in Souf Valley using the ratios and relationships between
the major ions (Figure 7). The effect of the evaporation process in the CT aquifer can be
explained using the graphical relationship between the Na+/Cl− ratio and the EC [58]. The
Na+/Cl− ratio declined with the increase in the value of the EC as a result of the Na ion
depletion caused by reverse ion exchange (Figure 7a). A Chadha diagram and various
ionic plots were used to verify the reverse ion exchange effect on the water chemistry
of the CT aquifer. The linearity of the relationship of Cl− and Na+ demonstrated the
imbalance between the two ions, as only a few groundwater samples fell on a 1:1 line graph
because of a typical source (halite dissolution) (Figure 7b). The majority of the collected
samples were scattered beneath the 1:1 line graph due to the fact of chloride enrichment,
which is evidence of different sources of chloride ion or the removal of sodium ion from
the groundwater.

Anthropogenic activities, including the drainage of excess irrigation water from crop-
land and waste disposal [59,60] or the atmospheric deposition of Cl− [61], can cause
elevated chloride concentrations. If the Na+/Cl− ratio is higher than one, weathering
of silicate minerals could be a significant factor [62], but from the current results of the
water samples, the ratio was less than one for all of the samples due to the lack of silicate
weathering. The Ca2+ + Mg2+ versus Na+ + K+ relationship revealed that the samples of the
water were categorized into three groups, and the majority of the collected samples overlie
the 1:1 line graph (Figure 7c), three samples crossed the line (1:1 line), and five samples
were scattered under the line. The abundance of Mg2+ and Ca2+ ions over K+ and Na+ ions
in the majority of the water samples indicates that sodium ions were replaced by Ca2+ and
Mg2+ via the direct ion exchange process [63].

The linear relationship between the HCO3
− + SO4

2− and Ca2+ + Mg2+ ions (Figure 7d)
revealed that most of the collected samples overlay the 1:1 line, reflecting a reverse ion
exchange process. Due to the gypsum/calcite/dolomite dissolution, one sample fell on
the 1:1 line graph. Reverse ion exchange is a main reason for the greater abundance of
Ca2+ + Mg2+ over HCO3

− + SO4
2− [64]. The Ca2+ + Mg2+/HCO3

− ratio could clarify
the Ca2+ and Mg2+ source in the groundwater of the CT aquifer (Figure 7e). If the value
of Ca2+ + Mg2+/HCO3

− ratio was near 0.5, the magnesium and calcium ions would be
derived mainly from the silicate and carbonate mineral weathering [65]. If the ratio was
<0.5, the bicarbonate enrichment and/or ion exchange could be the significant factor for the
magnesium and calcium ions’ depletion. All of the water samples had a ratio >0.5. Because
of the slightly alkaline condition of the groundwater, the depletion of HCO3

− as a cause
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of this high ratio value was neglected, leaving only the reverse ion exchange as the main
process accounting for all of the samples overlaying the 1:1 line (ratio = 0.5) [66].
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The value of the Ca2+ + Mg2+/HCO3
− ratio could be useful to determine the ground-

water recharge and its meteoric nature. If this ratio is less <1, the water is meteoric and
there is recharge for the aquifer [67]. All of the collected samples of the CT aquifer had a
remarkably large ratio, varying from 3.2 to 6.5, indicating the lack of meteoric nature as
well as indicating the recharge of the groundwater. The linear graph between Na+/Cl−

and Cl− (Figure 7f) shows an inverse association, suggesting that calcium and magnesium
replaced sodium caused by halite dissolution in the CT aquifer matrix (clay minerals) [64].

3.3. Water Quality Indices for Agricultural Purposes

The water quality, agricultural activities, and soil types play a role in deciding on the
best irrigation techniques [68,69]. In terms of irrigation, multiple IWQIs were used to assess
the suitability of groundwater for agriculture, including several indices. These strategies
emphasize the potential soil salinization risk in addition to the negative effects of irrigation
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on the characteristics of plants and the structure of soils. The data from the IWQIs and the
appropriateness of the water for agriculture were statistically analyzed (Tables 4 and 5).

Table 4. Statistical analysis of the IWQIs values.

Parameters IWQI Na% SAR SSP KI PS PI RSC

Min. 44.76 31.71 3.01 30.53 0.44 21.33 34.02 −26.69
Max. 56.63 55.35 6.79 54.08 1.18 36.49 58.17 −12.80
Mean 50.78 43.07 4.85 41.78 0.74 29.60 45.65 −20.44
SD 2.28 5.62 0.82 5.56 0.17 3.73 5.68 3.58

Notes: SD: standard deviation; Min.: minimum; mean: average; Max.: maximum.

Table 5. Classification of the different IWQIs for irrigation according to the documented references.

Index Range Water Category Number of Samples (%)

IWQI

0–40 Severe restriction 0 (0%)
40–55 High restriction 43 (93.6%)
55–70 Moderate restriction 2 (4.4%)
70–85 Low restriction 0 (0.0%)
85–100 No restriction 0 (0.0%)

Na%
40–60 Permissible 29 (64.4%)
20–40 Good 16 (35.6%)
<20 Excellent 0 (0.0%)

SAR

>26 Unsuitable 0 (0.0%)
18–26 Doubtful or fairly poor 0 (0.0%)
10–18 Good 0 (0.0%)
<10 Excellent 45 (100%)

SSP
>60 Unsafe 0 (0.0%)
<60 Safe 45 (100%)

KI
>1 Unsuitable 41 (91.2%)
<1 Good 4 (8.8%)

PS
>5 Injurious to unsatisfactory 45 (100%)
3–5 Good to injurious 0 (0.0%)
<3 Excellent to good 0 (0.0%)

PI
<25% Unsuitable—Class III 0 (0.0%)
25–75% Good—Class II 45 (100%)
>75% Good—Class I 0 (0.0%)

RSC
>2.5 Unsuitable 0 (0.0%)
1.25–2.5 Marginal 0 (0.0%)
<1.25 Safe 45 (100.0%)

