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Abstract: Though the discontinuous Galerkin method is attracting more and more applications in
many fields due to its local conservation, high-order accuracy, and flexibility for resolving complex
geometries, only a few three-dimensional hydrodynamic models based on the discontinuous Galerkin
method are present. In this study, a three-dimensional hydrodynamic model with a σ-coordinate sys-
tem in the vertical direction is developed. This model is discretized in space using the discontinuous
Galerkin method and advanced in time with the implicit-explicit Runge–Kutta method. Numerical
tests indicate that the developed model is convergent and can obtain better results with a smaller
computational time when a higher approximation order is adopted. Other tests with exact solutions
also indicate that the developed model can well simulate the vertical circulation under the effect of
surface wind stress and the flow under the combined effect of wind stress and Coriolis acceleration
terms. The simulation results of tidal flow in part of Bohai Bay, China, indicate that the model can be
used for the simulation of tidal wave motion in realistic situations.

Keywords: σ-coordinate system; three-dimensional hydrodynamic model; discontinuous Galerkin
method; implicit-explicit Runge–Kutta method

1. Introduction

With the assumption of hydrostatic pressure distribution, the three-dimensional
shallow water equations (3D SWEs) can be derived from the Reynolds-averaged three-
dimensional Navier–Stokes equations. They can predict the vertical distribution of primi-
tive variables and can be used together with advection-diffusion-type equations to simulate
the transport and fate of substances, such as temperature, salt, and sediment.

In the last few decades, 3D SWEs have been intensively studied [1], and many hydro-
dynamic models have been developed and widely used. A brief categorization of these
models, based on the numerical methods and the type of grids used in the horizontal direc-
tion, is listed in Table 1. For the models at an early stage, the conservative finite difference
method on structured grids was usually used. They can be implemented straightforwardly
and are computationally efficient, while they approximate the coastlines as staircases and
prevent the flexible implementation of variable resolution. Later, unstructured, grid-based
hydrodynamic models, such as the finite element and finite volume method, were brought
into the main stream, since the coastlines could be accurately represented to give a reason-
able simulation at the regional scale [2], and the area of most concern could be simulated
using local refinement grids.

In addition to the numerical methods mentioned above, the discontinuous Galerkin
(DG) method has received much attention in recent years. It can be viewed as a hybrid
between the finite element method and the finite volume method and enjoys most of the
strengths of both methods, such as local conservation, compactness, a high order of accuracy,
and good application to unstructured meshes. It has been successfully applied in the
numerical discretization of two-dimensional shallow water equations [3], two-dimensional
non-hydrostatic shallow water equations [4], and Boussinesq-type equations [5].

Water 2023, 15, 156. https://doi.org/10.3390/w15010156 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15010156
https://doi.org/10.3390/w15010156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-7251-5105
https://doi.org/10.3390/w15010156
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15010156?type=check_update&version=3


Water 2023, 15, 156 2 of 23

Table 1. Categorization of the commonly used hydrodynamic model.

Grid Type Numerical Method

Finite Difference
Method

Finite Volume
Method

Finite Element
Method

Structured grid

ROMS [6], POM [7],
MoM [8], GETM [9],

TRIM [10],
DELFT3D [11],

EFDC [12],
ECOMSED [13],
COHERENS [14]

MITgcm [15],
MOHID [16]

Unstructured grid
FVCOM [17],
UnTRIM [18],

HydroInfo [19]

FESOM [20], ICOM,
SELFE [21],

ADCIRC [22],
SCHISM [23],

TELEMAC [24]

