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Abstract: Aquatic vegetation appears very often in rivers and floodplains, which significantly affects
the flow structure. In this study, experiments have been conducted to investigate the effects of
submerged vegetation arrangement patterns and density on flow structure. Deflected and non-
bending vegetation is arranged in square and staggered configurations in the channel bed of a
large-scale flume. Results showed that the staggered configuration leads to intensified streamwise
velocity, turbulence kinetic energy (TKE), and Reynolds shear stress (RSS) compared to the square
configuration. When vegetation density is low (λ = 0.04 and λ = 0.07), the produced wake in the rear
of the vegetation is more expansive than that with high vegetation density (λ = 0.09 and λ = 0.17)
because the velocity in the center of four vegetation elements is lower than that in the middle of two
vegetation elements with low vegetation density. Results of TKE in the wake zone of the deflected
vegetation indicate that the maximum root-mean-square velocity fluctuations of flow occur at the
sheath section (z/H = 0.1) and the top of the vegetation (z/H = 0.4). In the wake zone behind the
vegetation elements, the maximum value of the RSS occurred slightly above the interface between
deflected vegetation and the non-vegetation layer, showing the Kelvin–Helmholtz instability that is
associated with inflectional points of the longitudinal velocity. Within the range of vegetation density
in this study (0.04 < λ ≈< 0.23), as the vegetation density increases, the negative and positive values
of RSS throughout the flow depth increase.

Keywords: deflected vegetation; non-bending vegetation; vegetation density; Reynolds shear stress;
turbulence kinetic energy; flow structure

1. Introduction

In natural rivers and streams, various arrangement patterns of vegetation can be seen
very often in the channel bed, along river banks or on flood plains. Different characteristics
of vegetation elements such as vegetation density, shape, and flexibility affect the bending
degree of flexible vegetation and have different impacts on flow structure [1,2].

Vegetation creates the ecological habitat and plays an active role in maintaining and
protecting biological diversity [3] by providing food and shelter for fish and many other
aquatic creatures [4,5]. There is an interaction between vegetation and bed deformation. On
the one hand, vegetation influences flow structure, sediment erosion, and deposition [6–8].
On the other hand, as a result of sediment erosion and deposition, organic materials
attached to sediment particles spread throughout the river bed and affect vegetation
growth and spread [9]. Due to a decrease in flow velocity caused by vegetation in the
channel bed, erosion rates decrease [10]. Chen et al. (2011) showed that both the length and
depth of scour holes decrease with the increase in vegetation density [11]. Net deposition
increased with the distance from the leading edge of vegetation, associated with a decrease
in vertical velocity and TKE [12].

Vegetation on riverbanks is a crucial factor in reducing flood damage and coastal
erosion by increasing bank stability and damping waves [13–17]. Yue et al. (2020) re-
ported that vegetation roots and sand–root composites provide effective reinforcement
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to unconsolidated banks, controlling bank erosion and thus reinforcing the stability of
banks [18].

In the past decades, to better understand the hydrodynamics in the presence of
vegetation in rivers, many research works have been conducted. One of the main concerns
is the high turbidity of flowing water in rivers. Water turbidity can negatively affect
aquatic creatures. Vegetation is considered as a great measure to reduce resuspension and
damping of waves and induce deposition, since additional drag resulted from vegetation
reduces the mean flow velocity and bed shear stress within vegetated regions compared
to that of the bare channels [19–21]. Ros et al. (2014) found that resuspended sediment
concentrations decreased as the flexible canopy density increased [22]. On the other
hand, Serra et al. (2018) [23] and Zhang et al. (2018) [24] pointed out that vegetation can
promote near-bed turbulence, which will cause enhanced resuspension. Tinoco and Coco
(2018) demonstrated a positive correlation between turbulent kinetic energy levels and the
vegetation array density since the turbulence kinetic energy (TKE) is the primary driver
of resuspension [25]. Although it is commonly thought that the presence of vegetation in
rivers can lead to the decrease in resuspension and increase in deposition of sediment, the
scour zones around vegetation elements indicate that the presence of vegetation can cause
the erosion of the bed [26,27]. These various phenomena are because of different vegetation
arrangement and densities. As claimed by Nepf (2012), with a low vegetation arrangement
density, the near-bed turbulence can be higher than that over the neighbor bare bed [28].

The vegetation distribution can be classified as either dense or sparse by using CDah,
in which CD is the vegetation drag coefficient, a is vegetation density m−1, and h is the
vegetation bending height. A vegetation patch can be considered as dense if CDah > 0.1 [29].
In dense vegetation, the turbulence near the channel bed reduces, contributing to sediment
retention. For sparse vegetation, CDah < 0.1, and the turbulence near the bed with the
presence of sparse vegetation will increase as stem density increases.

Because of vegetation’s positive impacts on water quality, habitat, and channel sta-
bility, researchers now advocate replanting and restoring projects in rivers, especially in
agricultural waterways, floodways, and emergency spillways. The expansion of vegetation
in fluvial systems may worsen the flood impact since highly dense vegetation reduces
the channel’s capacity and width. Therefore, an accurate and critical assessment of the
vegetation density and distribution pattern through reduction of bulk velocity is crucial
in sustainable restoration projects. Results of this study will provide vital information
for river management, channel restoration, and rehabilitation of fluvial environments
through understanding the effect of various vegetation densities, arrangement patterns,
and morphology.

2. Materials and Methods
2.1. Flume, ADV, and SonTek IQ Used for This Study

Experiments have been carried out in a large-scale outdoor flume. This flume is
38 m long, 2.0 m wide, and 1.3 m deep, as shown in Figure 1. The longitudinal slope of
the flume bed was 0.2%. Two water depths of 20 cm and 30 cm have been used for this
experimental study by adjusting the tailgates at the end of the flume. These water depths
were chosen based on a real situation in nature since the submerged vegetation typically
grows in shallow regions of rivers. Flowing water was supplied by a pump and three
valves that feed the upstream holding tank. Water in the holding tank upstream of the
main channel was maintained at a constant water level. The desired constant flow rate,
which is 100 cm3/s in this study, was obtained by adjusting these three valves. The holding
tank has a volume of 90 m3 to keep a constant water level during each experimental run.
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Figure 1. The layout of the experimental flume (vertical and plan views).