3.4. Irrigation Water Quality Index (IWQI)

The groundwater assessment for irrigation use through IWQI requires using individual
chemical indices [70,71] or several indices combined [31,72]. Although the evaluation of
irrigation-related groundwater quality depending on individual parameters is useful, the
combined indices give more effective information for decision makers. Five hazard groups
were utilized to estimate the water safety for irrigation purposes [73]. The resulting IWQI
values varied from 44.76 to 56.63, with a mean value of 50.78 (Table 4), and the IWQI
available classification revealed that a large percentage of the groundwater samples (93.6%)
fell in a high restriction class, while 4.4% of the collected samples were in the moderate
restriction class (Table 5). The overall index map illustrates the appropriateness of the water
for irrigation depending on the main physical and chemical parameters (Figure 8a). This
map has the ability to estimate groundwater validation for irrigation. The deterioration of
the water quality based on the IWQI values was reported in the northeast part, near Debila
and El-Oued, as a result of anthropogenic activities and geogenic sources.
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3.5. Sodium Percentage (Na%)

Due to the high sodium ion concentrations in water for irrigation reacting with the
soil particles and lessening its permeability, Na% is applied to evaluate the fitness of
groundwater resources for irrigation [32]. Once a high Na+ concentration value exists in
water, clay minerals absorb it and release Mg2+ and Ca2+ ions. The exchange of Na+ in
water for Ca2+ and Mg2+ in soil decreases the permeability, causing a reduction in the soil
infiltration. As a consequence, water and air flow are restricted under wet conditions, and
soils generally harden during dry conditions [74].

The calculated Na% for the CT aquifer varied from 31.71 to 55.35%, with an average
value of 43.07% (Table 4). According to the sodium percent [23], the water in the study
region had a Na% value ranging from 31.71% to 55.35%, indicating a good to permissible
irrigation quality (Figure 8b).

3.6. Sodium Adsorption Ratio (SAR)

The SAR index is utilized in irrigation as an indicator to refer to the capability of
the soil to remove Mg2+ and Ca2+ ions and absorb Na+ ions from the groundwater at
ion exchangeable sites, eventually causing soil particle dispersion and a decline in the
infiltration capacity [75,76]. Despite irrigation water’s high salinity, it can benefit the soil
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composition by enhancing its infiltration rate; it causes more drought stress to the plants. If
the salinity of the irrigation water is very high, crops and plants must undergo an energy-
intensive process to obtain water from the soil. The samples of water were plotted on a
USSL diagram [33] to investigate how the water quality affects the crops’ traits and yield.
This diagram represents the relationship of the EC and SAR and categorizes them into
various classes (Figure 9). Forty-four water samples were classified as C4-S2 (very high
salinity–medium SAR), and one sample was classified as C4-S1 (very high salinity–low
SAR). The maximum SAR value in all samples was less than 10 (Figure 8c).
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The findings showed that the high salinity of the irrigation water harmed the plants,
while there was no impact on the soil infiltration capacity because of the low to medium
SAR value (Figure 9), and there was no need for the use of calcium fertilizers. The optimum
use-related management for the use of groundwater for irrigation is to select crops and
plants that are resilient to the irrigation water’s high salinity.

3.7. Soluble Sodium Percentage (SSP)

The SSP was applied to calculate the salinity by comparing the sodium concentrations
to the calcium and magnesium concentrations. A high Na+ concentration in the water
compared to Ca2+ and Mg2+ causes toxicity materials, which contribute to damaged leaves
and dead plant tissues [77]. According to the SSP results, 100% of the groundwater samples
had an excellent and safe quality for irrigation, with values ranging from 30.53 to 54.08
(Figure 8d).

3.8. Kelly Index (KI)

The KI was calculated to determine whether the groundwater was suitable for irri-
gation usage [78]. From 0.44 to 1.18, with a mean of 0.74, the value of KI was recorded.
Values of KI greater than one (KI > 1) indicate that the water contains an excess of sodium,
whereas a value below one (KI 1) denotes that the water is appropriate for irrigation [34,79].
Based on the KI results, 91.2% of the total samples were classified as unsuitable, while the
remaining samples (8.8%) were classified as good and appropriate for irrigation (Table 5
and Figure 8e).
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3.9. Potential Salinity (PS)

The PS uses the concentration of Cl− and half of the SO4
2− concentration to assess if

groundwater is suitable for use in irrigation. The PS values are generally classified into two
categories: unsuitable (>3) and suitable (<3) for irrigated agriculture [24]. The obtained
results showed that the PS values ranged from 21.33 to 36.49, with an average value of
29.60. According to the PS, the study area’s groundwater samples were all unsuitable for
irrigation (Figure 8f).

3.10. Permeability Index (PI)

The PI is an important irrigation water quality parameter, because continuous irriga-
tion water utilization affects the soil permeability, which is governed by soil components,
such as sodium, magnesium, calcium, and bicarbonate ions. According to Table 5, the
PI value in all water samples was found to be in the good quality range (34.02–58.17), as
shown in Figure 8g.

3.11. Residual Sodium Carbonate (RSC)

Another aspect influencing irrigation water quality is excessive carbonates and bi-
carbonates in relation to Ca+2 and Mg+2 ions, which can reduce irrigation water quality
by precipitating alkali metals, primarily Mg+2 and Ca+2. The SAR value and sodium ion
concentrations may both rise as a result of the precipitation of Ca+2 and Mg+2 as carbonate
minerals. [35]. High RSC has the potential to deteriorate the soil’s physical qualities by
causing the dissociation of organic matter, which eventually results in a black stain on the
soil’s surface after drying [80,81].

The RSC was computed to determine the possible precipitation of Ca2+ and Mg2+ on
the particles of the soil’s surface. The values of the RSC index in groundwater is reported to
be high in areas that are dry to semi-dry, causing soil sodification and soil salinization [82].
According to the RSC values, the groundwater was divided into three categories (Figure 8h).
Irrigation water with an RSC greater than 2.5 is not appropriate for irrigation, whereas
water with an RSC less than 1.25 is good, and water with an RSC that ranges from 1.25
and 2.5 is doubtful for use in irrigation [35]. In the current study, all groundwater samples
had an RSC value < 1.25, demonstrating that the groundwater was suitable and safe for
irrigation uses (Figure 8h).

