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Abstract: This study explores the impacts of climate change on the major components of the water
balance such as surface runoff (Q), water yield (WY), and evapotranspiration (ET) in the Central Rift
Valley Basin (CRVB) in Ethiopia. Projected climate data from the climate emission scenarios were
used for the analyses. Representative concentration pathway (RCP) data from the MIROC-RCA4
ensemble driving climate models were downscaled, bias-corrected, and applied for impact analyses.
Climate scenario analyses for the near-term (2031–2060) and long-term (2070–2099) periods were used
to assess the conditions of the water balance components. The endo hydrogenic CRVB was divided
into three sub-basins, and their respective hydroclimatic impacts were simulated separately with
calibrated Arc-SWAT models. The future impacts simulated on the annual average basis vary in their
maximum ranges from −65.2% to +85.8% in Q, from −42.2% to +23.9% in WY, and from −4.1% to
+17.3% in ET compared to the baseline data outputs in the individual sub-basin. Water management
options according to the water balance sensitivities to the climate impacts were proposed for each of
the sub-basins. SWAT-based studies aimed at balanced water resources management in combination
with agricultural practices within the CRVB are recommended for future research.

Keywords: Arc-SWAT; climate change; climate scenario; water balance sensitivity; water management

1. Introduction

Sub-Saharan Africa is a region that is very sensitive to, and is highly affected by
recurrent droughts, flooding, and untimely weather conditions. Floods and droughts have
affected water supplies and have set a challenge for water management. At the same time,
water management practices in these developing regions are not adequate for dealing with
the challenges of significant changes in climate [1–4]. Increasing pressure on land and
water resources due to population growth and human activities have also resulted in the
degradation of vulnerable ecosystems and in reduced biodiversity [4–6]. Moreover, this
degradation of ecosystems hinders the potential use of ecosystem services [7].

In addition, climate change is a driver of many societal and environmental problems
of the 21st century [8,9]. Together with the impacts of population growth, it puts pressure
on the management of natural resources such as water resources [5,10]. It can also alter the
hydrological cycle, resulting in large-scale impacts on water availability. These impacts
could be temporal or become permanent. Climate change can also affect the temporal
conditions of the water balances [11]. Water balances are components of the water cycle
that exist at different scales and in different conditions in each locality. They are highly
affected by the state of the environment and by the climate. Climate change highly affects
the water balance conditions both spatially and temporally at the local or regional scale. For
instance, Africa is vulnerable to inter-annual climate variations due to the El-Niño southern
oscillations [12,13]. To evaluate the conditions of water resources in a basin or region, it
is essential to know the water balance conditions under certain circumstances. The water
balance components may vary due to different spatial and temporal aggregations, reference
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periods, and climate change impacts, as well as the interventions of humans for the purpose
of water use [14].

Climate change refers to changes in conditions such as temperature and rainfall over
long periods of time in a region. It has been caused by the increasing concentration of
greenhouse gases (GHGs) in the atmosphere since the pre-industrial era. The Intergovern-
mental Panel on Climate Change (IPCC) concluded that more than 90% of the accelerated
warming of the past five decades has been caused by the industrial release of GHGs such
as CO2 into the atmosphere [15].

In the CRVB, there are high levels of rainfall variability, water scarcity, and weather
variability, and it is a place where water resources planning and management are greatly
challenged by the impacts of climate change [16]. For example, an increase in temperature
and variability in rainfall affected the seasonal and total water supply and led to the
occurrence of extreme hydrological events [17]. It is therefore essential to know the trend of
climate change over a long period of time to manage possible extreme hydrological events,
either droughts or flooding, in the region [15,18–20].

A climate impact study can also provide a reliable basis for water resources plan-
ning [21]. Nowadays, long-term water resources planning studies need to take into consid-
eration ongoing and future global climate changes in order to curb the uncertainties in the
management of water resources [22]. In such studies, the effects of climate change must be
quantified with high spatial and temporal resolutions at basin scale [1,23–25].

Various studies have been carried out on the water resources of the Central Rift
Valley Basin (CRVB) in an attempt to describe and evaluate the impact of climate change
on existing water resources [16,26–30]. However, only a few of these studies have been
aimed at analyzing the impacts of climate change based on various regional concentration
pathway (RCP) simulations in different climate scenarios to evaluate the conditions of
the components of the water balance in the sub-basins. For example, in Ethiopia, Legesse
et al. (2003) used the Precipitation Runoff Modeling System (PRMS) model to simulate
runoff, and they predicted a 30% decrease in runoff in response to a 10% decrease in
the amount of precipitation [26,31]. A 1.5 ◦C increase in temperature resulted in a 15%
decrease in runoff [32]. Similarly, it was indicated that a higher temperature leads to an
increase in evaporation rates, reductions in stream flow, and an increase in the frequency
of droughts [28]. In addition, a vast number of studies have been conducted to analyze
the impacts of climate change on crop productions [17,18,33–35]. However, very little
consideration has been given to the potential impact of climate change on the current
and future water balance components in the region and on their management methods.
Therefore, a deep understanding of the effects of climate change on the components of the
water balance for identifying site-specific climate-smart agricultural water management
measures is necessary. In this context, the findings of this study can contribute the input
information for the purpose of agricultural water management in the CRVB to adapt to the
impacts of climate change.

An analysis of the impact of climate change on the components of the water balance
involves hydrological models and projected plausible future climate change variables from
global circulation models (GCMs) [23,36–38]. The GCMs determine the effects of changing
concentrations of greenhouse gases on global climate variables such as temperature, rainfall,
evapotranspiration, humidity, and wind speed [38]. Similarly, global circulation models that
predict long-term climate trends (rainfall, temperature, and humidity) are often unsuitable
for regional scale studies because of their coarse grid-size resolution. It is therefore essential
to downscale GCM data to the region-specific climate impact through the use of statistical
or dynamical downscaling techniques [38,39].

Various hydrological models can be applied to analyze the impacts of changes in the
climate [10]. These models investigate the degree to which observed changes in climate may
affect the resources due to natural variability, human activity, or a combination of both [40].
The results and projections produced by such models provide essential information for
making decisions of local, regional, and national importance on matters such as water
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resources management, agriculture, transportation, and urban planning [41]. However,
hydrological models need to be calibrated to site-specific conditions before they are used
for climate change impact analyses [22].

The general procedure for assessing the impacts of climate change on water resources
and on watershed processes can be determined by physically-based distributed models.
Due to its wider applicability and utility, different versions of SWAT have been used
for several studies throughout the world [38]. SWAT has been used for hydrological
modeling, soil erosion and sediment transport modeling, climate impact studies on stream
flows, and modeling land use change and management impacts on sediment and stream
flows. It can also be used for nutrient transport modeling in agricultural fields [38]. These
studies have confirmed the successful use of the SWAT model across different watersheds
on different scales and across different environmental, climatological, and hydrologic
conditions [36,42,43].