The aspect ratio W/H is defined as the ratio of the flume width to water depth. For
both water depths of 20 cm and 30 cm used in this experimental study, the flume is classified
as a wide flume since the aspect ratio is greater than 5 to 10. This means that in this flume,
the effects of the side walls of the channel and the secondary currents can be ignored in the
center zone of the flume [30].

There were two sandboxes which are spaced 10.2 m from each other. These sandboxes
were 2 m wide and 0.3 m deep. The upstream sandbox was 5.6 m long and the downstream
one was 5.8 m long.

In this experimental study, a down-looking Acoustic Doppler Velocimeter (ADV)
10-MHz, developed by Nortek, was used to measure the instantaneous three-dimensional
velocity components with a sampling rate of 25 Hz and a sampling volume of 0.25 cc
(Figure 2a). The duration of each measurement was 2 min, acquiring 3000 instantaneous
velocity data at each measurement point. The vertical intervals between two consecutive
points for each velocity profile were 10 mm. The signal-to-noise ratio (SNR) was recorded
in the ADV file and used for assessing the strength of the received acoustic signal against
the ambient electronic noise level of the ADV [31]. To obtain high-quality data from the
ADV, SNR values should be greater than 5 dB for measurements of the mean flow velocity
and greater than 15 dB for the instantaneous velocity or turbulence quantities. The filtering
method of Goring and Nikora (2002) [32] and Wahl (2002) [33] was selected in this study.
The WinADV software was used for data filtering. One of the real-time outputs provided
by the ADV is a statistic correlation to assess the quality of the velocity measurements. If
the average correlation was less than or equal to 70%, the measured velocity data were
filtered out.
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Measurements at any depth less than 10 cm from the water surface could not be used
due to limitations of the ADV since the distance of the sampling volume in this ADV is
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located 10 cm below the transmitter. It means that the collected data are from the near
bed up to 10 cm below the water surface where the ADV was operational. The fluctuating
turbulence near the channel bed is more important than that near water surface. Since
most sediment transport caused by drag force resulted from vegetation elements and bed
shear stress occurs closer to bed [34,35], one can conclude that the limitation of the ADV
for measuring the fluctuations from water surface to 10 cm below it does not affect the
results much.

After removing spikes using the WinADV software, velocity fluctuation in the longitu-
dinal (x), lateral (y), and vertical (z) directions were calculated as follows:

u′ = ui − u
v′ = vi − v

w′ = wi − w
(1)

where u, v, and w are the time-averaged velocities that correspond to the directions x, y,
and z, respectively; ui, vi, and wi are the instantaneous velocities that correspond to the
directions x, y, and z, respectively. The x axis is aligned with the direction of the mean flow.
The y axis is the spanwise direction, and the z axis is vertical, with z = 0 at the channel bed,
and positive upward.

The equilibrium state of the scour process in vegetated channels will achieve after
48 h [36]. To make sure that the exact flow rate has been obtained over the duration of
48 h, a SonTek-IQ Plus was used (Figure 2b). This precise and robust apparatus was also
used to measure the average velocity and water depth with advanced post-processing
functions [37]. The SonTek IQ is a semi-rectangular shape designed to mount on the channel
bottom. Because of the sleek silhouette of the SonTek IQ, its impact on flow is minimal.
The surface slope ∂H/∂x was measured using a staff gauge installed in the middle of the
sandbox to verify the water depth manually.

2.2. Sediment Used in Experiments

The sandbox is filled with non-uniform sediment with a median particle size (D50) of
0.50 mm. The standard deviation (σ =

√
D84/D16) was used to analyze the uniformity of

the distributions where D84 and D16 are 84% and 16% finer particle diameters, respectively.
The smaller the value of σ, the more well-sorted the sediment is [38]. The standard deviation
for the sand with median grain size of 0.50 mm in this study is 1.97. Based on that, the
sand size used in this experiment is non-uniform. The grain size distribution was obtained
using a mechanical shaker and seven different-sized sieves. Figure 3 shows the grain size
distributions of the bed material.
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The following equation proposed by Hager (1999) is used for determining the rough-
ness coefficient of the channel bed [39]:

nb = 0.039D(1/6)
50 (2)
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where nb is the roughness coefficient of the channel bed and D50 is median grain size of
sediment particle. Therefore, the roughness coefficient of sand bed, nb, is estimated as 0.011
for D50 = 0.0005 m.

2.3. Vegetation Settings

The model flexible vegetation elements used in this study are made of plastic material.
The selected artificial vegetation flexibility is commensurate with the geometry and flexural
rigidity of typical aquatic vegetation growing in natural rivers. Each vegetation element
consisted of five blades attached to it. Every vegetation element was attached to a grid mesh
panel with the spacing distances respectively of 15 cm and 25 cm in a square configuration,
and 10.61 cm and 17.68 cm in a staggered configuration. Then, the grid mesh panel with
vegetation elements was placed and buried 10 cm below the sand bed surface. Afterward,
the surface of the sandbox with vegetation was carefully leveled. By doing so, the vegetation
elements were fully stabilized in the sand, representing a natural situation with roots in
channel bed.

Figure 4 shows the positions for measurement using an ADV (ADV positions) in
channel bed with two different vegetation arrangement patterns, namely, the square and
staggered configurations. Measurements at 24 ADV positions around vegetation elements
provide robust information for detecting flow structure and turbulence. To determine the
wake structure behind each vegetation element, the velocity profile was taken at three
points in the wakes of some vegetation elements, as shown in Figure 4.
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Figure 4. Schematic top view of a vegetative zone in the flume. Black pronged shape shows the
positions of individual vegetation elements. Black circles are ADV measurement locations in the wake
of each vegetation element. Red circles show the ADV location between two vegetation elements,
and green circles show the ADV location in the center of four vegetation elements which have been
placed in a square pattern. The spacing distance between adjacent vegetation elements is shown in
the figure.