In the realm of 3D SWEs with DG solutions, Dawson and Aizinger [25] first devel-
oped a three-dimensional barotropic model with a z-coordinate system adopted in the
vertical direction and presented the corresponding stability analysis [26]. The vertical
eddy viscosity terms in the model are explicitly advanced in time. Due to the stiffness
of these terms, the time step must be small enough, which limits the applicability of the
model. Later, Aizinger et al. [27] made improvements by introducing the baroclinic terms
and treating both the vertical eddy viscosity and the vertical diffusion terms implicitly.
This model is called UTBEST3D and has been validated with realistic applications. In the
same period, Blaise [28] and Comblen [29] developed the three-dimensional baroclinic
model named SLIM and adopted it for the simulation of various baroclinic phenomena.
Due to the discontinuous nature of the DG method, the water depth between the adjacent
elements is generally not continuous such that the lateral boundaries are mismatched, and
the post-process measures are needed to smooth the water depth such that the calculation
of numerical flux will not be affected. To circumvent the problem of boundary mismatch
between adjacent elements, Gandham [30] mapped the time-varying z-coordinate system
to a fixed domain by invoking the σ-coordinate transformation and developed a three-
dimensional barotropic model. However, only one layer is adopted in the vertical direction,
which may lead to serious numerical errors when the water depth is large. Conroy and
Kubatko [31] developed a three-dimensional barotropic model with a σ-coordinate sys-
tem adopted in the vertical direction and developed a fast and accurate method for the
calculation of depth-averaged velocity. An arbitrary number of layers can be used in the
vertical direction. However, non-linear advective terms are not included, and the vertical
eddy viscosity terms are explicitly advanced in time. To the authors’ knowledge, there
is currently no DG method-based three-dimensional hydrodynamic model that includes
non-linear advective terms, treats the vertical eddy viscosity terms implicitly, and can use
an arbitrary number of vertical layers in the σ-coordinate system simultaneously.

In this paper, a three-dimensional hydrodynamic model that includes nonlinear ad-
vective terms and can use an arbitrary number of vertical layers in the σ-coordinate system
is developed based on the DG method. The paper is organized as follows. In Section 2,
we provide the governing equations of the 3D SWEs in the σ-coordinate system. Then, we
present the space discretization and time stepping of the model in Section 3. Numerical
experiments are given in Section 4. Finally, conclusions are drawn in Section 5.
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2. Governing Equations

Using the notations given in Table 2, the governing equations of the three-dimensional
hydrodynamic model in the physical domain are as follows [13]:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

∂u
∂t

+
∂(uu)

∂x
+

∂(uv)
∂y

+
∂(uw)

∂z
− f v = −g

∂η

∂x
+

∂

∂z

(
Km

∂u
∂z

)
+

∂

∂x

(
Kh

∂u
∂x

)
+

∂

∂y

(
Kh

∂u
∂y

)
, (2)

∂v
∂t

+
∂(uv)

∂x
+

∂(vv)
∂y

+
∂(vw)

∂z
+ f u = −g

∂η

∂y
+

∂

∂z

(
Km

∂v
∂z

)
+

∂

∂x

(
Kh

∂v
∂x

)
+

∂

∂y

(
Kh

∂v
∂y

)
, (3)

Table 2. Notations for the governing equations of the three-dimensional hydrodynamic model.

Variables Explanation

u(x, y, z, t) velocity of water in x direction
v(x, y, z, t) velocity of water in y direction
w(x, y, z, t) velocity of water in z direction

g acceleration due to gravity
θ angle of geographical latitude
v magnitude of the angular velocity of the Earth

f = 2v sin θ Coriolis parameter
Km vertical eddy viscosity coefficient
Kh horizontal eddy viscosity coefficient
ρ0 density
τsx wind stress in x direction
τsy wind stress in y direction

η(x, y, t) the surface elevation
uη(x, y, t) surface velocity of water in x direction
vη(x, y, t) surface velocity of water in y direction

b(x, y) bottom elevation
ub(x, y, t) bottom velocity of water in x direction
vb(x, y, t) bottom velocity of water in y direction
z0(x, y, t) half height of the bottommost element
uc(x, y, t) velocity of water at z0 in x direction
vc(x, y, t) velocity of water at z0 in y direction
C f (x, y, t) drag coefficient

κ von Karman constant
zb

0(x, y) bottom roughness parameter
ω(x, y, σ, t) vertical velocity in the computational domain
U(x, y, t) depth-averaged velocity in x direction
V(x, y, t) depth-averaged velocity in y direction