3.12. Performance of the Support Vector Machine Regression Based on Physicochemical Parameters
for Predicting the Irrigation Water Quality Indices

Several researchers have investigated methods for reducing the subjectivity of estab-
lished water quality index technology, which has been proven to be a more accurate and
precise essential tool for reliable weighing systems by assigning weights to critical ions
based on entropy [83]. Water quality research, on the other hand, necessarily requires
a significant amount of data collection, laboratory analysis, data management, and test-
ing [84]. As a consequence of the computation’s subjectivity, the WQIs’ interpretation of
the results contained inconsistencies. It is possible to identify a subset of features that have
high predictive and discriminative potential using methods for feature selection based on
models [85]. By minimizing overfitting and eliminating pointless features, this strategy
can enhance the model performance. The original feature representation should be kept,
because it provides a number of benefits on top of improving the interpretability [86]. In
the disciplines of modeling and prediction, there is an increasing need for feature selection
algorithms [87].

Mathematical techniques can be used to estimate the IWQIs of water sites with accu-
racy. These techniques, however, are difficult to apply to evaluate IWQIs, because they
require a number of mathematical equations to convert a sizable amount of data on water
characterization into a single value that characterizes the water quality levels and reflects
the overall water quality level. This study evaluated the SVMR model to predict the IWQIs
based on the numerous response factors of the chemical parameters. The SVMR model
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was used in this work to anticipate the IWQIs based on various parameters, as shown in
Table 6, because it is fast and does not require several more steps to construct the IWQIs.

Table 6. Outcomes of the calibration and validation models of the SVMR of the association between
the observed and predicted IWQI, Na%, SAR, SSP, KI, PS, PI, and RSC of the groundwater quality.

Variable Calibration Validation
R2 RMSE R2 RMSE

IWQI 0.93 *** 0.85 0.90 *** 0.92
Na% 0.97 *** 1.25 0.92 *** 1.37
SAR 0.94 *** 0.22 0.92 *** 0.27
SSP 0.96 *** 1.21 0.95 *** 1.42
KI 0.97 *** 0.04 0.96 *** 0.05
PS 0.95 *** 1.13 0.94 *** 1.20
PI 0.90 *** 1.79 0.88 *** 2.09
RSC 0.94 *** 1.02 0.92 *** 1.15

Note: *** Statistically significant at p ≤ 0.001.

The SVMR model was utilized to more accurately assess eight IWQIs relying on the
R2 and RMSE values (Table 6) and the slope (Figures 10 and 11). With R2 values ranging
from 0.90 to 0.97, the SVMR model achieved robust estimates for eight IWQIs in the Cal.
datasets. Moreover, the SVMR model produced accurate estimations for eight IWQIs in
the Val. datasets, with the R2 ranging from 0.88 to 0.95. The validation model’s RMSE
values for eight IWQIs, including IWQI, Na%, SAR, SSP, KI, PS, PI, and RSC, as shown in
Table 6, were 0.92, 1.37, 0.27, 1.42, 0.05, 1.20, 2.09, and 2.09, respectively. Figures 10 and 11
show the SVMR based association of the eight IWQIs. Furthermore, these figures showed a
reasonable slope of the linear relationship between the predicted and measured validation
model values for every index, with IWQI having the highest slope (1.0128) and PS having
the lowest slope (0.8318). There was no overfitting or underfitting in the datasets used to
measure, calibrate, and validate the SVMR models of the eight IWQIs. As an outcome, the
models applied in this study had sufficient accuracy and performed well when forecasting
the IWQIs. These findings are consistent with those in [88], which found that the principal
component regression produced precise and powerful models that predicted the IWQIs,
with R2 values ranging from 0.48 to 0.99. Based on four parameters, including temperature,
turbidity, pH, and TDS, Ahmed et al. [89] discovered that supervised machine learning
with multiple linear regression could be used to estimate the water quality index of surface
waters with an R2 value of 0.66. Multiple linear regression models with R2 values that
reached 0.64 were discovered by Chen and Liu [90] to be useful for estimating water quality
indicators, such as dissolved oxygen, total phosphorus, and chlorophyll disc depth.
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4. Conclusions

This research study in the Souf Valley of the northeast Algerian Sahara investigated the
appropriateness of the CT aquifer for agricultural purposes. Physicochemical properties,
IWQIs, SVMR, and geographic information systems (GIS) techniques were carried out
to identify groundwater hydrogeochemical facies and their controlling mechanisms. The
regional flow direction of the groundwater is from the southwest to the northeast. There
was a rapid decrease in the piezometric level, especially in the El-Oued, Trifaoue, and
Baydah regions due to the fact of over pumping for irrigation purposes.

This study provides insights into the appropriateness of the CT aquifer in Algeria
for irrigation purposes. To detect the groundwater hydrogeochemical types and their
controlling mechanisms, the physicochemical properties, IWQIs, SVMR, and GIS techniques
were used. The physicochemical parameters obtained revealed that the hydrochemical
facies were Na-Cl, and Ca-Mg-Cl/SO4, which indicates that the significant hydrochemical
processes that govern the chemistry of the groundwater in the complex terminal aquifer
were evaporation/crystallization, reverse ion exchange, and rock–water interaction.

The IWQI, SAR, KI, and PS of the groundwater in the Souf Valley revealed that the
water was categorized for irrigation purposes into high restriction (93.6%), permissible
(64.4%), unsuitable (91.2%), and injurious to unsatisfactory (100%), respectively, while
Na%, SSP, PI, PI, and RSC revealed that all of the groundwater was excellent, safe, and
good-class II for irrigation. Combining the physicochemical parameters, IWQIs, GIS, and
ML approaches is, therefore, efficient and provides a comprehensive image of groundwater
fitness for irrigation purposes and its controlling factors. Furthermore, the technique
proposed in this paper could be studied further to raise its reliability for groundwater
under different conditions, and it enables decision makers to integrate different technologies
for water quality management and planning. As a result, in this study, we attempted to
overcome the limitations of the traditional methods by forecasting the groundwater quality
for irrigation purposes using ML models under extensive salinization.