The study presented here is therefore aimed at analyzing the impacts of climate
change according to the regional RCP scenarios on the water balance components of the
CRV sub-basins in Ethiopia. The results of the SWAT models integrating CMhyd, WGEN,
and SWAT-CUP software packages, were used to identify possible sub-basin-wide water
management options.

2. Materials and Methods
2.1. Description of the Study Location

The Central Rift Valley Basin (CRVB) is in Ethiopia between 38◦15′ E and 39◦30′ E
longitude and 7◦10′ N and 8◦30′ N latitude, (Figure 1). It covers an area of approximately
9112.5 km2. It is a hydrologically closed lakes region with no known outlets for its total
basin [27]. The study basin is a vast closed area and thus was divided into smaller sub-
basins with known outlets (Ketar, Meki, and Shalla sub-basins).
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The mean annual rainfall of the study area varies between 600 mm near the lakes
and 1200 mm–1600 mm in the highlands. The average minimum temperature is 10.5 ◦C,
while the average maximum temperature is 24.3 ◦C [16]. CRVB comprises four major lakes:



Water 2023, 15, 18 4 of 22

Ziway, Shalla, Abiyata, and Langano. It also has perennial rivers, which include the Meki,
the Ketar, and the Jidu rivers [16].

The CRVB has diverse soil types. It has varying infiltrability and associated runoff
potential. Coarse-textured soils (LT Leptosols) with high infiltrability are dominant in
the eastern and western highlands and in the valley floor around the lakes. Medium-
textured soils (Euvertisols) with moderate infiltrability dominate the eastern and western
mid-altitudes of the CRVB, whereas the lower reaches of the western highlands and some
places in the central part of the eastern CRVB are dominated by fine-textured black soils
(Vertisols) with lower infiltrability (Figure 2) [19].
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2.2. Sub-Basin Selection Methods (Boundary Delineation)

The hydrologically closed CRVB comprises many sub-basins. It was delineated and
subdivided into major sub-basins in GIS according to their river systems, using the outlet
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points [16] as indicated in Figures 1 and 3. The DEM data were delineated in Arc SWAT
and with the spatial analyst tool in ArcGIS. The total area of CRVB was delineated based
on the watershed boundaries or water divide lines obtained from the Ministry of Water
Resources of Ethiopia. The CRVB is an endo hydrogenic basin [27]. Since there is no single
outlet for the CRVB, this study aims to investigate the hydroclimatic impacts via its major
sub-basins with monitored outlets (Ketar, Meki, and Shalla). The selected sub-basins form
parts of the CRVB with different characteristics which, when summed up, can generally
characterize the climate impact conditions of the CRVB. The sub-basins were selected based
on differences in agroecology, microclimate, and socio-environmental interactions. The
analyses were performed for each of the sub-basins separately. The outlet locations of each
sub-basin are indicated in Figures 1 and 3.
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2.3. Data Definition
2.3.1. Spatial Data

The spatial data used for the modeling were analyzed step-by-step. Initially, the
digital elevation model (DEM) data of the CRVB was delineated with GIS into Ketar,
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Meki, and Shalla. They were divided into sub-basins based on the topography and the
river systems. Each sub-basin was consequently subdivided into hydraulic response units
(HRUs) according to the land-use features, soil profile, and slope within SWAT. The major
data inputs and their utilization are indicated in Table 1. The land uses characterize the
hydrological process in the sub-basins. The land use map of the CRVB was obtained from
the Ethiopian Geospatial and Information Institute (GSII).

The soil hydro-physical properties determine the existence and the quantity of each
component of the water balance [44]. The soil physical properties and the area coverage
of each of the soil types were classified based on the SWAT classification standards. The
digitalized soil data for the study region with a resolution of 1ha was obtained from the
Ministry of Agriculture and Natural Resources (MANR) of Ethiopia. The details are in
the Supplementary File in Table S1. The spatial information maps of the study region
including land use information, distribution of soil types, slope, and elevation information
are indicated in Figure 2.

Table 1. Major input data used in the SWAT model.

Data

Type Format Source Year/scale Resolution Purpose

Weather data

Relative
humidity .xls NMA 1984–2010 Daily Analyze water balance (WB)

Rainfall .xls NMA 1984–2010 Daily Analyze rainfall trend and WB
Sunshine

hours .xls NMA 1984–2010 Daily Analyze WB and solar radiation

Temperature
(Max and Min) .xls NMA 1984–2010 Daily Analyze WB, and temp trend

Wind .xls NMA 1984–2010 Daily Analyze WB and wind trade

Spatial data
Land use .shp GSII 1996–2008 ha Model land use and runoff

Soil .shp MANR NA ha Determine soil hydrology group
DEM .tiff OBANR 2003–2008 30 m Analyze location data sets

Hydrology data River
Discharge .xls MW 1900–2010 Monthly

average
Analyze discharge trend, for

model calibration and sensitivity

Note: NMA—National Meteorological Agency, GSII—Geospatial and Information Institute, MANR—Ministry
of Agriculture and Natural Resources, OBANR—Oromia Bureau of Agriculture and Natural Resources,
MW—Ministry of Water Resources.

2.3.2. Climate Data

Daily data on minimum and maximum temperature, hours of sunshine, relative
humidity, wind speed, and precipitation from six meteorological stations, located in and
near the sub-basins, were introduced into the model to simulate the water balances of the
sub-basins (Table 1 and Figure 3). Hydrology data for stream flows were collected at the
outlets indicated for each sub-basin. The CORDEX grid locations in the study area, based
on which the climate data were downscaled and extracted, are also presented in Figure 3.
The coordinate locations of the meteorology stations are indicated in Supplementary File in
Table S2.

2.3.3. Baseline Data Processing with SWAT Weather Generator (SWAT-WGEN)

The weather data were statistically analyzed, and data qualities such as errors and
outliers were assessed and adjusted by the weather database generator software (SWAT-
WGEN). The data and their respective station coordinates (X, Y, and Z) were synchronized
by the SWAT-WGEN. As a result, the SWAT model recognized the spatial distribution of
the data supplied. SWAT-WGEN helps in statistical analyses, in data coding for SWAT use,
and for data gap analyses as well as for spatial interpolation of the missed datasets. Special
care was given to the input data within this study. The background data provided by the
authorities were carefully checked and missing data were supplied if available. The data
gaps in the collected baseline data were scattered, but on some days, they were sequential.
These sequential data gaps ranged from one to only ten days maximum for some stations.
The gaps were filled via interpolation by the software. These data gaps accounted for not
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more than 65 days out of the total 27 years per station, which is less than 0.66% of the
data items. Simple arithmetic means (taking the averages of the values of the data series
available before and after the missed data dates) were also applied to those stations where
the gaps were scattered and not sequential to restore the missing values.