The flowing water from upstream passes through the submerged vegetation patch.
After a certain distance from the upstream edge of the submerged vegetation patch, the
flow will be fully developed. Upstream of submerged vegetation, flow follows boundary
layer conditions. Once the flow approaches submerged vegetation, this condition turns
into a mixing layer. In the mixing layer flow, the shear layer known as Kelvin–Helmholtz
vortices will be developed and reaches an equilibrium in size depending on the vegetation
density and submergence ratio [40]. The flow within the submerged vegetation is fully
developed when equilibrium is achieved. In this study, all velocity profiles are collected
using the ADV in the fully developed flow inside of the vegetation patch, which is different
from the fully developed flow in channels without the presence of vegetation.

In the presence of a finite vegetation patch, channel resistance and conveyance are
modified, at least locally, resulting in a deviation from uniform flow conditions [41]. In
addition, the channel has a longitudinal slope of 0.2% and the bed material is non-uniform
sand, which leads to non-uniform flow in the experiment.
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The canopy zone can be divided into two sub-zones: the longitudinal exchange zone
(z < hp) and vertical exchange zone (z > hp) (where z is vertical distance from the bed
and hp is penetration depth). The penetration depth (z = hp) is defined as the point into
the canopy where shear stress decays to 10% of its maximum value. As canopy density
increases (ahCD > 0.2), the penetration depth decreases [42]. Note that CD is the drag
coefficient of vegetation, a is vegetation density a (m−1), and h is the bending height of
vegetation. The canopy becomes less ventilated since eddies no longer enter the bed [43].
The designated momentum in the longitudinal exchange zone is a balance of pressure
gradient or bed slope and vegetative drag. Turbulence in this region is generated at stem
wakes and represents the stem morphology. However, in the vertical exchange zone, flow is
affected by momentum balance, contributes to scalar exchange, and turbulence is generated
by the KH instabilities [44]. In other words, the difference in drag magnitude between the
non-vegetated and vegetated zones leads to the Kelvin–Helmholtz (KH) vortices occurring
at the interface between vegetated zones and water. The KH vortices can promote the mass
and momentum transport within and over canopies [44,45]. For instance, turbulent mass
exchange across the canopy–water interface can regulate the nutrients and contaminants.

To investigate the influence of vegetation density on flow structure, artificial vegetation
with densities of 16, 32, 36, and 72 stems/m2 were used in this study. It may be sufficient to
parameterize vegetation based on stem diameter, density, and the number of plants per
area for flow without leaf and non-bending vegetation [46,47].

The vegetation density a (m−1) was determined by dividing the projected vegetation
area by the vegetation volume (Equation (3)) as [48]:

a =
A
V

=
nAi

WhL
(3)

where n is the amount of vegetation in the area of (W * L), W is the channel width, Ai
is the mean frontal vegetal area, h is the vegetation bending height, and L is the length
of channel in which n was counted. Considering five blades per vegetation element, the
vegetation density a varies from 0.256 m−1 to 1.2 m−1. Finally, a non-dimensional measure
of the canopy density λ = ah, known as the roughness density, was calculated. The frontal
area of vegetation was determined using an image analysis software. This software was
designed to distinguish between black and white zones to calculate the silhouette of the
vegetation. According to Belcher et al. (2003), there is a scale to distinguish sparse and dense
vegetation [29]. In a sparse regime (λ = ah < 0.1), the vegetation drag is small compared to
the bed roughness. Therefore, flow velocity acts following the boundary layer profile. In
this regime, the turbulence near the bed will increase as the stem density increases. On the
other hand, in dense vegetation regime (λ = ah > 0.1), the vegetation drag is clearly high
compared to the bed stress. An increase in the vegetation density will lead to a decreased
near-bed turbulence and increased sedimentation. The vegetation density in this study
is summarized in Table 1. One can see from Table 1 that the range of the canopy density
λ = ah is 0.04 < λ ≈< 0.23. Some researchers found that, for 0.1 < λ ≈< 0.2, the eddies in the
mixing layer penetrate toward the bed. In this study, the vortices (eddies) in the middle
layer of the flow, named the mixing layer, penetrate toward the bed and are responsible for
turbulence patterns across the vegetation, benefiting the resuspension of sediment [49,50].
As a result, no penetration depth needs to be calculated in the present study because the
eddies reach the bed.
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Table 1. Vegetation density parameters in this study.

Configuration of Vegetation
Elements

Vegetation Density
a(m−1)

Canopy Density
(λ = ah)

Square non-bending
0.624

0.12
Square deflected 0.09

Staggered non-bending
1.2

0.23
Staggered deflected 0.17

Square non-bending
0.256

0.05
Square deflected 0.04

Staggered non-bending
0.506

0.1
Staggered deflected 0.07

Some researchers used the inflexible and idealized cylinders to represent vegetation
to investigate the complicated flow structure caused by vegetation; it is unable to fully
predict the behavior of natural vegetation due to its differences in roughness, flexibility,
and drag coefficient. Besides, flow structure around a single cylinder or vegetation element
cannot be generalized for a vegetation patch since a group of cylinders or vegetation
elements interact with each other and on flow structure through sheltering effect, blocking
effects, and flow separation. Compared to a single cylinder, turbulent fluctuations in the
wakes of upstream elements introduce additional kinetic energy to the boundary layer
of each element, delaying separation and reducing drag coefficient [47,51]. Therefore,
properly characterizing morphological properties of vegetation is essential for studying the
hydrodynamics of vegetated streams. To investigate the effect of the flexibility and height
of vegetation on flow, both deflected and non-bending morphology of vegetation were
used in this study (Figure 5). In one of these vegetation settings, all vegetation elements
were placed in a fully non-bending setting to represent the stiff and rigid vegetation patch
(Figure 5a). In this way, the vegetation exhibits no deformation during the experiments,
representing the real situation of reeds and sedges in natural rivers. In another setting,
all vegetation elements were deflected, representing the flexible vegetation in streams
(Figure 5b). The height of non-bending and deflected vegetation elements in 20 cm water
depth was 12.6 cm and 8 cm, respectively, and 19 cm and 12 cm in the 30 cm water depth.
As you saw in Figure 1, the length of each sandbox is around 5.5 m. The 3 m long vegetation
region was located in the middle of the sandbox. The vegetation has a certain degree of
flexibility and can swing under flow, but it does not deform. The morphological properties
of the vegetation such as the vegetation deflected height are related to some other hydraulic
properties of flow such as flow depth and velocity.
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The ratio of the flow depth to the vegetation bending height is defined as the degree of
submergence (Sr = H/h) [52]. Thus, the degree of submerged vegetation in this study were
selected as 1.58 for non-bending and 2.5 for deflected vegetation arrangement, respectively.