D(x, y, t) = η(x, y, t)− b(x, y) water depth

The surface boundary conditions for u, v, and w are(
Km

∂u
∂z

, Km
∂v
∂z

)
=

1
ρ0

(
τsx, τsy

)
, (4)

w =
∂η

∂t
+ uη

∂η

∂x
+ vη

∂η

∂y
. (5)

Likewise, the bottom boundary conditions for u, v, and w are

w = ub
∂b
∂x

+ vb
∂b
∂y

, (6)
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(
Km

∂u
∂z

, Km
∂v
∂z

)
= C f

√
u2

c + v2
c (uc, vc), (7)

where C f is determined by matching a logarithmic bottom layer to the model at height z0
and calculated as [32]

C f =

(
κ

ln
((

z0 + zb
0
)
/zb

0
))2

. (8)

To accurately represent the bottom and surface geometry, the σ transformation devel-
oped by Philips [33] is adapted

t∗ = t, x∗ = x, y∗ = y, σ =
z− η(x, y, t)

D(x, y, t)
. (9)

According to the principle of chain differentiation, partial derivatives of the vari-
able ζ = ζ(x, y, z, t) in the physical domain can be written in the following form in the
computational domain:

∂ζ

∂t
=

∂ζ

∂t∗
+

∂ζ

∂σ

∂σ

∂t
,

∂ζ

∂x
=

∂ζ

∂x∗
+

∂ζ

∂σ

∂σ

∂x
,

∂ζ

∂y
=

∂ζ

∂y∗
+

∂ζ

∂σ

∂σ

∂y
,

∂ζ

∂z
=

∂ζ

∂σ

∂σ

∂z
.

(10)

Substituting Equation (10) back into Equations (1)–(3), and ignoring the superscript
“*”, we can obtain the governing equations in the computational domain as

∂D
∂t

+
∂(Du)

∂x
+

∂(Dv)
∂y

+
∂ω

∂σ
= 0, (11)

∂U
∂t

+
∂E
∂x

+
∂G
∂y

+
∂H
∂σ

= S0 + S f + Sd,v + Sd,h. (12)

with

U =

[
Du
Dv

]
, E =

[
Du2 + 1/2

(
g
(

D2 − z2
b
))

Duv

]
, G =

[
Duv

Dv2 + 1/2
(

g
(

D2 − z2
b
))], H =

[
ωu
ωv

]
. (13)

S0 =

[
−gη∂zb/∂x
−gη∂zb/∂y

]
, S f =

[
− f Dv

f Du

]
. (14)

Sd,v =


∂

∂σ

(
Km

D2
∂(Du)

∂σ

)
∂

∂σ

(
Km

D2
∂(Dv)

∂σ

)
, Sd,h =


∂

∂x

(
KhD

∂u
∂x

)
+

∂

∂y

(
KhD

∂u
∂y

)
∂

∂x

(
KhD

∂v
∂x

)
+

∂

∂y

(
KhD

∂v
∂y

)
. (15)

where ω is related to w by

ω = D
dσ

dt
= w−

(
∂zs

∂t
+ σ

∂D
∂t

)
− u

(
∂zs

∂x
+ σ

∂D
∂x

)
− v
(

∂zs

∂y
+ σ

∂D
∂y

)
. (16)

The surface boundary condition in the computational domain is given by

ω = 0,(
Km

D2
∂(Du)

∂σ
,

Km

D2
∂(Dv)

∂σ

)
=

1
ρ0

(
τsx, τsy

)
,

(17)
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and the bottom boundary condition is given by

ω = 0,(
Km

D2
∂(Du)

∂σ
,

Km

D2
∂(Dv)

∂σ

)
= C f

√
u2

b + v2
b(ub, vb),

(18)

Integrating Equation (11) from bottom to surface and applying the boundary condition
about ω leads to the primitive continuity equation as

∂D
∂t

+
∂
(

DU
)

∂x
+

∂
(

DV
)

∂y
= 0 (19)

3. Numerical Implementation

In this section, we will detail the numerical implementation of our model based on
the DG method. The domain partition and the discontinuous polynomial space are first
described. Then, the numerical discretization of each part is presented, followed by the
time-stepping scheme.