2.4. Arc SWAT Application

Arc SWAT 2012 was used for the hydroclimatic impact assessment of the CRVB. Arc
SWAT 2012 is an Arc GIS extension program used for watershed modeling. The Soil and
Water Assessment Tool (SWAT) is a widely used model for analyzing the water balances of
a basin using long-term meteorological and spatial data of the area [45]. It is a physically-
based, deterministic, continuous, watershed-scale simulation model developed by the U.S.
Department of Agriculture—Agricultural Research Service (USDA) [45,46]. It is a model
written in Fortran to analyze mainly water, nutrient, and sediment conditions in large
basins and the behavior under climate changes [46]. It can also be applied to evaluate the
impacts of various human, environmental, and infrastructural management interventions
in basins. It involves systematic and interconnected spatial and weather data analyses to
evaluate the intended goal at each hydraulic response unit (HRU).

In the application of the model, the Penman–Monteith method for evapotranspiration,
the soil conservation service (SCS) curve number method for surface runoff determination,
and the variable storage method to simulate channel water routing are employed to analyze
the water balances.

The Water Balance Equations

In the analysis of the impacts of climate change on water balance components, the
model operates based on the water balance equation indicated in Arnold et al. (2011) which
is defined as:

SWt = SW0 +
t

∑
i
(Rdayi −Qsur fi − Eai −Wseepi −Qgwi) (1)

where SWt is soil water content (mm) at time t, SW0 is initial soil water content (mm), t is
simulation period (days), Rdayi is amount of precipitation on the i-th day (mm), Qsurfi is
amount of surface runoff on the i-th day (mm), Eai is amount of evapotranspiration on the
i-th day (mm), Wseepi is amount of water entering the vadose zone from the soil profile on
the i-th day (mm), and Qgwi is amount of base flow on the i-th day (mm) [45].

Moreover, one of the critical parameters that are evaluated for sustainable water
resource management of the study area is the water yield. The water yield is the aggregate
sum of water leaving the HRU and entering the principal channel during a time step [45].
The water yield within a basin is evaluated by the model based on Equation (2). Considering
the hydrological processes taking place continuously in the basin, the water yield, i.e., the
net amount of water flowing past a given point on a stream during a given period, can be
described by a basic model equation:

Wyld = Qsur + Qlat + Qgw − Tloss (2)

where Wyld is the water yield (mm), Qsur is the surface runoff (mm), Qlat is the contribution
of the lateral flow to the stream (mm), Qgw is the contribution of the groundwater to the
streamflow (mm), and Tloss is the transmission losses (mm) from the tributary in the HRU
by means of transmission through the bed.

2.5. Model Parameter Sensitivity Analysis

For a particular area of interest (CRVB), Arc-SWAT contains many hydrological pa-
rameters that need to be considered. However, not all the parameters may be contributing
significantly to the model output, and it is therefore necessary to identify the input param-
eters that are significant [46]. In addition, the heterogeneity of the area makes it difficult
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for all SWAT parameters to be monitored simultaneously. Calibration and validation are
required to identify the parameters to use for the specific area in a balanced way [47]. The
parameter sensitivity scale developed by Lenhart et al. (2002) was used to classify the
sensitivity of the parameters in the sub-basins [48]. It was scaled to the mean of index (I)
values (Table 2).

Table 2. Parameter sensitivity scale classes assigned in SWAT as adapted from Lenhart et al. (2002)
[48]).

Class Mean of Index (I) Category of Sensitivity

1 0 ≤ I ≤ 0.05 Small to negligible
2 0.05 ≤ I ≤ 0.2 Medium
3 0.2 ≤ I < 1 High
4 I ≥ 1 Very high

In addition, the most sensitive parameters used for stream flow analyses in the CRVB
were selected on the basis of a tropical nature environment review recommendations [49].
The sensitivity ranking of the parameters (mean of index) is defined through an analysis
of the values of the “t-stat” and “p-value” indexes in SWAT-CUP during calibration. The
“t-stat” values are the t statistics. The t statistic is a measure of how extreme a statistical
estimate is, and is calculated as:

t =
M− µ

Sm
(3)

Where t = t-stat, M = sample mean, µ = population mean and Sm = estimated standard
error. The identified sensitive parameters are indicated in Table 3 with their descriptions.

Table 3. The most sensitive SWAT parameters identified in the CRV sub-basins, and their descriptions.

Parameter Description

1 CN2 SCS runoff curve number
2 ALPHA_BF Base flow recession constant (days)
3 GW_DELAY Ground water delay time for recharging the aquifer (days)
4 GWQMN Water limit level in the aquifer for the occurrence of base flow (mm)
5 REVAPMN Water limit level in the aquifer for revap to occur (mm)
6 GW_REVAP Groundwater revap coefficient
7 ESCO Soil evaporation compensation factor
8 EPCO Plant uptake compensation factor
9 SURLAG Delay time of direct surface runoff (days)

10 SOL_AWC Available water capacity of the soil layer (mm mm−1)
11 SOL_K Saturated hydraulic conductivity of the soil (mm h−1)
12 CH_K2 Effective hydraulic conductivity of the main channel (mm h−1)
13 SOL_Z Depth from soil surface to the bottom of the layer (mm)
14 RCHRG_DP Deep aquifer percolation fraction
15 HRU_SLP Average slope steepness (m m−1)
16 BIOMIX Bio-mixing efficiency

2.6. Model Calibration and Validation

Calibration and validation of the SWAT models were carried out using SWAT-CUP, a
calibration uncertainty program for SWAT with the SUFI-2 algorithm, which is sequential
uncertainty fitting, version 2. The program performed calibration, validation, sensitivity
analysis (one at a time), and uncertainty analysis. In addition, the program links SUFI2,
GLUE, ParaSol, MCMC, and PSO algorithms to SWAT [50]. The models were calibrated
and validated using monitored stream flows from the outlets of the Ketar, Meki, and Jidu
(Shalla) Rivers. The outlet locations were set at the flow gauging stations. The models were
set to run for the baseline periods from 1984 to 2010 for each of the sub-basins (Ketar, Meki,
and Shalla).
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Calibration and validation help the model to resemble the study area in its operation
by adjusting the sensitive model parameters. In this study, the observed stream flow data
from 1990 to 2001, obtained from the Ministry of Water Resources of Ethiopia (MW), were
used for calibration, and data from 2004 to 2010 were used for validation. The models of
each of the sub-basins were calibrated and validated separately with their respective stream
flow data from each sub-basin outlet (Figure 4). During calibration, the data from the first
three years were kept as a warming-up period. These data allow the model to warm up,
initialize, and approach reasonable initial values of the state variable of the model [50].
The adjusting values, as modified by SWAT-CUP to fit the values of the parameters to
site-specific ranges, and the adjusting methods are presented in Table 4. The adjusting
methods are indicated in the prefix of the parameter (V_, R_, and A_) and they are described
in the table caption.