Each vegetation element has the width of 10 mm at the bottom and 22 mm at the top,
respectively. Thus, average width of each element was considered as 16 mm. In the present
study, for the case of the densest vegetation configuration, the ratio of the total vegetation
thickness to the channel width, D/W, was smaller than 0.5; therefore, the effect of channel
blockage on the wake structure can be negligible.

The vegetation Reynolds number associated is defined as:

Red =
Ud
υ

(4)

where U is the mean flow velocity, d is the stem diameter, and υ is the kinematic viscosity
of water.

Fr =
U√
gH

(5)

where g is the gravitational acceleration and H is the water depth. Both calculated Reynolds
numbers and Froude numbers indicated that the flow was fully turbulent and subcritical
for all cases; therefore, no dependence on Fr number was expected.

To start each experimental run, one valve with the low discharge (5 L/s) was gradually
opened while the tailgates downstream were closed to avoid sediment being washed away.
From the holding tank, water was gently discharged through the spillway into the flume.
To maintain the desired flow rate, all three valves were fully opened once the desired water
depth was reached. In this study, 32 experimental runs have been conducted including two
different submergence ratios, four different vegetation densities with two different layouts
including square and staggered configurations for two flow depths of 20 cm and 30 cm.
Some of the measured hydraulic data for the flow depth of 20 cm are presented in Table 2.

Table 2. Some data for the flow depth of 20 cm.

Configuration Density (Stem/m2) Flexibility U (cm/s) Red λ
u*

(cm/s) h/H

square
16

deflected 15.15 2423.52 0.0487 3.08 2
non-bending 17.31 2770.35 0.0359 2.94 1.3

36
deflected 14.87 2378.56 0.0874 3.42 2

non-bending 17.58 2813.30 0.1186 3.49 1.3

staggered
32

deflected 14.73 2356.67 0.0961 2.56 2
non-bending 18.11 2897.52 0.0709 3.16 1.3

72
deflected 12.46 1993.90 0.168 2.68 2

non-bending 16.93 2708.75 0.228 3.49 1.3

3. Results and Discussions
3.1. Velocity

In this study, the values of shear velocity (u∗) were obtained using the boundary layer
method [53]:

u∗ =
(δ∗ − θ) umax

Cδ∗
(6)

where umax is maximum streamlined velocity, and C is an empirical constant that was found
to be equal to 4.4 in laboratory experiments [53]. The parameter δ∗ is the boundary layer
displacement thickness and indicates the distance by which the external streamlines are
shifted owing to the formation of the boundary layer. It is impossible to present a boundary
layer thickness in an unambiguous way because the effect of viscosity in the boundary
layer decreases asymptotically outwards [54]. In order to avoid utilization of an arbitrary
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boundary layer thickness, it is necessary to consider the boundary layer displacement
thickness, δ∗ [55]:

δ∗ =
∫ H

0

(
1− u

umax

)
dz (7)

where u is the mean point velocity at a distance z measured from the reference level.
Furthermore, the momentum thickness (θ) in Equation (6) indicates the loss of momentum
in the boundary layer as compared with potential flow and is defined as:

θ =
∫ H

0

u
umax

(
1− u

umax

)
dz (8)

The exact values of δ∗ and θ depend upon the distribution of downstream velocity at
the cross-section normal to the flow.

In a channel with the presence of vegetation, there is an inner layer called the emergent
zone that is controlled by stem scale turbulence. Above that layer, there is a layer with
Kelvin–Helmholtz (KH) vorticities that dominate mass and momentum exchange. The
logarithmic layer refers to the upper layer of turbulent flow where the velocity profile
follows a log shape [56]. Kazem et al., 2021, reported these three layers were present
in all cases of their experiments [57]. The logarithmic profile may be described by the
Karman–Prandtl equation:

u = u∗

(
Ln

z− δ∗
z0

)
/κ (9)

where u∗ is the shear velocity, z0 is the roughness height, and κ is the von Karman constant,
which is 0.41. The value of δ∗ was determined to be 0.02 m through Equation (7) for
non-bending vegetation and 0.03 for deflected vegetation. In this study, z0 is assumed to be
equal to D50.

Results of the velocity showed there are significant differences by changing the den-
sity, morphology, and layout of vegetation. In addition, velocity is affected by both the
measurement position and water depth using an ADV.

Figure 6 shows velocity profiles in the presence of a deflected and non-bended vege-
tation patch in the channel bed. One can see from this figure that these velocity profiles
deviate from the logarithmic law distribution (the Karman–Prandtl Equation) and are
confined to the upper part of the flow in the presence of the vegetation patch. In addition,
there exists a very good correlation-ship between u/u∗ and (z − δ∗)/z0. Note: a logarithmic
profile in the flow’s inner layer cannot be developed due to the presence of vegetation [58].
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3.1.1. Effects of Vegetation Density on Streamwise Velocity

The velocity profiles for the different vegetation densities in the fully developed region
are compared, as shown in Figure 7. One can observe from Figure 7 that with the increase
in the vegetation density (a = 0.624 m−1), the flow velocity within the canopy decreases,
and correspondingly the flow velocity above the canopy increases.
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Figure 7. Velocity profiles with high vegetation density (a = 0.624 m−1) and lower vegetation density
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arrangement of vegetation in the wake behind vegetation (black circles in Figure 4).