Author Contributions: M.H.E., analyzing and visualizing the data, interpreting and writing the first
draft of the article; M.G., S.E., M.E. and A.E.-D.O., calculation of indices and writing the draft; A.A.T.,
quantitative and qualitative data collection, writing the introduction, and the previous work; H.H.
and F.S.M., mapping using GIS and the distribution maps of the different parameters and indices;
S.E., machine learning and the modeling and prediction of the water quality indices; S.P. and A.K.,
editing and correcting the scientific and language errors. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded through the Large Groups Project under grant number
L.G.P. 2/138/43.

Data Availability Statement: All data are provided in the tables and figures.

Acknowledgments: The authors extend their appreciation to the King Khalid University for funding
this work through the Large Groups Project under grant number L.G.P. 2/138/43.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater Use for Irrigation—A Global

Inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [CrossRef]
2. Baghvand, A.; Nasrabadi, T.; Bidhendi, G.N.; Vosoogh, A.; Karbassi, A.; Mehrdadi, N. Groundwater Quality Degradation of an

Aquifer in Iran Central Desert. Desalination 2010, 260, 264–275. [CrossRef]
3. Burri, N.M.; Weatherl, R.; Moeck, C.; Schirmer, M. A Review of Threats to Groundwater Quality in the Anthropocene. Sci. Total

Environ. 2019, 684, 136–154. [CrossRef]
4. El Asri, H.; Larabi, A.; Faouzi, M. Climate Change Projections in the Ghis-Nekkor Region of Morocco and Potential Impact on

Groundwater Recharge. Appl Clim. 2019, 138, 713–727. [CrossRef]
5. Houéménou, H.; Tweed, S.; Dobigny, G.; Mama, D.; Alassane, A.; Silmer, R.; Babic, M.; Ruy, S.; Chaigneau, A.; Gauthier, P.; et al.

Degradation of Groundwater Quality in Expanding Cities in West Africa. A Case Study of the Unregulated Shallow Aquifer in
Cotonou. J. Hydrol. 2020, 582, 124438. [CrossRef]

http://doi.org/10.5194/hess-14-1863-2010
http://doi.org/10.1016/j.desal.2010.02.038
http://doi.org/10.1016/j.scitotenv.2019.05.236
http://doi.org/10.1007/s00704-019-02834-8
http://doi.org/10.1016/j.jhydrol.2019.124438


Water 2023, 15, 182 20 of 23

6. Mountadar, S.; Younsi, A.; Hayani, A.; Siniti, M.; Tahiri, S. Groundwater Salinization Process in the Coastal Aquifer Sidi
Abed-Ouled Ghanem (Province of El Jadida, Morocco). J. Afr. Earth Sci. 2018, 147, 169–177. [CrossRef]

7. Lezzaik, K.; Milewski, A.; Mullen, J. The Groundwater Risk Index: Development and Application in the Middle East and North
Africa Region. Sci. Total Environ. 2018, 628–629, 1149–1164. [CrossRef]

8. Besbes, M.; Abdous, B.; Abidi, B.; Ayed, A.; Bachta, M.; Babasy, M.; Ben Baccar, B.; El Batti, D.; Ben Salah, Y.; Biet Charreton,
M.; et al. Système Aquifère Du Sahara Septentrional Gestion Commune d’un Bassin Transfrontière. La Houille Blanche 2003, 89,
128–133. [CrossRef]

9. Bouselsal, B.; Zeddouri, A.; Belksier, M.; Fenazi, B. Contribution de La Méthode de Vulnérabilité Intrinsèque GOD à l’Etude de La
Pollution de La Nappe Libre d’Ouargla (SE Algérie). Int. J. Environ. Glob. Clim. Change 2015, 3, 92–99.

10. Valley, O.-S.; Khechana, S.; Derradji, F.; Mega, N. Caractéristiques Hydrochimiques Des Eaux De La Nappe Phréatique Du Vallée
d’Oued-Souf (SE Algérien). Eur. J. Sci. Res. 2011, 62, 207–215.

11. Bouselsal, B.; Kherici, N. Effets de La Remontée Des Eaux de La Nappe Phréatique Sur l’homme et l’environnement: Cas de La
Région d’El-Oued (SE Algérie). Afr. Sci. Rev. Int. Des Sci. Et Technol. 2014, 10, 161–170.

12. ALLIA, Z. Le Système Aquifère Mio-Pliocène Du Bassin de Chott Melrhir-Zab Chergui: Caractérisation, Géométrie et Hy-
drochimie. Ph.D. Thesis, Université Mohamed Khider–Biskra, Biskra, Algeria, 2018.

13. Saibi, H.; Mesbah, M.; Moulla, A.S.; Guendouz, A.H.; Ehara, S. Principal Component, Chemical, Bacteriological, and Isotopic
Analyses of Oued-Souf Groundwaters (Revised). Env. Earth Sci 2016, 75, 272. [CrossRef]

14. Zaiz, I.; Zine, B.; Boutoutaou, D.; Khechana, S. Contribution to the Study of the Quality Physicochemical of the Waters of the
Water of the Complex Terminal in the Valley of Oued Souf (South-East Algerian). J. Fundam. Appl. Sci. 2017, 9, 1559. [CrossRef]

15. Alqarawy, A.; El Osta, M.; Masoud, M.; Elsayed, S.; Gad, M. Use of Hyperspectral Reflectance and Water Quality Indices to
AssessGroundwater Quality for Drinking in Arid Regions, Saudi Arabia. Water 2022, 14, 2311. [CrossRef]

16. Moulla, A.S.; Guendouz, A.; Cherchali, M.E.-H.; Chaid, Z.; Ouarezki, S. Updated Geochemical and Isotopic Data from the
Continental Intercalaire Aquifer in the Great Occidental Erg Sub-Basin (South-Western Algeria). Quat. Int. 2012, 257, 64–73.
[CrossRef]

17. Guendouz, A.; Moulla, A.S.; Edmunds, W.M.; Zouari, K.; Shand, P.; Mamou, A. Hydrogeochemical and Isotopic Evolution of
Water in the Complexe Terminal Aquifer in the Algerian Sahara. Hydrogeol. J. 2003, 11, 483–495. [CrossRef]

18. Paix, P. Les Nappes Artésiennes de l’Oued Rhir (Artesian Aquifers of the Wadi Rhir Valley). Ph.D. Thesis, Algiers University,
Algiers, Algeria, 1956.