Table 4. Adjusting values and methods as adjusted by SWAT-CUP for the parameters.

Ketar Meki Shalla

Parameter Adjusting value Parameter Adjusting value Parameter Adjusting value

R__CN2.mgt −0.44 R__CN2.mgt −0.586 R__CN2.mgt −0.155
V__ALPHA_BF.gw 0.629 V__ALPHA_BF.gw 0.348 R__ALPHA_BF.gw −0.35
A__GW_DELAY.gw 12.251 A__GW_DELAY.gw −17.291 A__GW_DELAY.gw 3.283
A__GWQMN.gw 336.23 A__GWQMN.gw 109.676 A__GWQMN.gw −819.543
A__REVAPMN.gw 13.917 A__REVAPMN.gw −126.446 A__REVAPMN.gw 213.915
A__GW_REVAP.gw 0.0403 A__GW_REVAP.gw 0.143 V__GW_REVAP.gw 0.18
V__ESCO.bsn 0.98 V__ESCO.bsn 0.43 V__ESCO.bsn 0.412
V__EPCO.bsn 0.221 R__EPCO.bsn −0.662 V__EPCO.bsn 0.417
A__SURLAG.bsn 20.086 A__SURLAG.bsn 16.174 V__SURLAG.bsn 25.349
R__SOL_AWC(..).sol 1.29 R__SOL_AWC(..).sol 1.274 R__SOL_AWC(..).sol NA*
R__SOL_K(..).sol −0.661 R__SOL_K(..).sol 0.166 R__SOL_K(..).sol 0.149
V__CH_K2.rte 79.915 V__CH_K2.rte NA* A__CH_K2.rte −74.91
R__SOL_Z(..).sol 0.665 R__SOL_Z(..).sol NA* R__SOL_Z(..).sol NA*
R__RCHRG_DP.gw −0.122 V__RCHRG_DP.gw NA* V__RCHRG_DP.gw 0.093
R__HRU_SLP.hru NA* R__HRU_SLP.hru 0.783 R__HRU_SLP.hru NA*
R__BIOMIX.mgt NA* R__BIOMIX.mgt 0.205 R__BIOMIX.mgt NA*

Note: R = relative, the parameter will be multiplied by the relative value as follows: value* (1 + R); V = replace,
the parameter value will be replaced by the new values in the model; A = absolute, the parameter value will be
added to the values in the model as follows: value + A; NA* = unchanged default values in the model.

2.7. Model Performance Evaluations

Before applying for analysis, the models’ performances were assessed. Three main
statistical parameters were used to evaluate the performance of the models: the coefficient
of determination (R2), the Nash–Sutcliffe efficiency (NSE), and the percentage of bias
(PBIAS) [51]. R2 is calculated as :

R2 =

 ∑N
i=1(Oi −O)(Si − S)

[∑N
i=0 (Oi −O)2]

0.5
[∑N

i=0 (Si − S)2]
0.5

2

(4)

R2 ranges from 0.0 to 1.0. A higher value of R2 indicates better performance of the
model. The formula for calculating NSE is:

NSE = 1− ∑N
i=1 (Oi − Si)

2

∑N
i=1 (Oi −O)2 (5)

Nash–Sutcliffe Efficiency (NSE) is a normalized statistic, which measures the relative
magnitude of the residual variance in comparison with the variance of the measured data.
Like R2, the higher the value of NSE, the better the performance of the model. NSE indicates
the statistical relationship between simulated model values and observed values. It was
stated that the “values of NSE vary from −∞ to 1” [51,52].
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PBIAS is calculated as:

PBIAS =
∑N

i=1( Si − Oi

)
∑N

i=1 Oi
× 100 (6)

PBIAS measures the average tendency of the simulated values to be larger or smaller
than their respective observed values. Positive PBIAS values indicate underestimation by
the model, and negative values indicate overestimation. From the general statistics, the
range within ±25% is acceptable [52].

In Equations (4)–(6), S is the mean of the simulated stream flows, O is the mean of the
observed stream flows, Si is the simulated stream flows, Oi is the observed stream flows,
and N is the number of observations.

2.8. The Climate Scenario Application and Analyses Methods
2.8.1. Climate Scenario Analyses Setting and Simulation

An Arc-SWAT-based modeling approach to analyzing the impacts of climate change in
the sub-basins of the CRV lakes region, and optimum agricultural water use and optimiza-
tion strategies with respect to the identified impacts were carried out. Separate modeling
for the selected sub-basins was performed. The climate scenarios (CSc) were set to analyze
the impacts of climate change on the components of the water balance in the near-term
(2031–2060) and in the long-term (2070–2099) periods for each of the regional concentration
pathway (RCP) emission scenarios. The emission scenarios are RCP2.6 (low emission
scenario), RCP4.5 (medium emission scenario), and RCP8.5 (high emission scenario). The
simulations were categorized into seven CSc analyses, including the baseline data as listed
in Table 5. The options for agricultural water use management are indicated based on the
resulting water balance components affected by the changes in climate for each sub-basin.

The climate data were downscaled, bias corrected, analyzed, and simulated in an
integrated manner with WGEN, CMhyd, and Arc SWAT. The WGEN software interlinks
station coordinates and elevations with their respective data. All data statistics, such as
average, standard deviation, mean, variance, etc., for each of the weather components
downscaled were calculated and synchronized to their respective stations with WGEN. Rain
Years, dew point, and other important variables useful for calculating the water balance
components were also calculated and generated in WGEN. Finally, these climate data were
imported into the SWAT models and simulated to see the changes in the components of the
water balance that are especially useful for surface water sources.

2.8.2. Data Downscaling

Climate data stored in the World Climate Research Program (WCRP) databases were
used. The data are from the experiments of CMIP5–RCP (RCP2.6-CMIP5, RCP4.5-CMIP5,
and RCP8.5-CMIP5). These data were derived by the MIROC-RCA4 ensemble driving
climate models under the GCM. The GCM data of these RCP data variables were region-
alized to the regional climate model (RCM) with the Coordinated Regional Downscaling
Experiment (CORDEX) for Africa, CORDEX-AFR-44. Both, historical data as well as the
data of RCP2.6, RCP4.5, and RCP8.5 were downscaled by RCA4 models. RCA4 is the fourth
version of the Rossby Center Regional Atmospheric model. It was originally developed by
the Swedish Meteorological and Hydrological Institute within the CORDEX initiative. It is
a dynamic downscaling method widely used with the CORDEX [23,53]. The downscaled
datasets were daily precipitation, daily maximum near-surface air temperature, daily mini-
mum near-surface air temperature, daily sunshine duration, near-surface relative humidity,
and near-surface wind speed for future periods from 2006 to 2100. The duration of daily
sunshine in units of seconds (s) was extracted from the model and adjusted to daily solar
radiation with the units of kilowatt per square meter (KW/M2) for SWAT use and to the
SWAT input data standard units using Angstrom techniques [54].
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2.8.3. Bias Correction

The data for precipitation and temperature were bias-corrected via linear scaling
methods with CMhyd software, which is a SWAT community tool, before they were
applied in the SWAT simulation. The need for bias correction is mainly due to onshore and
offshore trade wind disturbances. The historical data from the model and the observed
locational dataset from six stations in the study region were applied to the software. Data
ranges from 1990 to 2006 were applied from the historical dataset of the climate model.
Furthermore, observed datasets from the same periods were used to correct the biasedness
created due to trade winds in the climate models. Parameters or correction factors for each
month were developed in relation to the observed data range of the same time periods.
Based on the parameters, the software adjusted the predicted rainfall and temperature
values from the downscaled data. The corrected data values were applied to WGEN for
statistical analyses and then to SWAT for simulation.