In the rear of the vegetation wake zone, vegetation creates resistance to flow, and
causes flow separation and a decrease in flow velocity near the bed. This phenomenon is
the main reason for sediment retention especially behind the deflected vegetation patch
with high density. Although this statement is generally true, scour holes around vegetation
stems have been observed in many studies and are dependent on vegetation density.
Vegetation deflection can be viewed as a passive “drag-reduction” strategy exhibited by
vegetation. As shown in Figure 7, the inflection points at the top of the deflected vegetation
in the wake zone behind the vegetation are sensible (see arrows in Figure 7a). This finding
is in good agreement with that of other researchers that velocity profiles in flows with
submerged vegetation contain an inflection point near the top of the vegetation [42,59].
There is an increase in velocity on top of the canopy of the deflected vegetation at z/H = 0.4
compared to the inner layer of vegetation. The difference between the drag magnitude in
the non-vegetated zone and that in the vegetated zone causes the Kelvin–Helmholtz (KH)
vortices at the interface between vegetation and non-vegetation layer. The KH vortices
promote mass and momentum transport both within and over canopies [44,45,47]. The KH
instabilities significantly affect the large-scale turbulence structures and the momentum
transfer between the non-vegetated and vegetated regimes. The effects of KH instabilities
show their effect as an inflection point in velocity profiles [42,59]. Decreasing deflected
vegetation spacing (i.e., increasing canopy density) largely retards streamwise velocity at
(z/H ∼= 0.3), slightly below the inflection point (see Figure 7a). The inflectional region tends
to disappear when the canopy becomes sparser resulting in an increase of the shear length
scale associated with the velocity field. Non-bending vegetation lacks this.

On the other hand, in the presence of the non-bending vegetation in the channel bed,
for the sparsest vegetation (a = 0.256 m−1), the highest velocity occurs near the bed and
lowest velocity near water surface. The peak velocity occurs at the depth of z/H = 0.1,
that is, the sheath section where the frontal width is minimal. Because the sheath section
is more porous than the middle vegetated layer, it can handle larger flows [11]. A high
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negative velocity gradient happened from z/H = 0.1 to z/H = 0.15. Then, a decreasing
trend of velocity to the water surface is noticeable.

According to Figure 7, it is suggested that the dense deflected vegetation (λ ≥ 0.1)
results in the decrease in sediment transport in streams by reducing the velocity near the
bed more than non-bending vegetation and sparse densities. Therefore, it is suggested that
dense vegetation provides better protection for beds subject to erosion and scour.

3.1.2. Effects of Water Depth of Streamwise Velocity

In the presence of non-bending vegetation in the channel bed with the flow depth
of 20 cm, a high velocity gradient has been observed from the channel bed z/H = 0 to
the depth of z/H = 0.1 where a peak velocity was reached. After this depth, a decreasing
trend of velocity toward the water surface (when 0.1 < z/H < 1.0) is noticeable (Figure 8).
However, for the deeper flow of 30 cm, the peak velocity occurs at a larger distance from
the channel bed but closer to the water surface. It has also been noticed that, from the
depth of z/H = 0.1 to the water surface, the value of flow velocity does not change. The
dip phenomenon (the position at which the maximum velocity appears below the water
surface) was observed for the case of the non-bending vegetation.
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square configuration, (a) water depth = 20 cm; (b) water depth = 30 cm.

In the wake zone of deflected vegetation, the velocity in the inner layer of 20 cm-depth
flow is less than that in the 30 cm-depth flow, and the velocity in the upper layer in the
20 cm-depth flow is more than that in the 30 cm-depth flow. It can be concluded that, by
keeping the same submergence ratio, the shallower the flow depth, the lower the flow
velocity in the inner layer in the wake zone of deflected vegetation, and the higher the flow
velocity in the outer layer.

Thus, both the flow depth and morphology of vegetation have a substantial effect on
the velocity profile. For the non-bending vegetation case, a peak velocity value appears
near the bed in shallow water, implying that the non-bending vegetation acts like an
emergent vegetation. Therefore, fine sediment particles cannot be easily retained behind
the vegetation patch due to high flow velocities. In contrast, in the presence of deflected
vegetation in a channel bed, the velocity near bed is smaller than that of non-bending
vegetation mainly due to the sheltering effect behind vegetation (see Section 3.2. Turbulence
Kinetic Energy for more information). In a deeper flow (30 cm), the peak velocity is shifted
toward the water surface compared to that in a shallower flow (20 cm) with high velocity
near the channel bed. As a consequence, sediment deposition is more probable in a deeper
flow comparing to that in a shallower flow.
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3.1.3. Effects of Square Arrangement on Velocity Profile

Figure 9 shows the dimensionless time-averaged streamwise velocity distribution
between two vegetation elements (red circles in Figure 4) and in the center of four vegetation
elements (green circles in Figure 4) with a density of a = 0.624 m−1 in the flow with the
depth of 20 cm compared to that in the flow with the depth of 30 cm.
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Figure 9. Dimensionless time-averaged streamwise velocity distribution in the presence of square
vegetation configuration with a vegetation density of a = 0.624 m−1. ADV locations: between two
vegetation elements (red circles in Figure 4) and in the center of four vegetation elements (green
circles in Figure 4): (a) water depth = 20 cm; (b) water depth = 30 cm.

In the presence of dense non-bending vegetation with a square arrangement pattern
in the channel bed, for the flow with a depth of 20 cm, the difference between mean
streamwise velocities in the middle of two vegetation elements and those in the wake of
vegetation elements is 27.39%; and the difference between mean streamwise velocities in
the center of four vegetation elements and those in the wake of vegetation elements is
30.64%. In the presence of dense deflected vegetation in the channel bed, these values are
26.79% and 28.08%, respectively. For the flow with a depth of 30 cm, the same trend was
calculated. According to these results, in the presence of dense vegetation of λ ≥ 0.1, the
velocity in the middle of two vegetation elements is lower than that in the center of four
vegetation elements. Accordingly, in vegetation with a high density, the width of the wake
behind the vegetation is narrow, leading to the increase in the flow velocity in the center of
the vegetation elements. In other words, the vegetation with a high density reduces the
flow cross-sectional area locally, and thus results in a narrow wake behind the vegetation
which diminishes faster within a shorter distance compared to that for the case of sparse
vegetation. In contrast, in the presence of sparse non-bending vegetation with low density
(i.e., λ < 0.1) in the flow with a depth of 20 cm, the difference between the mean streamwise
velocities in the middle of two vegetation elements and those in the wake of vegetation
elements is 20.56%; and the difference between the mean streamwise velocities in the center
of four vegetation elements and those in the wake of vegetation elements is 12.05%. For
the case of deflected vegetation, these differences are 34.48% and 33.75%, respectively. The
same trend was observed in the flow with a depth of 30 cm. This finding shows that, in the
presence of sparse vegetation in the bed, the mean streamwise velocity in the middle of
two vegetation elements is higher than that in the center of four vegetation elements. This
effect indicates the presence of a wide wake behind each vegetation element that attenuates
the velocity at the center of four vegetation elements.