19. Cornet, A. Introduction à l’hydrogéologie Saharienne. Géog. Phys. Et Géol. Dyn 1964, 6, 5–72.
20. Noori, R.; Maghrebi, M.; Mirchi, A.; Tang, Q.; Bhattarai, R.; Sadegh, M.; Noury, M.; Torabi Haghighi, A.; Kløve, B.; Madani, K.

Anthropogenic Depletion of Iran’s Aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024221118. [CrossRef] [PubMed]
21. Singh, S.; Ghosh, N.C.; Gurjar, S.; Krishan, G.; Kumar, S.; Berwal, P. Index-Based Assessment of Suitability of Water Quality for

Irrigation Purpose under Indian Conditions. Env. Monit Assess 2018, 190, 29. [CrossRef]
22. Regional Salinity Laboratory (US). Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture: Washington,

DC, USA, 1954. Available online: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaj1954.03615995001800030032x
(accessed on 15 November 2022).

23. Wilcox, L.V. The Quality of Water for Irrigation Use; US Department of Agriculture: Washington, DC, USA, 1948. Available online:
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=54035 (accessed on 15
November 2022).

24. Doneen, L.D. Water Quality for Agriculture; Department of Irrigation, University of California: Davis, CA, USA, 1964; 48p,
Available online: https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1742
078 (accessed on 15 November 2022).

25. Gad, M.; Abou El-Safa, M.M.; Farouk, M.; Hussein, H.; Alnemari, A.M.; Elsayed, S.; Khalifa, M.M.; Moghanm, F.S.; Eid, E.M.;
Saleh, A.H. Integration of Water Quality Indices and Multivariate Modeling for Assessing Surface Water Quality in Qaroun Lake,
Egypt. Water 2021, 13, 2258. [CrossRef]

26. El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water
Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [CrossRef]

27. Gad, M.; Saleh, A.H.; Hussein, H.; Farouk, M.; Elsayed, S. Appraisal of Surface Water Quality of Nile River Using Water Quality
Indices, Spectral Signature and Multivariate Modeling. Water 2022, 14, 1131. [CrossRef]

28. Ocampo-Duque, W.; Osorio, C.; Piamba, C.; Schuhmacher, M.; Domingo, J.L. Water Quality Analysis in Rivers with Non-
Parametric Probability Distributions and Fuzzy Inference Systems: Application to the Cauca River, Colombia. Environ. Int. 2013,
52, 17–28. [CrossRef] [PubMed]

29. Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of River Water Quality Indices—A Review. Env. Monit Assess
2016, 188, 58. [CrossRef] [PubMed]

30. Ayers, R.; Westcott, D. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev. 1; Food and Agricultural
Organisation of the United Nations: California, USA, 1994. Available online: https://www.fao.org/3/t0234e/t0234e00.htm
(accessed on 15 November 2022).

31. Meireles, A.C.M.; de Andrade, E.M.; Chaves, L.C.G.; Frischkorn, H.; Crisostomo, L.A. A New Proposal of the Classification of
Irrigation Water. Rev. Ciênc. Agron. 2010, 41, 349–357. [CrossRef]

http://doi.org/10.1016/j.jafrearsci.2018.06.025
http://doi.org/10.1016/j.scitotenv.2018.02.066
http://doi.org/10.1051/lhb/2003102
http://doi.org/10.1007/s12665-015-4878-5
http://doi.org/10.4314/jfas.v9i3.19
http://doi.org/10.3390/w14152311
http://doi.org/10.1016/j.quaint.2011.08.038
http://doi.org/10.1007/s10040-003-0263-7
http://doi.org/10.1073/pnas.2024221118
http://www.ncbi.nlm.nih.gov/pubmed/34161268
http://doi.org/10.1007/s10661-017-6407-3
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaj1954.03615995001800030032x
https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=54035
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1742078
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1742078
http://doi.org/10.3390/w13162258
http://doi.org/10.3390/w14030483
http://doi.org/10.3390/w14071131
http://doi.org/10.1016/j.envint.2012.11.007
http://www.ncbi.nlm.nih.gov/pubmed/23266912
http://doi.org/10.1007/s10661-015-5050-0
http://www.ncbi.nlm.nih.gov/pubmed/26707404
https://www.fao.org/3/t0234e/t0234e00.htm
http://doi.org/10.1590/S1806-66902010000300005


Water 2023, 15, 182 21 of 23

32. Todd, D.K.; Mays, L.W. Groundwater Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0-471-05937-4.
33. Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; LWW: Washington, DC, USA, 1954; Volume 78, ISBN 0038-

075X. Available online: https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf (accessed on 15
November 2022).

34. Kelley, W.P. Permissible Composition and Concentration of Irrigation Water. In Proceedings of the American society of civil
engineers; 1940; Volume 66, pp. 607–613. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/
ReferencesPapers.aspx?ReferenceID=2517629 (accessed on 15 November 2022).