3.1. Domain Partition and Polynomial Space

For an arbitrary three-dimensional domain Ω3d, its horizontal projection is denoted
as Ω2d and is partitioned by Ele2d non-overlapping triangular or quadrilateral elements;
i.e., Ω2d,h = {Ωe}, e ∈ [1, Ele2d]. In the vertical direction, Ω2d,h is extruded by NL layers to
obtain the three-dimensional computational domain Ω3d,h, and the computational domain
consists of Ele2d× NL triangular prisms or quadrangular prisms. In this study, the three-
dimensional element obtained by the extrusion of Ωe is denoted as Ω(e,L), L ∈ [1, NL], with
the bottommost element denoted as Ω(e,1) and the upmost element denoted as Ω(e,NL)

. Fig-
ure 1 gives a schematic view of two columns of three-dimensional computational elements
with Figure 1a showing the quadrangular prisms and Figure 1b showing the triangular
prisms. To illustrate the discontinuous nature of the DG method, the discontinuities be-
tween the adjacent computational elements have been exaggerated, and no gap exists
in reality.
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Figure 1. Schematic view of a column of three-dimensional computational elements. (a) quadrangular
prisms; (b) triangular prisms.
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In addition, we introduce the following finite dimensional space of polynomials:

Vh,3d =
{

s ∈ L2(Ω) : ∀Ω(e,L) ∈ Ω3d,h, s ∈ P(Nh ,Nv)

(
Ω(e,L)

)}
, (20)

where L2(Ω) is the space of the square-integrable functions and P(Nh ,Nv)

(
Ω(e,L)

)
is the

complete space of polynomials defined over Ω(e,L), which is of order at most Nh in the
horizontal direction and at most Nv in the vertical direction. In this study, Vh,3d is spanned
by Np Lagrangian functions, li(x), i ∈

[
1, Np

]
, and the dimension, Np, depends on the

approximation order and element type. For triangular prisms,

Np =
(Nh + 1)(Nh + 2)

2
× (Nv + 1), (21)

while for quadrilateral prisms,

Np = (Nh + 1)2 × (Nv + 1). (22)

For any two adjacent elements Ωe1 and Ωe2, let ε = ∂Ωe1 ∩ ∂Ωe2 be the unique interior
interface between these two elements, and let n− and n+ be the outward unit normal for
these two elements on ε. For scalar field c ∈ Vh,3d, let c±ε be the trace of c on interface ε
from the interior of Ωe1(2). We further define the mean value {c} and the jump value [c] on
interface ε as

{c} =
(
c+ε + c−ε

)
/2, [c] = c+ε n+ + c−ε n−. (23)

On the boundary of the computational domain, they are defined as

{c} = c, [c] = cn, (24)

where c is the single value and n is the outward unit normal on the boundary edges. We
note that the jump of scalar c is a vector, and we further denote its horizontal and vertical
components by [c]h and [c]σ, respectively.

3.2. Numerical Discretization of Momentum Equations

For Equation (12), both the Coriolis acceleration terms and the vertical eddy viscosity
terms are treated implicitly, while the others are treated explicitly.

3.2.1. Convective and Bottom Topography Terms

For the numerical discretization of Equation (12), we consider the following general
formulation: find the local approximate solution vector Uh ∈ (Vh,3d)

2 such that for all test
functions φ ∈ Vh,3d and Ω(e,L) ∈ Ω3d,h we have

∫
Ω (e,L)

(
∂Uh
∂t

+
∂E(Uh)

∂x
+

∂G(Uh)

∂y
+

∂H(Uh)

∂σ

)
φdx =

∮
∂Ω (e,L)

φn ·
(
F
(
U−h
)
− F∗

(
U−h , U+

h
))

dx

+
∫

Ω (e,L)
S0(Uh)φdx + Dd,h(D, Kh, Uh, φ) + Dd, f v,h(D, Km, Uh, f , φ).