Table 5. Applied climate scenarios for analyzing the impacts of climate change on the major compo-
nents of the water balance in the sub-basins.

Climate Scenario

No. Code Description (Years)

1 NT-RCP2.6 RCP2.6 (2031–2060)
2 LT- RCP2.6 RCP2.6 (2070–2099)
3 NT-RCP4.5 RCP4.5 (2031–2060)
4 LT- RCP4.5 RCP4.5 (2070–2099)
5 NT-RCP8.5 RCP8.5 (2031–2060)
6 LT-RCP8.5 RCP8.5 (2070–2099)
7 BD Observed baseline data (1984–2010)

Note: NT = Near term and LT-Long term.

3. Results and Discussion
3.1. Results of the Model Parameters Sensitivity Analyses

The parameter sensitivity analyses were carried out together with the calibration
process, as it is necessary to include the flows estimated by SWAT and the monitored
flows in the sub-basins. In general, a higher “t-stat” and a lower p-value indicate that the
parameter is sensitive [55]. Based on the sensitivity scale developed by Lenhart et al. (2002),
shown in Table 2, the following parameters were identified as highly sensitive in the Ketar
sub-basin: EPCO, RCHRG_DP, SOL_K, GW_DELAY, CN2, REVAPMIN, and SURLAG.
Similarly, ESCO, REVAPMIN, GWQMN, HRU_SLP, and GW-DEALY were very highly
sensitive parameters in the Meki sub-basin, and ESCO, CH_K2, SOL_K, and GWQMN
were very highly sensitive in the Shalla sub-basin. The description of the parameters is
presented in Table 3. The differences in the sensitivity of the hydrological parameters in the
sub-basins indicate that the sub-basins are heterogeneous, although they refer to a single,
closed, lakes region. The differences are mainly due to land use, soil, hydrogeologic, and
anthropogenic variations. The t-stat values of each of the selected parameters for each
sub-basin are indicated in Table 6. The parameter description and their adjusting values
are indicated in Tables 3 and 4.

3.2. Results of the Calibration and Validation of the Model

The calibration results indicate good agreement between the simulated and observed
discharges in the sub-basins. The results for simulated and observed discharges in the
sub-basins were evaluated against R2, NSE, and PBIAS during calibration and validation.
The values in the Ketar sub-basin are in good agreement with R2 > 0.6, NSE > 0.5, and
PBIAS ≤ “±”25, (Figure 4a,b). Similarly, the results showed that the simulated and ob-
served monthly discharges were in a good agreement during calibration and validation for
the Meki and Shalla sub-basins (Table 7).
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Table 6. Sensitivity or mean of index I values of the selected parameters for the sub-basins, according
to their “t-stat” results as per the scale indicated in Table 2.

Ketar Meki Shalla

Parameter ** t-stat value Sensitivity t-stat value Sensitivity t-stat value Sensitivity

R__CN2.mgt 1.408 Very high −0.394 Negligible −0.111 Negligible
V__ALPHA_BF.gw 0.046 Low −0.997 Negligible −1.643 Negligible
A__GW_DELAY.gw 1.206 Very high 1.951 Very high −1.032 Negligible
A__GWQMN.gw 0.783 High 1.564 Very high 2.685 Very high
A__REVAPMN.gw 1.970 Very high 1.441 Very high −1.116 Negligible
A__GW_REVAP.gw 0.710 High 0.844 High NI* NI*
V__ESCO.bsn 0.905 High 1.181 Very high 1.739 Very high
V__EPCO.bsn 1.013 Very High −1.210 Negligible −1.513 Negligible
A__SURLAG.bsn 2.329 Very high −1.242 Negligible 0.744 High
R__SOL_AWC(..).sol −1.034 Negligible −3.957 Negligible NI* NI*
R__SOL_K(..).sol 1.202 Very high −1.417 Negligible 1.197 Very high
V__CH_K2.rte −0.551 Negligible NI* NI* 1.926 Very high
R__SOL_Z(..).sol NI* NI* NI* NI* NI* NI*
V__RCHRG_DP.gw 1.137 Very high NI* NI* −1.986 Negligible
R__HRU_SLP.hru NI* NI* 1.799 Very high 0.084 Low
R__BIOMIX.mgt NI* NI* 1.669 Very high 0.798 High

Note: NI* = not identified, ** Parameter description is presented in Table 3.

Table 7. Model performance statistics for the Ketar, Meki, and Shalla sub-basins.

Sub-Basin
Calibration Statistics Validation Statistics

R2 NSE PBIAS R2 NSE PBIAS

Ketar 0.61 0.54 −22.5 0.85 0.84 −2.6
Meki 0.64 0.63 −4.81 0.72 0.64 −32.17
Shalla 0.67 0.66 0.2 0.77 0.74 1.34

Overall model performance statistics (R2, NSE, and PBIAS) for the Ketar, Meki, and
Shalla sub-basins are presented in Table 7.

3.3. Climate Scenario Analyses Results and Discussion

The results of the impacts of climate change on the major components of the water
balance such as surface runoff (Q), water yield (WY), and evapotranspiration (ET) were
evaluated in terms of their annual, seasonal, and monthly variations. The Q, WY, and
ET were identified as the most sensitive elements of the water balance components in the
CRVB. The simulated impacts of the climate scenarios on the water balance components
are substantial. The percentage change in the Q, WY, and ET from their baseline simulated
outputs for each sub-basin are presented in Table 8, together with the indication of the
baseline annual rainfall data (averaged for years 1984–2010).

Table 8. The simulated mean annual changes, as a percentage, from the annual average values of the
baseline outputs for the major components of the water balance in the sub-basins.

Sub-Basins Ketar Meki Shalla

Annual average rainfall (mm) 798.1 674.4 713.4
Water balance components Q WY ET Q WY ET Q WY ET
Baseline annual average output (mm) 103.8 492.2 282.5 53.5 257.5 393.1 44.2 326.7 363.8

% of ∆
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Table 8. Cont.