35. Eaton, F.M. Significance of Carbonates in Irrigation Waters. Soil Sci. 1950, 69, 123–134. [CrossRef]
36. Ahmed, M.T.; Hasan, M.Y.; Monir, M.U.; Samad, M.A.; Rahman, M.M.; Islam Rifat, M.S.; Islam, M.N.; Khan, A.A.S.; Biswas, P.K.;

Jamil, A.H.M.N. Evaluation of Hydrochemical Properties and Groundwater Suitability for Irrigation Uses in Southwestern Zones
of Jashore, Bangladesh. Groundw. Sustain. Dev. 2020, 11, 100441. [CrossRef]

37. Bhunia, G.S.; Keshavarzi, A.; Shit, P.K.; Omran, E.-S.E.; Bagherzadeh, A. Evaluation of Groundwater Quality and Its Suitability
for Drinking and Irrigation Using GIS and Geostatistics Techniques in Semiarid Region of Neyshabur, Iran. Appl. Water Sci. 2018,
8, 168. [CrossRef]

38. Thapa, R.; Gupta, S.; Reddy, D.V.; Kaur, H. An Evaluation of Irrigation Water Suitability in the Dwarka River Basin through the
Use of GIS-Based Modelling. Env. Earth Sci. 2017, 76, 471. [CrossRef]

39. Masoud, M.; El Osta, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Evaluation of groundwater quality for agricultural under different
conditions using water quality indices, partial least squares regression models, and GIS approaches. Appl. Water Sci. 2022, 12, 244.
[CrossRef]

40. Noori, R.; Ghiasi, B.; Salehi, S.; Esmaeili Bidhendi, M.; Raeisi, A.; Partani, S.; Meysami, R.; Mahdian, M.; Hosseinzadeh, M.;
Abolfathi, S. An Efficient Data Driven-Based Model for Prediction of the Total Sediment Load in Rivers. Hydrology 2022, 9, 36.
[CrossRef]

41. Sarkar, A.; Pandey, P. River Water Quality Modelling Using Artificial Neural Network Technique. Aquat. Procedia 2015, 4,
1070–1077. [CrossRef]

42. Noori, R.; Karbassi, A.R.; Mehdizadeh, H.; Vesali-Naseh, M.; Sabahi, M.S. A Framework Development for Predicting the
Longitudinal Dispersion Coefficient in Natural Streams Using an Artificial Neural Network. Environ. Prog. Sustain. Energy 2011,
30, 439–449. [CrossRef]

43. Boulifa, K. Synthèse Hydrogéologique Sur La Region d’El-Oued Sahara Nord Oriental–Est Algérien. Magister en Géologie
Option Hydrogéologie, Algérie 2012. Available online: http://www.secheresse.info/spip.php?article80362 (accessed on 15
November 2022).

44. Bouselsal, B. Etude Hydrogéologique et Hydrochimique de l’aquifère Libre d’El Oued Souf (SE Algérie). Th. Dr. Univ. D’annaba.
2016. Available online: https://biblio.univ-annaba.dz/wp-content/uploads/2019/07/These-Bouselsal-Boualem.pdf (accessed
on 15 November 2022).

45. Busson, G. Le Mesozoique Sarahien, Deuxieme Partie: Essai de Syntheses Des Donnees de Sondages Algero-Tuniiens, Centre de
Recherche Sur Le Zones Arides. Ser. Geol. 1970. Available online: https://www.abebooks.com/M%C3%A9sozo%C3%AFque-
Saharien-essai-synth%C3%A8se-donn%C3%A9es-sondages/1418091373/bd (accessed on 15 November 2022).

46. Chebbah, M.; Allia, Z. Geochemistry and Hydrogeochemical Process of Groundwater in the Souf Valley of Low Septentrional
Sahara, Algeria. Afr. J. Environ. Sci. Technol. 2015, 9, 261–273. [CrossRef]

47. Gonçalvès, J.; Petersen, J.; Deschamps, P.; Hamelin, B.; Baba-Sy, O. Quantifying the Modern Recharge of the “Fossil” Sahara
Aquifers. Geophys. Res. Lett. 2013, 40, 2673–2678. [CrossRef]

48. Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology; Wiley: New York, NY, USA, 1998; Volume 506.
49. Abbasnia, A.; Yousefi, N.; Mahvi, A.H.; Nabizadeh, R.; Radfard, M.; Yousefi, M.; Alimohammadi, M. Evaluation of Groundwater

Quality Using Water Quality Index and Its Suitability for Assessing Water for Drinking and Irrigation Purposes: Case Study of
Sistan and Baluchistan Province (Iran). Hum. Ecol. Risk Assess. Int. J. 2019, 25, 988–1005. [CrossRef]

50. Piper, A.M. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. Trans. AGU 1944, 25, 914. [CrossRef]
51. Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [CrossRef]
52. Vasanthavigar, M.; Srinivasamoorthy, K.; Prasanna, M.V. Evaluation of Groundwater Suitability for Domestic, Irrigational, and

Industrial Purposes: A Case Study from Thirumanimuttar River Basin, Tamilnadu, India. Env. Monit Assess 2012, 184, 405–420.
[CrossRef]

53. Freeze, R.A.; Cherry, J. Groundwater; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1979; Available online: https://www.scirp.
org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1894372 (accessed on 15 November 2022).

54. Antonakos, A.; Lambrakis, N. Hydrodynamic Characteristics and Nitrate Propagation in Sparta Aquifer. Water Res. 2000, 34,
3977–3986. [CrossRef]

55. Adimalla, N. Spatial Distribution, Exposure, and Potential Health Risk Assessment from Nitrate in Drinking Water from
Semi-Arid Region of South India. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 310–334. [CrossRef]

56. Chadha, D.K. A Proposed New Diagram for Geochemical Classification of Natural Waters and Interpretation of Chemical Data.
Hydrogeol. J. 1999, 7, 431–439. [CrossRef]

https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=2517629
https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=2517629
http://doi.org/10.1097/00010694-195002000-00004
http://doi.org/10.1016/j.gsd.2020.100441
http://doi.org/10.1007/s13201-018-0795-6
http://doi.org/10.1007/s12665-017-6804-5
http://doi.org/10.1007/s13201-022-01770-9
http://doi.org/10.3390/hydrology9020036
http://doi.org/10.1016/j.aqpro.2015.02.135
http://doi.org/10.1002/ep.10478
http://www.secheresse.info/spip.php?article80362
https://biblio.univ-annaba.dz/wp-content/uploads/2019/07/These-Bouselsal-Boualem.pdf
https://www.abebooks.com/M%C3%A9sozo%C3%AFque-Saharien-essai-synth%C3%A8se-donn%C3%A9es-sondages/1418091373/bd
https://www.abebooks.com/M%C3%A9sozo%C3%AFque-Saharien-essai-synth%C3%A8se-donn%C3%A9es-sondages/1418091373/bd
http://doi.org/10.5897/AJEST2014.1710
http://doi.org/10.1002/grl.50478
http://doi.org/10.1080/10807039.2018.1458596
http://doi.org/10.1029/TR025i006p00914
http://doi.org/10.1126/science.170.3962.1088
http://doi.org/10.1007/s10661-011-1977-y
https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1894372
https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1894372
http://doi.org/10.1016/S0043-1354(00)00160-3
http://doi.org/10.1080/10807039.2018.1508329
http://doi.org/10.1007/s100400050216


Water 2023, 15, 182 22 of 23

57. Durov, S.A. Natural Waters and Graphic Representation of Their Composition. In Proceedings of the Dokl Akad Nauk SSSR; 1948;
Volume 59, pp. 87–90. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.
aspx?ReferenceID=1742074 (accessed on 15 November 2022).