(25)

where U−h and U+
h are the values of the local approximate solution vector Uh on the

interface of two adjacent elements, and n · F
(
U−h
)
= nxE

(
U−h
)
+ nyG

(
U−h
)
+ nσH

(
U−h
)

and n · F∗
(
U−h , U+

h
)

are the flux term and the numerical flux at the element boundary,
respectively. For the three-dimensional computational mesh used in this study, the third
component of the unit outward normal is zero, i.e., nσ = 0, at the lateral boundary of
the computational elements, the calculation of the numerical flux degenerates to that of
the two-dimensional shallow water equations, and the Harten–Lax–van Leer with contact
(HLLC) Riemann solver [34] is adopted. As nx = ny = 0 at the top and bottom boundaries
of the computational elements, only the vertical convection needs to be considered, and the
upwind flux is taken, i.e.,
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n · F∗
(
U−h , U+

h
)
= 0.5n−σ

(
ω−U−h /D

(
1 + sgn(ω−n−σ )

)
+ ω+U+

h /D
(
1 + sgn(ω+n+

σ )
))

, (26)

where sgn is the sign function. At the top boundary of the computational domain (σ = 0)
and bottom boundary of the computational domain (σ = −1), the numerical flux is set
to zero. Operators Dd,h(D, Kh, Uh, f , φ) and Dd, f v,h(D, Km, Uh, f , φ) in Equation (25) are
the discretization corresponding to the horizontal eddy viscosity terms and the vertical
and Coriolis acceleration terms, which will be detailed in the forthcoming parts. The
requirement that Equation (25) is valid for all φ ∈ Vh,3d and can be imposed by considering
Equation (25) for all the basis functions that span the functional space Vh,3d, i.e., setting
φ = li(x), i ∈

[
1, Np

]
.

For the discretization of both the volume and the surface terms, the quadrature-free
manner of Hesthaven and Warburton [35] is adopted. We assume that these terms also lie
in the finite dimensional space (Vh,3d)

2 and can be expressed as

E(Uh) ≈ Eh =
NP
∑

i=1
Eili, G(Uh) ≈ Gh =

NP
∑

i=1
Gili,

H(Uh) ≈ Hh =
NP
∑

i=1
Hili, S0(Uh) ≈ S0,h =

NP
∑

i=1
S0,ili,

F(U−h ) · n ≈ F−h · n =
N f p

∑
f=1

(
F−h, f · n f

)
l f ,

F∗
(
U−h , U+

h
)
· n ≈ F∗h · n =

N f p

∑
f=1

(
F∗h, f · n f

)
l f ,

(27)

where
{

l f

}N f p

f=1
are the basis functions on the element boundaries and N f p is the total

number of basis functions along all the boundaries. According to this approximation, we
can obtain the following semi-discrete equation in matrix form:

M(e,L)
dUh,(e,L)

dt
= −Sx,(e,L)Eh,(e,L) − Sy,(e,L)Gh,(e,L) − Sσ,(e,L)Hh,(e,L)

+M∂ f
(e,L)

(
F−h,(e,L) − F∗h,(e,L)

)
+M(e,L)S0,h,(e,L),

(28)

where Uh,(e,L) =
[
Duh,(e,L), Dvh,(e,L)

]T
are the nodal values of the conservative variables

at the Np interpolation points; Eh,(e,L), Gh,(e,L) and Hh,(e,L) are the non-linear flux terms at
the Np interpolation points; F−h,(e,L) = E−h,(e,L) · nx + G−h,(e,L) · ny + H−h,(e,L) · nσ and F∗h,(e,L)
are the norm flux term and the numerical flux term at the N f p facial interpolation points,
respectively; S0,h,(e,L) is the bottom topography source term at the Np interpolation points;

andM(e,L), S(e,L) =
[
Sx,(e,L),Sy,(e,L),Sσ,(e,L)

]
, andM∂ f

(e,L) are the mass matrix, stiff matrix,
and edge-mass matrix, respectively, and can be expressed as

[M(e,L)]i,j =
∫

Ω (e,L)
liljdx, [M∂ f

(e,L)]i, f
=
∮

∂Ω (e,L)
lil f dx,

[Sx,(e,L)]i,j =
∫

Ω (e,L)
li

∂lj

∂x
dx, [Sy,(e,L)]i,j =

∫
Ω (e,L)

li
∂lj

∂y
dx,

[Sσ,(e,L)]i,j =
∫

Ω (e,L)
li

∂lj

∂σ
dx.