3.1.4. Effects of Staggered Arrangement on Velocity Profile

Figure 10 shows the velocity profiles in the presence of both deflected and non-bending
vegetation arranged in a staggered layout in flows with different depths of 20 cm and 30 cm,
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respectively. The characteristics of velocity profiles of flow in the presence of vegetation
with a staggered arrangement follow the same trend as those of velocity profiles in the wake
of vegetation arranged in a square configuration, as discussed above. However, velocity
profiles are more inflectional in vegetation with a staggered arrangement compared to
square arrangement. As one can see from Figure 10, the velocity profile for the case of the
staggered vegetation arrangement in the wake of deflected vegetation has an “S” shape. In
the middle part close to the leaf zone of vegetation, the flow velocity reaches its maximum.
In this zone, the drag force causes an appreciable retardation of the mean velocity; in the
flow with a depth of 30 cm, this zone is located at 0.1 < z/H < 0.15, and in the flow with a
depth of 20 cm, this zone is located at 0.15 < z/H < 0.25. As the velocity increases with the
distance above the vegetation zone, the drag resulted from vegetation gradually diminishes,
and the shear stresses decline until zero at the free water surface.
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3.1.5. Velocity Contours in Square Arrangement

In Figure 11, two-dimensional and three-dimensional velocity contours are presented
near the bed (at a depth of z/H = 0.1) and at the top of deflected vegetation (at a depth of
z/H = 0.4). The depression spot in the contours in Figure 11a illustrates the wake zone of
vegetation in the separation flow zone where sediment deposition was observed. Near the
bed, velocity is higher between rows of vegetation elements. These graphs demonstrate
that velocity in the center of the square formed by four vegetation elements is lower than
that in the middle two vegetation elements. This figure confirms the results of Section 3.1.3.
Some spikes in Figure 11b indicate high velocities at the interface between the deflected
vegetation and non-vegetation layer as inflection points in velocity profiles compared to its
neighboring zone.

3.2. Turbulence Kinetic Energy (TKE)

The generation of vortices in the stem wake zone behind vegetation drains energy
from the mean flow and feeds it into turbulent kinetic energy (TKE). In this case, turbulent
energy is produced at the same rate as the work done by the flow against vegetation
drag [60]. Most sediment transport models are based on bed shear stress in a bare channel
since turbulence is related to bed stress. However, in vegetated channels, the turbulence
level is related to the vegetative drag and has little or no link to the bed shear stress [47].

The local turbulent kinetic energy was defined as

TKE = 1/2
(

u′2 + v′2 + w′2
)

(10)
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where u′, v′, and w′ represent the root-mean-square velocity fluctuations (RMS), indicating
the mean energy per unit mass related to turbulent eddies in streamwise, lateral, and
vertical directions, respectively.

RMS(u′) = u′ =
√

u′2

RMS(v′) = v′ =
√

v′2

RMS(w′) = w′ =
√

w′2
(11)
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Figure 11. Contours and 3D velocity graphs in vegetation with density of λ = 0.09 at (a) near the bed
at the depth of z/H = 0.1; (b) top of deflected vegetation at the depth of z/H = 0.4.

Compared to that TKE measured between two vegetation elements and those in the
center of squares formed by four vegetation elements (vegetation-free streamline), as shown
in Figure 12, the TKE was significantly enhanced by vegetation. In this study, this trend
will be discussed in greater detail.
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Figure 12. Comparison of Turbulence Kinetic Energy (TKE) between deflected vegetation morphol-
ogy and non-bending vegetation morphology at different positions: (a) higher vegetation density
(a = 0.624 m−1); (b) lower vegetation density (a = 0.256 m−1).

The TKE in Figure 12 in the wake of the vegetation depicts that the maximum
RMS(u′), RMS(v′), and RMS(w′) occur either at the sheath section of the vegetation
(at the depth of z/H = 0.1) or above the top of the vegetation (at the depth of z/H ≥ 0.4).

In the sheath section, the frontal projected area is small, and flow can mostly pass
through the sheath section. Furthermore, stem scale turbulence was boosted at the sheath
section. Turbulence generated by individual stem wakes was attributed to the enhancement
of TKE behind vegetation at the depth of about z/H = 0.1. The near-bed turbulence kinetic
energy is enhanced by both bed-generated and vegetation-generated turbulence in the
presence of submerged vegetation. In the region slightly far from the channel bed to the
vegetation top, the presence of the von Karman vortex street results in the enhancement
of TKE comparing to that in unvegetated channels. Due to the increased turbulent kinetic
energy (TKE) associated with the von Karman vortex street, which inhibits sediment
deposition, the location of the vortex formation indicates an important transition between
zones where net deposition increases and zones where net deposition diminishes compared
to those without the presence of vegetation in the bed [61].

On the other hand, there are no obstructions to the flow at the top of the vegetation.
Thus, the TKE terms reach their maximum values. This result confirms that of Afzalimehr
et al. (2011) [62]. During the transition from the vegetated zone to the unvegetated zone,
the kinetic energy has the opportunity to enhance itself.

While in the profiles at the points either between two vegetation elements or in the
center of the square formed by four vegetation elements, the TKE near the bed was greater
than the TKE behind vegetation elements. As shown in Figure 12, TKE near the bed
(z/H = 0) in the wake of vegetation elements starts at zero; however, a TKE between
two vegetation elements and in the center of square formed by four vegetation elements
(vegetation-free streamlines) does not equal zero (TKE > 0). This is a well-known effect of
the submerged vegetation on turbulence, and it is called the sheltering or dampening effect.
A sheltering effect occurs when two bodies are positioned so that one is located in the
wake of the upstream body [63]. The downstream body experiences a lower approaching
velocity than that for the upstream body, resulting in a lower drag force. Depending on how
vegetation elements are arranged, the sheltering effect can be relevant to vegetation-covered
flows [51].