58. Fisher, R.S.; Mullican, W.F., III. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater Beneath the
Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. HYJO 1997, 5, 4–16. [CrossRef]

59. Srinivasamoorthy, K.; Chidambaram, S.; Prasanna, M.V.; Vasanthavihar, M.; Peter, J.; Anandhan, P. Identification of Major Sources
Controlling Groundwater Chemistry from a Hard Rock Terrain—A Case Study from Mettur Taluk, Salem District, Tamil Nadu,
India. J. Earth Syst. Sci. 2008, 117, 49–58. [CrossRef]

60. Jacks, G.; Sefe, F.; Carling, M.; Hammar, M.; Letsamao, P. Tentative Nitrogen Budget for Pit Latrines-Eastern Botswana. Environ.
Geol. 1999, 38, 199–203. [CrossRef]

61. Biswas, A.; Nath, B.; Bhattacharya, P.; Halder, D.; Kundu, A.K.; Mandal, U.; Mukherjee, A.; Chatterjee, D.; Mörth, C.-M.; Jacks,
G. Hydrogeochemical Contrast between Brown and Grey Sand Aquifers in Shallow Depth of Bengal Basin: Consequences for
Sustainable Drinking Water Supply. Sci. Total Environ. 2012, 431, 402–412. [CrossRef] [PubMed]

62. Meybeck, M. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads. Am. J. Sci. 1987, 287, 401–428.
[CrossRef]

63. Jankowski, J.; Acworth, R.I. Impact of Debris-Flow Deposits on Hydrogeochemical Processes and the Developement of Dryland
Salinity in the Yass River Catchment, New South Wales, Australia. HYJO 1997, 5, 71–88. [CrossRef]

64. Rajmohan, N.; Elango, L. Identification and Evolution of Hydrogeochemical Processes in the Groundwater Environment in an
Area of the Palar and Cheyyar River Basins, Southern India. Environ. Geol. 2003, 1, 47–61. [CrossRef]

65. Gad, M.; El Osta, M. Geochemical Controlling Mechanisms and Quality of the Groundwater Resources in El Fayoum Depression,
Egypt. Arab. J. Geosci. 2020, 13, 861. [CrossRef]

66. Ma, Q.; Ge, W.; Tian, F. Geochemical Characteristics and Controlling Factors of Chemical Composition of Groundwater in aPart
of the Nanchang Section of Ganfu Plain. Sustainability 2022, 14, 7976. [CrossRef]

67. Nazzal, Y.; Ahmed, I.; Al-Arifi, N.S.N.; Ghrefat, H.; Zaidi, F.K.; El-Waheidi, M.M.; Batayneh, A.; Zumlot, T. A Pragmatic Approach
to Study the Groundwater Quality Suitability for Domestic and Agricultural Usage, Saq Aquifer, Northwest of Saudi Arabia. Env.
Monit Assess 2014, 186, 4655–4667. [CrossRef]

68. Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Elsayed, S. Combining Hydrogeochemical Characterization
and a Hyperspectral Reflectance Tool for Assessing Quality and Suitability of Two Groundwater Resources for Irrigation in Egypt.
Water 2020, 12, 2169. [CrossRef]

69. Kaka, E.A.; Akiti, T.T.; Nartey, V.K.; Bam, E.K.P.; Adomako, D. Hydrochemistry and Evaluation of Groundwater Suitability
for Irrigation and Drinking Purposes in the Southeastern Volta River Basin: Manyakrobo Area, Ghana. Elixir Agric. 2011, 39,
4793–4807.

70. Kawo, N.S.; Karuppannan, S. Groundwater Quality Assessment Using Water Quality Index and GIS Technique in Modjo River
Basin, Central Ethiopia. J. Afr. Earth Sci. 2018, 147, 300–311. [CrossRef]

71. Li, P.; Wu, J.; Qian, H. Assessment of Groundwater Quality for Irrigation Purposes and Identification of Hydrogeochemical
Evolution Mechanisms in Pengyang County, China. Env. Earth Sci. 2013, 69, 2211–2225. [CrossRef]

72. RamyaPriya, R.; Elango, L. Evaluation of Geogenic and Anthropogenic Impacts on Spatio-Temporal Variation in Quality of
Surface Water and Groundwater along Cauvery River, India. Env. Earth Sci. 2018, 77, 2. [CrossRef]

73. Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper; Food and Agriculture Organization
of the United Nations: Rome, Italy, 1985; ISBN 978-92-5-102263-4.

74. Saleh, A.; Al-Ruwaih, F.; Shehata, M. Hydrogeochemical Processes Operating within the Main Aquifers of Kuwait. J. Arid Environ.
1999, 42, 195–209. [CrossRef]

75. Wang, X.; Ozdemir, O.; Hampton, M.A.; Nguyen, A.V.; Do, D.D. The Effect of Zeolite Treatment by Acids on Sodium Adsorption
Ratio of Coal Seam Gas Water. Water Res. 2012, 46, 5247–5254. [CrossRef]

76. Hanson, B.; Grattan, S.R.; Fulton, A. Agricultural Salinity and Drainage; University of California Irrigation Program, University of
California, Davis: Davis, CA, USA, 1999.

77. Bhat, M.A.; Grewal, M.S.; Rajpaul, R.; Wani, S.A.; Dar, E.A. Assessment of Groundwater Quality for Irrigation Purposes Using
Chemical Indices. Indian J. Ecol. 2016, 43, 574–579.