(29)

3.2.2. Horizontal Eddy Viscosity Terms

For the discretization of the horizontal eddy viscosity terms in Equation (12), the local
discontinuous Galerkin method by Cockburn and Shu [36] is adopted. To discretize the
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horizontal eddy viscosity terms in the momentum equation about Du, we first express it in
the following form:

r = ∇xy ·
(
KhD∇xyu

)
, (30)

where r is an auxiliary function. Following the philosophy of the local discontinuous
Galerkin method, we introduce the auxiliary variables and cast Equation (30) into the
following form:

q̂ =
(
q̂x, q̂y

)
= ∇xyu,

q =υhq̂,

r = ∇xy · q,

(31)

with υh = KhD and ∇xy = (∂/∂x, ∂/∂y). For the numerical discretization of Equation (31),

we assume a local approximate vector solution (uh, q̂h) =
(

uh, q̂h,x, q̂h,y

)
∈ Vh,3d × (Vh,3d)

2

and qh =
(

qh,x, qh,y

)
∈ (Vh,3d)

2 such that for all (φ,π) ∈ Vh,3d × (Vh,3d)
2, we have∫

Ω (e,L)
π ·
(
q̂h −∇xyuh

)
dx =−

∫
∂Ω (e,L)

π · nh
(
u−h − u∗h

)
dx,∫

Ω (e,L)
π · qhdx =

∫
Ω (e,L)

υhq̂h · πdx,∫
Ω (e,L)

φrhdx =
∫

Ω (e,L)
φ
(
∇xy · qh

)
dx−

∫
∂Ω (e,L)

φnh ·
(
q−h − q∗h

)
dx,

(32)

where the terms marked with superscript “*” are the flux terms and are given as

u∗h = {uh},

q∗h =
{(

υh∇xyuh
)}
− τ[uh]h,

(33)

where τ is the penalty parameter defined as

τ =
(N + 1)(N + 3)

3
n0

2
A
V

max
(
υ−h , υ+h

)
, (34)

where N = max(Nh, Nv), n0 is the number of neighbors of the element, i.e., five for
triangular prisms and six for quadrilateral prisms, A is the area of the interface, and V is
the average volume of the two adjacent elements.

We further suppose (q̂h, qh, υh, rh, uh) ∈ (Vh,3d)
2 × (Vh,3d)

2 ×Vh,3d ×Vh,3d ×Vh,3d and
express these terms as

q̂h =
Np

∑
i=1

q̂h,(e,L),ili(x), qh =
Np

∑
i=1

qh,(e,L),ili(x), υh =
Np

∑
i=1

υh,(e,L),ili(x),

rh =
Np

∑
i=1

rh,(e,L),ili(x), uh =
Np

∑
i=1

uh,(e,L),ili(x),

(35)

where q̂h,(e,L),i =
(

q̂h,(e,L),x,i, q̂h,(e,L),y,i

)
and qh,i =

(
qh,(e,L),x,i, qh,(e,L),y,i

)
are the auxiliary

variables at the ith interpolation point. Substituting Equation (35) back into Equation (32),
we have

M(e,L)q̂h,(e,L),x = Sx,(e,L)uh,(e,L) −M(e,L), f

[(
u−h,(e,L) − u∗h,(e,L)

)
· nx

]
,

M(e,L)q̂h,(e,L),y = Sy,(e,L)uh,(e,L) −M(e,L), f

[(
u−h,(e,L) − u∗h,(e,L)