As shown in Figure 12, the TKE profiles for vegetation densities of a = 0.624 m−1

and a = 0.256 m−1 indicate a greater effect of this phenomenon in denser vegetation due
to a shorter distance between vegetation elements (or smaller spacing distance between
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vegetation elements). Therefore, the sheltering effect is more evident in denser vegetation
comparing to that in sparse vegetation. This effect can enhance sediment deposition and
protect the bed from erosion [64,65]. Nosrati et al., 2022 [66], found that the bending
deformation of vegetation results in a significant reduction in the spacing distance between
vegetation elements, causing an intensified sheltering effect and a lower form drag force.
The TKE decreases significantly near the bed (0 < z/H < 0.05) in the wake zone of denser
vegetation. In addition, with the decrease in the flow depth from 30 cm to 20 cm, the
TKE near the bed decreases. Shahmohammadi et al. (2018) [8] found that the TKE in bare
channels is greater compared to the upstream-approaching flow from a vegetated channel.
Results of the present study are in good agreement with that of Shahmohammadi et al.
(2018) [8]: namely, as the vegetation density decreases, the TKE near the bed (z/H = 0)
increases.

One can see from Figure 13, in the wake zone behind each vegetation element, the
TKE value at the top of the deflected vegetation has a high value, confirming the presence
of KH vortices at that flow depth. This result is in agreement with that of Kazem et al.
(2021) [67]. In addition, near the channel bed, the high value of TKE took place in the
pathway between vegetation elements. This high value of TKE should be the main cause of
sediment transport in vegetated channels. It has been noticed from Figure 13b that the TKE
has a low value in front of each vegetation element near the bed that was discussed above
as a sheltering effect.
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Figure 13. Contour of Turbulence Kinetic Energy (TKE) for deflected vegetation case having a square
configuration (λ = 0.04, water depth = 30 cm): (a) around the top of vegetation z/H = 0.4l; (b) near
the bed z/H = 0.

3.3. Shear Stress

In this study, the primary turbulent Reynolds Shear Stress (RSS) τ at a distance from
the bed of z was determined from

τ(z) = −ρ< u′w′ > (12)

where ρ is the mass density of fluid, angle brackets denote the spatial average of flow
variables, and u′ and w′ are instantaneous velocity fluctuations in the longitudinal and
vertical directions, respectively. The values of RSS were normalized by the square of shear
velocity (u2

∗).
Results show that the presence of vegetation in a channel bed causes a deviation of the

RSS distribution from the linear one. It is also noticed that the RSS distribution is influenced
by the aspect ratio (W/H) [62].

In Figure 14, in the presence of vegetation elements with a square arrangement
(a = 0.624 m−1), the RSS has been displayed at the following locations: in the middle
of two vegetation elements (red circles in Figure 4), at the center of the square formed by
four vegetation elements (green circles in Figure 4), in the wake zone of vegetation elements
(black circles in Figure 4), and in the wake zone of vegetation elements with staggered
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configuration (a = 1.2 m−1). At the same location as shown in Figure 14, the RSS presents
in Figure 15 for vegetation densities of (a = 0.256 m−1) for a square configuration and
(a = 0.506 m−1) for a staggered configuration of vegetation elements.

1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Normalized Reynolds Shear Stress (flow depth = 20 cm): (a) Square configuration of
deflected vegetation in the wake zone of vegetation, between two vegetation elements and in the
center of four vegetation elements with λ = 0.09; (b) Square configuration of non-bending vegetation
in the wake zone of vegetation, between two vegetation elements and in the center of four vegetation
elements with λ = 0.12; (c) Staggered configuration of deflected vegetation in wake of three random
vegetation elements with λ = 0.17; (d) Staggered configuration of non-bending vegetation in wake of
three random vegetation elements with λ = 0.23.
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Figure 15. Normalized Reynolds Shear Stress in (water depth = 20 cm): (a) Square configuration of
deflected vegetation in the wake of vegetation, between two vegetation elements and in the center of
four vegetation elements with λ = 0.04; (b) Square configuration of non-bending vegetation in the
wake of vegetation, between two vegetation elements and in the center of four vegetation elements
with λ = 0.05; (c) Staggered configuration of deflected vegetation in wake of three random vegetation
elements with λ = 0.07; (d) Staggered configuration of non-bending vegetation in wake of three
random vegetation elements with λ = 0.1.

Results showed that the RSS is highly affected by vegetation density, morphology, and
the place for data collection as displayed in Figures 14 and 15. For the case of non-bending
vegetation with a square configuration and density of (a = 0.624 m−1), the RSS does not
change much throughout the flow depth between two vegetation elements, and at the
center of the square formed by four vegetation elements with a slight fluctuation pattern
(Figures 14 and 15b). Inside the inner layer of the vegetation, however, more fluctuation
in shear stress has been noticed with the negative values of RSS near the water surface.
The negative values of RSS near the water surface for the non-bending vegetation case
are attributed to turbulent fluxes associated with vegetation morphology and negative
streamwise velocity gradients (see Figure 9a).

For the deflected vegetation case (Figure 14a), similar to the non-bending vegetation
case (Figure 14b), constant RSS through the water depth was observed between two
vegetation elements and at the center of the square formed by four vegetation elements.
However, the RSS values for the deflected vegetation case are higher than those for the non-
bending vegetation case. For the case of deflected vegetation with a square configuration,
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at the center of the square formed by four vegetation elements and between two vegetation
elements (see Figure 14a), the RSS has a maximum value at a depth of z/H = 0.15. However,
in the wake zone behind the deflected vegetation, the maximum value of RSS occurred at an
elevation slightly higher above the top of the vegetation, indicating the presence of the KH
instability at the top of the deflected vegetation and slightly above the top of the vegetation
(z/H ≥ 0.4). As one can see from Figure 14a, above the top of the vegetation, the increasing
trend of RSS is continuous. The shift of the maximum RSS above the top of the vegetation is
caused by the presence of branches that alter the peak of RSS to a higher location above the
top of the vegetation. Near the channel bed, the RSS is close to zero and starts to increase
around z/H = 0.1, which is associated with stem scale turbulence at this zone. Then, the
RSS reaches the peak value at the depth above the vegetation bending height, namely
around z/H = 0.4. When the vegetation is deflected, the drag discontinuity at the edge of
the vegetation produces a shear layer at this interface. The Kelvin–Helmholtz instability
forms large coherent vortices within the shear layer, and these structures dominate vertical
transport between vegetation and the water column above.