78. Sudhakar, A.; Narsimha, A. Suitability and Assessment of Groundwater for Irrigation Purpose: A Case Study of Kushaiguda
Area, Ranga Reddy District, Andhra Pradesh, India. Adv. Appl. Sci. Res. 2013, 4, 75–81.

79. Sundaray, S.K.; Nayak, B.B.; Bhatta, D. Environmental Studies on River Water Quality with Reference to Suitability for Agricultural
Purposes: Mahanadi River Estuarine System, India—A Case Study. Env. Monit Assess 2009, 155, 227–243. [CrossRef]

80. Srinivasamoorthy, K.; Gopinath, M.; Chidambaram, S.; Vasanthavigar, M.; Sarma, V.S. Hydrochemical Characterization and
Quality Appraisal of Groundwater from Pungar Sub Basin, Tamilnadu, India. J. King Saud Univ.-Sci. 2014, 26, 37–52. [CrossRef]

81. Kumar, M.; Kumari, K.; Ramanathan, A.; Saxena, R. A Comparative Evaluation of Groundwater Suitability for Irrigation and
Drinking Purposes in Two Intensively Cultivated Districts of Punjab, India. Environ. Geol. 2007, 53, 553–574. [CrossRef]

82. Prasad, A.; Kumar, D.; Singh, D.V. Effect of Residual Sodium Carbonate in Irrigation Water on the Soil Sodication and Yield of
Palmarosa (Cymbopogon Martinni) and Lemongrass (Cymbopogon Flexuosus). Agric. Water Manag. 2001, 50, 161–172. [CrossRef]

https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1742074
https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=1742074
http://doi.org/10.1007/s100400050102
http://doi.org/10.1007/s12040-008-0012-3
http://doi.org/10.1007/s002540050415
http://doi.org/10.1016/j.scitotenv.2012.05.031
http://www.ncbi.nlm.nih.gov/pubmed/22706147
http://doi.org/10.2475/ajs.287.5.401
http://doi.org/10.1007/s100400050119
http://doi.org/10.1007/s00254-004-1012-5
http://doi.org/10.1007/s12517-020-05882-x
http://doi.org/10.3390/su14137976
http://doi.org/10.1007/s10661-014-3728-3
http://doi.org/10.3390/w12082169
http://doi.org/10.1016/j.jafrearsci.2018.06.034
http://doi.org/10.1007/s12665-012-2049-5
http://doi.org/10.1007/s12665-017-7176-6
http://doi.org/10.1006/jare.1999.0511
http://doi.org/10.1016/j.watres.2012.07.006
http://doi.org/10.1007/s10661-008-0431-2
http://doi.org/10.1016/j.jksus.2013.08.001
http://doi.org/10.1007/s00254-007-0672-3
http://doi.org/10.1016/S0378-3774(01)00103-2


Water 2023, 15, 182 23 of 23

83. He, S.; Wu, J. Relationships of Groundwater Quality and Associated Health Risks with Land Use/Land Cover Patterns: A Case
Study in a Loess Area, Northwest China. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 354–373. [CrossRef]

84. Tiyasha; Tung, T.M.; Yaseen, Z.M. A Survey on River Water Quality Modelling Using Artificial Intelligence Models: 2000–2020. J.
Hydrol. 2020, 585, 124670. [CrossRef]

85. Beltran, N.H.; Duarte-Mermoud, M.A.; Soto Vicencio, V.A.; Salah, S.A.; Bustos, M.A. Chilean Wine Classification Using Volatile
Organic Compounds Data Obtained With a Fast GC Analyzer. IEEE Trans. Instrum. Meas. 2008, 57, 2421–2436. [CrossRef]

86. Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.
87. Schulze, F.H.; Wolf, H.; Jansen, H.W.; van der Veer, P. Applications of Artificial Neural Networks in Integrated Water Management:

Fiction or Future? Water Sci. Technol. 2005, 52, 21–31. [CrossRef] [PubMed]
88. Elsayed, S.; Hussein, H.; Moghanm, F.S.; Khedher, K.M.; Eid, E.M.; Gad, M. Application of Irrigation Water Quality Indices and

Multivariate Statistical Techniques for Surface Water Quality Assessments in the Northern Nile Delta, Egypt. Water 2020, 12, 3300.
[CrossRef]

89. Ahmed, U.; Mumtaz, R.; Anwar, H.; Shah, A.A.; Irfan, R.; García-Nieto, J. Efficient water quality prediction using supervised
machine learning. Water 2019, 11, 2210. [CrossRef]

90. Chen, W.B.; Liu, W.C. Water quality modeling in reservoirs using multivariate linear regression and two neural network models.
Adv. Artif. Neural Syst. 2015, 2015, 521721. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/10807039.2019.1570463
http://doi.org/10.1016/j.jhydrol.2020.124670
http://doi.org/10.1109/TIM.2008.925015
http://doi.org/10.2166/wst.2005.0279
http://www.ncbi.nlm.nih.gov/pubmed/16445170
http://doi.org/10.3390/w12123300
http://doi.org/10.3390/w11112210
http://doi.org/10.1155/2015/521721

	Introduction 
	Materials and Methods 
	Site Descriptions and Hydrogeological Settings 
	Sampling and Analysis 
	Indexing Approach 
	Irrigation Water Quality Indices (IWQIs) 
	Irrigation Water Quality Index (IWQI) 
	Support Vector Machine Regression (SVMR) 


	Results and Discussion 
	Physicochemical Parameters of Groundwater 
	Groundwater Facies and Controlling Geochemical Processes 
	Water Quality Indices for Agricultural Purposes 
	Irrigation Water Quality Index (IWQI) 
	Sodium Percentage (Na%) 
	Sodium Adsorption Ratio (SAR) 
	Soluble Sodium Percentage (SSP) 
	Kelly Index (KI) 
	Potential Salinity (PS) 
	Permeability Index (PI) 
	Residual Sodium Carbonate (RSC) 
	Performance of the Support Vector Machine Regression Based on Physicochemical Parameters for Predicting the Irrigation Water Quality Indices 

	Conclusions 
	References