Sub-Basins Ketar Meki Shalla

Scenarios

NT-RCP2.6 −62.2 −34.9 17.3 58.1 17.0 4.5 −3.5 0.9 12.2
LT-RCP2.6 −55.0 −30.3 13.3 60.2 19.9 2.6 31.6 12.0 9.3
NT-RCP4.5 −13.7 −35.9 −4.1 6.0 −1.1 5.6 −21.9 −10.1 9.2
LT-RCP4.5 22.9 −28.7 −9.4 47.7 11.2 2.6 32.8 4.2 7.8
NT-RCP8.5 −65.2 −42.2 7.4 58.3 13.0 6.4 −7.7 −2.4 10.8
LT-RCP8.5 −60.5 −39.7 8.8 85.8 23.9 9.4 23.5 7.1 15.1

Note: % of ∆ = Percentage of change of the component from its baseline output.

3.3.1. Ketar Sub-Basin

The resulting simulated ET, WY, and Q mean monthly values for the Ketar sub-basin
are graphically displayed in Figure 5a. Changes in the Q pattern over the seasons in the
Ketar sub-basin can be observed in Figure 5a. The highest Q season has shifted both in the
near and long term of RCP4.5 to the months from March to May while it used to be between
mid-June to the end of September in the baseline data outputs. The simulated annual
variations from the base data are between −65.2% (LT-RCP8.5) and 22.9% (LT-RCP4.5).
RCP 2.6 and RCP 8.5 analyses indicate that the expected runoff will decrease both in the
near term and in the long term in relation to the baseline data simulation outputs. In all
the seasons, for all RCPs, the runoff condition in the long term (LT) is higher than the
runoff in the near-term (NT) period. However, the general trend indicates that the runoff is
decreasing in this sub-basin in relation to the historical (baseline) period, but the rate of its
reduction differs from one RCP to another and from one period to another.

In similar analyses, the WY in the Ketar sub-basin decreases for all RCPs, in both the
NT and LT periods, except in the long-term periods of RCP4.5 for the months from April
to June (Figure 5a). Generally, the impact is expected to reduce the WY in all projected
scenarios, especially for the periods from July to October. However, the rate of reduction
varies from RCP to RCP and varies from season to season. Nevertheless, the annual WY
generation capacity of the Ketar sub-basin is higher than in the Meki and Shalla sub-basins,
corresponding to the annual precipitation that is supplied. Almost half of the rainfall, 50%
on an average, goes to the WY in all the scenarios, while the proportion is about 40% in
the Meki sub-basin and about 44% in the Shalla sub-basin. The simulated WY in the RCPs
follows a similar pattern to the observed base year simulations. It means that the seasonal
change in WY is not disturbed in pattern but in quantity.

The ET in the sub-basin has bi-annual peaks between March and mid-May, and
between July and September (Figure 5a). The ET is relatively low between mid-May and
June. The rate of ET decreases between March and May in all the scenarios in relation to
the observed data simulations except between June and September. ET will be higher in
the Ketar sub-basin for RCP2.6 and RCP8.5, between June and September, than outputs
from the base data. The significant change in ET mainly reflects the increase in temperature.
Therefore, according to the RCP2.6 and RCP8.5 climate projections, the increase in ET
will be higher than the RCP4.5 projections for ET. This is in line with the works of Musie
et al. (2020) and Gadissa et al. (2019) in the Lake Ziway and CRV basins in Ethiopia,
respectively [21,33]. Musie et al. (2020) used the SWAT model to evaluate the impacts
of regional climate variabilities and land use change on the water resources in the Lake
Ziway basin. They found an increase in surface runoff and water yield due to the climate
scenarios from the year 2000 to 2017. Gadisa et al. (2019) used projected climate scenarios
to evaluate stream flows for the medium-term (2040 to 2070) periods for the RCP4.5 and
RCP8.5 scenarios.
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The results reported in both studies, and in Getnet et al. (2014), in the CRVB indicated
that the hydrologic variations in water balance due to climate variability were highly
significant [20,27,32]. However, in contrast to the study by Musie et al. (2020) [20], the
hydroclimate in our study was more predominant in WY than ET in the Ketar sub-basin.
Another study conducted in the CRVB in 2007 on climate change impacts on water availabil-
ity with a SWAT model indicating an increase of averaged annual rainfall from 2001 to 2099
can also be found [56]. However, Gadissa et al. (2019) projected a reduction in precipitation
by 7.97% and 2.55% under RCP4.5 and RCP8.5 respectively for the future period from 2040
to 2070 [32]. Reduction in precipitation has strong correlation with reduction in water yield
and surface runoff. Our study is thus in line with the findings of Gadissa et al. (2019) [32]
with minimal differences in the periods of occurrences. There are seasonal shifts in the
pattern of occurrences of the components of the water balance when compared with the
baseline data sets. These shifts are mainly from the changes in precipitation, temperature,
and humidity patterns caused by greenhouse gases and other emissions.
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3.3.2. Meki Sub-Basin

The Meki sub-basin is characterized by greater annual amounts of ET than in the
Shalla and Ketar sub-basins. The annual surface runoff rises in all the RCP scenarios. There
will be a seasonal shift of the peak runoff period from the usual July-to-September period
to April-to-June in the sub-basin (Figure 5b). In the long-term periods of RCP2.6 and
RCP8.5, the runoff will increase greatly in relation to the baseline data simulation outputs.
However, RCP4.5 will create a moderate range of changes in relation to RCP2.6 and RCP8.5.
The change in annual average runoff varies from 6% to 85% in reference to the baseline
outputs. The projected monthly distribution shows that this water balance component
varies significantly over the months in both the NT and LT period.

The change in averaged annual WY ranges from −1.1% to +23.9% in relation to the
baseline data simulated. The scenario analysis also showed a remarkable increment in
the WY amount between May and October for all RCP outputs. ET is the major water
balance component of the sub-basin (Figure 5b). About 56% of the rainfall on average
turns into ET. This indicates that the sub-basin water balance is highly sensitive to changes
in temperature. Even though WY is good in the rainy seasons, most of it will be lost via
ETs. Thus, for the Meki sub-basin, the impacts were more predominant in ET than in
WY. This indicates the high seasonal weather variabilities in the sub-basin and its low
hydroclimatic impact resilience. Similar findings were reported by Gadissa et al. (2019) and
Musie et al. (2021) for this sub-basin. They used modeling approaches of RCM projections
to assess the conditions of the Q, ET, and stream flows using the SWAT and WEAP models,
respectively. In addition, Molla, (2014) has used physical assessment methods to indicate
the sub-basin climate conditions [16,17,36]. These studies reported that the Meki sub-basin
is the most hydroclimate-sensitive region. The strong weather variabilities in the sub-basin
have resulted in wide ranges of changes in water resources similar to the findings of another
study conducted by Getnet et al. (2014) in the CRVB [16,26,27]. The annual variations in
this study are also relatively large for the sub-basin (Table 8). The modeling results in this
study for the sub-basin are thus inconsistent with the above study findings.