When the vegetation elements are in a staggered layout, the RSS (Figure 14c,d and
Figure 15c,d) are similar to those in the wake zone of squared layout elements with inten-
sified RSS values. Thus, the streamwise velocity, TKE, and RSS for the staggered layout
vegetation are intensified compared to those for a square configuration.

The canopy morphology and resistance affect the depth to which KH vortices penetrate
the canopy. In the present study, the range of λ is 0.04 < ah = λ ≈< 0.23; consequently, the
mixing layer eddies penetrate toward the bed and are responsible for turbulence patterns
across the vegetation [49]. As a result, no penetration depth needs to be calculated in the
present study because the eddies reach the bed.

To assess the effect of the vegetation density on the RSS, comparing Figure 14 to
Figure 15, almost the same distribution pattern for the RSS was observed for all four
graphs. It is found that the RSS value increases with the decrease in the spacing distance
between vegetation elements. In other words, as the density of vegetation increases, both
the negative and positive values of RSS throughout the water depth increases. This result
is in agreement with that of Barahimi et al., 2018 [68], who concluded there existed greater
maximum and smaller minimum values of Reynolds shear stress in dense vegetation
comparing to that in sparse vegetation. However, for dense vegetation (λ > 0.1), as the
vegetation density increases, the influence of the bed shear stress decreases. Based on
that, the submerged vegetation can be viewed as an extra layer of riverbed, implying that
the dense vegetation has shielded riverbed roughness from its effects. As a result, the
influence of the bed can be negligible near the bed, and the vegetation density affects the
flow structure as a new layer of rigidity [7]. As the trend clearly showed in Figure 14d (the
densest vegetation), the RSS near the bed is negative compared to other profiles which
have zero or positive RSS near the bed.

4. Conclusions

Based on experiments in a large-scale flume, this study aims to better understand
the impact of morphology, density, and arrangement of submerged vegetation on flow
velocity, turbulence kinetic energy (TKE), and Reynolds shear stress. Most of the data were
collected in the wake zones behind vegetation elements, between two vegetation elements,
and at the center of a square formed by four vegetation elements. Results showed that flow
depth, density, and morphology of vegetation in the bed had a substantial effect on velocity
profiles. The following conclusions were drawn from this study:

In the presence of vegetation in the bed with a high density (λ = 0.09 and λ = 0.17), the
velocity between two vegetation elements is lower than at the center of square formed by
four vegetation elements. In other words, in the presence of vegetation with a high density,
the width of the wake zone behind the vegetation element is narrow; therefore, it leads
to the increase in velocity at the center of the square formed by four vegetation elements.
In other words, the vegetation with a high density reduces the flow cross-sectional area
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locally, and thus results in a narrow wake behind vegetation which diminishes faster within
a shorter distance compared to that for the case of sparse vegetation. On the other hand,
for the case of sparse vegetation (λ = 0.04 and λ = 0.07), the mean streamwise velocity
between two vegetation elements is higher than that at the center of a square formed by
four vegetation elements. This effect indicates the presence of a wide wake behind each
vegetation element that attenuates the velocity at the center of four vegetation elements.
With the decrease in the spacing distance between the deflected vegetation elements (i.e.,
increasing canopy density), the streamwise velocity will be largely retarded at the flow
depth of z/H ∼= 0.3 which is slightly below the inflection point. The inflectional region
tends to disappear when the vegetation canopy becomes sparser since the shear length
scale associated with the velocity field will be increased. This kind of inflection point
has not been observed in the non-bending vegetation. Besides, velocity profiles are more
inflectional for the case of a staggered arrangement of vegetation elements compared to
that for the case of a square arrangement of vegetation elements.

The dense deflected vegetation (λ ≥ 0.1) results in the decrease in sediment transport
in streams by reducing the velocity near the bed more than non-bending vegetation and
sparse densities. Therefore, it is suggested that dense vegetation provides better protection
for beds subject to erosion and scour.

The TKE behind vegetation starts at zero at the bed (z/H = 0); however, the TKE
between two vegetation elements and at the center of the square formed by four vegetation
elements has a value greater than zero (TKE > 0). This is a well-known effect of submerged
vegetation on turbulence and is called the sheltering or dampening effect. A greater
sheltering effect was observed in denser vegetation due to a shorter distance between
vegetation elements. The TKE in the wake of the vegetation depicts that the maximum
RMS(u′), RMS(v′), and RMS(w′) occur either at the sheath section of the vegetation (at
the depth of z/H = 0.1) or above the top of the vegetation (at the depth of z/H ≥ 0.4). In
the sheath section, the frontal projected area is small, and flow can mostly pass through
the sheath section. Furthermore, stem scale turbulence was boosted at the sheath section.
In the region slightly far away from the channel bed to the vegetation top, the presence
of the von Karman vortex street results in the enhancement of TKE comparing to that in
unvegetated channels.

In the wake zone behind the deflected vegetation, the maximum value of RSS occurred
at an elevation slightly higher above the top of the vegetation, indicating the presence of
the KH instability at the top of the deflected vegetation and slightly above the top of the
vegetation (z/H ≥ 0.4). Above the top of the vegetation, the increasing trend of RSS is
continuous. The shift of the maximum RSS above the top of the vegetation is caused by
the presence of branches that alter the peak of RSS to a higher location above the top of
the vegetation. Within the range of vegetation density in this study (0.04 < λ ≈< 0.23), as
the vegetation density increases, the negative and positive values of RSS throughout the
flow depth increase. However, for dense vegetation (λ > 0.1), as the vegetation density
increases, the influence of the bed shear stress decreases. Based on that, the submerged
vegetation can be viewed as an extra layer of riverbed, implying that the dense vegetation
has shielded riverbed roughness from its effects. When the vegetation elements are in a
staggered layout, the RSS are similar to those in the wake zone of squared layout elements
with intensified RSS values.

In the presence of non-bending vegetation in the channel bed with the flow depth of
20 cm, a high velocity gradient appears from the depth of z/H = 0 to z/H = 0.1, reaching a
peak velocity at the depth of z/H = 0.1, and a decreasing trend of velocity toward the water
surface is noticeable. However, for the deeper flow of 30 cm, the peak velocity occurs at a
higher location close to the water surface. The constant value of velocity from the depth of
z/H = 0.1 to the water surface has been observed. The dip phenomenon was observed in
the non-bending vegetation case.
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