3.3.3. Shalla Sub-Basin

The response of this sub-basin to the analysis in the model indicates a stronger range
of variations in its water balance components. However, the Shalla sub-basin has a lower
annual runoff amount than the Ketar and Meki sub-basins (Figure 5c). However, the
changes in annual runoff vary between −21.9% and +32.8% from the baseline data simula-
tion outputs. The average annual changes in WY vary from −10.1% to +12.0% because of
the impacts. The changes in ET vary from +7.8% to +15.1%. The detail annual variations
in percentage for each CSc and each component in each sub-basin are indicated in Table 8.
ET increases significantly between June and September for all RCP projections. ET is the
largest component, and most of the rainfall turns into ET. Because of the high ET and the
small runoff, the entire sub-basin is characterized as a water-scarce region. The WY result
for the Shalla sub-basin was moderate for all the CSc. Compared to other previous studies
(for example Ayenew, 2007; Gadissa, et. al., 2018), Shalla has small WY output, but in the
analyses conducted in this study, the sub-basin yielded a relatively higher amount [5,32].
The difference could possibly be due to its complex hydrogeologic setting that needs to be
verified in further studies. However, there is agreement on the fact that its surface water
availability will be depleted due to the high ET and the low Q occurrences.

The projected monthly average values of each of the water balance components in
each sub-basin with their respective baseline monthly average output values for each of
the scenarios are presented in Figure 6. It indicates that the hydroclimatic impacts in the
future in the CRVB are very high. The baseline data outputs are indicated with yellow rings
around their graphs.



Water 2023, 15, 18 17 of 22

Water 2023, 14, x FOR PEER REVIEW 17 of 23 
 

 

8. ET increases significantly between June and September for all RCP projections. ET is 
the largest component, and most of the rainfall turns into ET. Because of the high ET and 
the small runoff, the entire sub-basin is characterized as a water-scarce region. The WY 
result for the Shalla sub-basin was moderate for all the CSc. Compared to other previous 
studies (for example Ayenew, 2007; Gadissa, et. al., 2018), Shalla has small WY output, 
but in the analyses conducted in this study, the sub-basin yielded a relatively higher 
amount [5,32]. The difference could possibly be due to its complex hydrogeologic setting 
that needs to be verified in further studies. However, there is agreement on the fact that 
its surface water availability will be depleted due to the high ET and the low Q occur-
rences. 

The projected monthly average values of each of the water balance components in 
each sub-basin with their respective baseline monthly average output values for each of 
the scenarios are presented in Figure 6. It indicates that the hydroclimatic impacts in the 
future in the CRVB are very high. The baseline data outputs are indicated with yellow 
rings around their graphs. 

 
Figure 6. Monthly average values of 30 years of surface runoff (Q), water yield (WY), and evapo-
transpiration (ET) in the Ketar, Meki, and Shalla sub-basins for different climate scenario simula-
tions in relation to the baseline data simulation outputs. 

4. Discussion for Water Management Options 
From the projected analyses of the impacts of climate change in the model, the major 

water balance components such as surface runoff and water yield are mainly expected to 
decrease, and evapotranspiration is projected to increase in the sub-basins. This will have 
an impact on the increasing demands for agricultural water in the sub-basins. Seasonal 
shifts in the patterns of the projected water balance distributions were also observed. 
Therefore, water management strategies that help mitigate the impacts should be identi-
fied and applied. Their application might help to face the food security challenge caused 
by the water shortage that would occur due to climate changes. 

Based on the resulting projected water balances, agricultural water management in 
the Ketar sub-basin should, in the future, focus on the time modification of farm opera-
tions, and on water harvesting to store excess water occurring in the unusual months. 
Scarcity of water for agriculture is inevitable from the analyses (Figure 5a). Therefore, wa-
ter saving, and water use optimization must be sought and applied in the future. The WY 
is the major water balance component of the Ketar sub-basin in all the scenarios, and its 
enhancement together with conservation, will make the basin rich enough in water to curb 
the impacts of climate change. In addition, irrigation water supply scheduling based on 
the modified climate pattern is the recommended method of agricultural water manage-
ment for the Ketar sub-basin. 

High water losses through ET in the Meki sub-basin can be mitigated by water man-
agement interventions such as crop mulching, farm operations during minimum 

Figure 6. Monthly average values of 30 years of surface runoff (Q), water yield (WY), and evapotran-
spiration (ET) in the Ketar, Meki, and Shalla sub-basins for different climate scenario simulations in
relation to the baseline data simulation outputs.

4. Discussion for Water Management Options

From the projected analyses of the impacts of climate change in the model, the major
water balance components such as surface runoff and water yield are mainly expected to
decrease, and evapotranspiration is projected to increase in the sub-basins. This will have
an impact on the increasing demands for agricultural water in the sub-basins. Seasonal
shifts in the patterns of the projected water balance distributions were also observed.
Therefore, water management strategies that help mitigate the impacts should be identified
and applied. Their application might help to face the food security challenge caused by the
water shortage that would occur due to climate changes.

Based on the resulting projected water balances, agricultural water management in
the Ketar sub-basin should, in the future, focus on the time modification of farm operations,
and on water harvesting to store excess water occurring in the unusual months. Scarcity of
water for agriculture is inevitable from the analyses (Figure 5a). Therefore, water saving,
and water use optimization must be sought and applied in the future. The WY is the major
water balance component of the Ketar sub-basin in all the scenarios, and its enhancement
together with conservation, will make the basin rich enough in water to curb the impacts
of climate change. In addition, irrigation water supply scheduling based on the modified
climate pattern is the recommended method of agricultural water management for the
Ketar sub-basin.

High water losses through ET in the Meki sub-basin can be mitigated by water manage-
ment interventions such as crop mulching, farm operations during minimum evaporation
seasons, favoring minimum tillage to reduce soil evaporation, selecting crops that are more
resistant to high levels of evaporation, favoring efficient irrigation water application, and
introducing regular soil and water conservation practices to reduce the high seasonal runoff
and ET. In the Meki sub-basin, water harvesting and storage during periods of high runoffs
can also reduce water scarcity during peaks in demand. High runoff management and
protection infrastructures are also inevitable as there will be untimely and repeated higher
runoff expected beyond the usual baseline trends, as per the analysis.

The high ET rates and low runoff makes the Shalla sub-basin a water-scarce region.
The water scarcity problem in the sub-basin should be mitigated by improving WY via
yield enhancement approaches that also help to reduce evaporation losses. These include
soil and water conservation to improve subsurface storage, crop selection, farm operation
scheduling based on the new climate pattern and minimum tillage to reduce soil evapora-
tion, and the selection of highly ET-resistant crop varieties. Investigating afforestation for
controlling ET losses, and controlled farm operations are also very crucial. Furthermore,
inter-basin water transfers are recommended for adapting to the impacts on the sub-basin.
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A study conducted by Kassie et al. (2015) applied an effective fertilizer with irrigation
water as an adaptation measure to climate change for the maize crop in the CRVB. The
study assessed the potential impacts of climate change on maize yield and explored specific
adaptation options under climate change scenarios for the CRVB of Ethiopia by mid-century.
They used GCM, RCPs, and crop models to search for adaptation options. The climate
change impacts in their study are consistent with our study results. Their adaptation option
offsets the severe impacts of yield loss in the area due to the climate impacts [34]. Thus,
the effective application of fertilizer while producing the maize crop in the region together
with irrigation water is crucial. In addition, the positive effects of changing the planting
date were indicated in their study in offsetting the severe climate impacts on the maize
crop [34].

Amare and Endalew (2016) assessed the importance of farm mechanization in rural
Ethiopia for smallholder farmers. In their assessment, they indicated that mechanized
farming helps in reducing water loss at the farms [57]. The study results showed that
water distribution efficiencies in irrigated farms have been improved in the study regions,
including the CRVB. This may be achieved by incorporating land use planning in a manner
that its water allocations and use efficiencies will improve, for instance, farm mechanization
and land leveling to minimize water loss and enhance even distribution [57]. Therefore,
extensive farm mechanization and land leveling works are recommended as a means to
improve water use and reduce its loss in the sub-basins’ irrigated farm fields. These will
help to increase the resilience capacity of the CRVB to the impacts of future climate changes.

Adaptation to climate impacts via water allocation planning based on weather, soil,
and ecological characteristics and social benefit priorities can also reduce the unnecessary
loss that may occur due to misallocation and weather variabilities. For instance, the
cropping pattern alternatives that favor better gain based on the rainfall patterns of the
rift valley region were adopted by some farmers, as indicated in the study conducted by
Belay et al. (2017) [2]. The farmers applied a method of using different crop varieties of
maize during long rainy seasons and during short rainy seasons. This has improved the gain
in the worst water shortage seasons in the region, as reported in [2]. Accordingly, preparing
alternative plans for seasonal climate change conditions for agricultural production, and for
water use plans that can mitigate the dual impacts of climate and environmental changes
while maximizing the benefits during the worst climate seasons are thus necessary. Hence,
the possible alternative plans and the locally adopted measures by the farmers should
be further assessed, tested, and applied in the worst seasons in the CRVB and in similar
regions in the country. The plans need to be based on reliable data and on studies carried
out for particular areas. This study aims to contribute to such a knowledge helping in the
creation process of such adaptation plans for the CRVB in Ethiopia.

In addition, Kifle and Gebretsadikan (2016), conducted an experiment on the controlled
application of irrigation water for potato production in the water-scarce region of Tigrai
in Ethiopia [58]. They found positive effects of controlled irrigation water applications on
potato production without losses for the deficit application of water with proper timing as
means to curb water shortage due to climate changes. One of the best adaptation options
for agricultural water uses in the sub-basins is thus the introduction of controlled irrigation
that applies the water resources efficiently and that applies only the required amount of
water at the proper time for effective use of the crops [58]. Controlled irrigation also helps
avoid seepage and salinity problems via water applications to the required depth [58].
In addition, selecting fast-growing, highly productive quality seeds will help to save the
resource for other economic and social uses. Controlled irrigation is thus recommended as
a mitigating strategy for water scarcity and for environmental challenges that would occur
due to the impacts of climate change and population growth.

For the CRVB, Musie et al., (2020) used SWAT models to assess the water conditions of
terminal lakes in the CRVB and water management adaptation options. They recommended
avoiding pollution of water sources and conserving the terminal lakes from pollution
damages, both from sedimentation and other environmental pollutants. Thus, controlling
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the water level of the lakes, avoiding water quality degradations due to industrial and
environmental wastes, and improving the storage capacity in the sub-basins will favor
better use of the resources during peaks in demand [20].

Climate-based integrated development and use plan for the utilization of water re-
sources according to its economic and social benefits, while safeguarding environmental
sustainability, should be further assessed, modeled, and applied for its equitable use in
equilibrium in the closed CRVB. Moreover, considering the response of the sub-basins to
hydroclimatic impact while planning water use is crucial.

5. Conclusions

This paper investigated the impacts of future climate change on the major compo-
nents of the water balance in the central rift valley basin in Ethiopia from the seasonal
and spatial points of view. The evaluations are based on the magnitude of water yield,
evapotranspiration, and surface runoff components change in relation to the baseline
data outputs. Regional climate models (RCM) data in CORDEX—Africa were applied
for the investigation. RCP data from the MIROC-RCA4 ensemble driving climate models
were downscaled, bias-corrected, and used for the analyses. The methodology followed
a calibrated Arc-SWAT modeling approach to search for basin-wide climate impacts on
water resources and to indicate possible agricultural water management and adaptation
strategies. The findings are solely based on model simulation outputs within the scope of
its evaluations and error limitations.

Accordingly, the study identified a general decrease in water yield and surface runoff
and a seasonal increase in evapotranspiration in the Ketar and Shalla sub-basins in both
the near-term (2031–2060) and long-term (2070–2099) periods in comparison to the baseline
period (1984–2010). However, all three water balance components projected were showing
an increment in the Meki sub-basin for all the periods. The sub-basins were also found to
be heterogeneous, and they showed variabilities in terms of their hydroclimatic reactions to
the impacts of climate change even though they are in one endo hydrogenic region. In the
sub-basins, some similarities were also found in the ways in which the pattern of the water
balance components will be changed. However, the magnitudes of the impacts varied from
sub-basin to sub-basin, between the RCPs, and between near-term and long-term periods
due to the projected climate changes. These indicate that each of the sub-basin has a unique
water balance environment.

The study also indicated the huge impacts of regional climate models (RCM) on
surface components of the regional water cycle. These RCMs are a derivative of the Global
Circulation Models (GCM).

The management interventions to mitigate the climate impacts should therefore be
carried out according to the sub-basin water balance sensitivities while keeping the equilib-
rium in the closed CRVB water requirements. Finally, an investigated integrated watershed,
agricultural water use, and farm management in the water–agriculture–land and climate
nexus approaches following each sub-basin’s climate responses, and other alternative
resource management options for the closed CRVB must be determined and applied to
cope with the hydroclimatic impacts.

The calibrated SWAT model has proved to be a useful tool for analyzing and iden-
tifying the temporal and spatial conditions of the water resources at a basin level under
different climate change conditions in the CRVB. Therefore, further studies dealing with
climate-based water resource management in combination with farming practices using
the SWAT model would bring additional benefits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15010018/s1, Table S1: Some physical properties of major soils
in the CRV sub-basins; Table S2: Location of meteorological stations used for the analysis of the
weather parameters in the CRVB; Table S3: SWAT land use code and their description.
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