)
· ny

]
,

(36)

qh,(e,L),x = υh,(e,L) · q̂h,(e,L),x, qh,(e,L),y = υh,(e,L) · q ĥ,(e,L),y, (37)

M(e,L)rh = Sx,(e,L)qh,(e,L),x + Sy,(e,L)qh,(e,L),y −M(e,L), f

[(
q−h,(e,L) − q∗h,(e,L)

)
· n′h

]
, (38)



Water 2023, 15, 156 9 of 23

where n′h =
[
nx, ny

]
is the vector of the horizontal components of the outward unit normal

outward at the facial interpolation points.
The right-hand side of Equation (38) corresponds to the numerical discretization of

the second-order term for the horizontal momentum equation about Du, and the same
procedure applies to that about Dv.

3.2.3. Vertical Eddy Viscosity and Coriolis Acceleration Terms

For the discretization of the vertical eddy viscosity and Coriolis acceleration terms in
Equation (12), we first express it in the following form:

r =
∂

∂σ

(
Km

D2
∂(Du)

∂σ

)
− f Dv, in Ω

Km

D2
∂(Du)

∂σ
nσ = gDu

N , on ΩN

Du = gDu
D , on ΩD

(39)

where gDu
N is the Neumann boundary condition about Du on ΩN and is given in

Equations (17) and (18); gDu
D is the Dirichlet boundary condition about Du on ΩD. The

symmetric interior penalty discontinuous Galerkin (SIPG) method [37] is adopted, and the
corresponding primal form is given as

∫
Ω h,3d

υv
∂φ

∂σ

∂(Du)h
∂σ

dx−
∫

ε I
[(Du)h]σ

{
υv

∂φ

∂σ

}
dx−

∫
ε I

({
υv

∂(Du)h
∂σ

}
− τ[(Du)h]σ

)
[φ]σdx−

∫
∂ΩD

φυv
∂(Du)h

∂σ
nσdx

−
∫

∂ΩD
(Du)hυv

∂φ

∂σ
nσdx +

∫
∂ΩD

τφn2
σ(Du)hdx +

∫
Ω h,3d

φ f (Dv)hdx

= −
∫

Ω h,3d
φrdx +

∫
∂ΩD

τφn2
σgDu

D dx−
∫

∂ΩD
gDu

D υv
∂φ

∂σ
nσdx +

∫
∂ΩN

φn2
σgDu

N dx.

(40)

where υv = Km/D2 is the vertical eddy viscosity coefficient in the computational domain.
The primal form about Dv is similar to that about Du. In this study, the Neumann boundary
conditions for Du and Dv given in Equation (18) are treated implicitly, and the bottom
velocity module

√
u2

c + v2
c is linearized by using the old values to simplify the calculation.

As Equation (40) is only solved in the vertical direction, this equation is independent for
each column of prisms and can be solved independently.

3.3. Numerical Discretization of the Primitive Continuity Equation

The water depth is calculated according to Equation (19), and the semi-discrete form
is given as

Me
dDh,e

dt
= −Sx,e(DU)h,e − Sy,e(DV)h,e+

M∂ f
e

((
(DU)h,e − (DU)∗h,e

)
· nx

)
+

M∂ f
e

((
(DV)h,e − (DV)∗h,e

)
· ny

)
,

(41)

where Me, Se =
[
Sx,e,Sy,e

]
and M∂ f

e are the mass matrix, stiff matrix and edge-mass
matrix defined over the two-dimensional computational element Ωe, respectively. Their
definitions are analogous to the three-dimensional counterpart defined in Equation (29).
Dh,e, (DU)h,e, and (DV)h,e are the nodal values of the water depth and the depth-averaged
velocities in the x and y directions. (DU)h,e · nx + (DV)h,e · ny and (DU)∗h,e · nx + (DV)∗h,e · ny
are the normal flux term and the numerical flux term defined over the boundary of the
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two-dimensional computational element Ωe and are obtained through the depth integration
of their three-dimensional counterpart to preserve the local mass conservation properties.

3.4. Calculation of Vertical Velocity

According to Equations (11) and (19), the governing equation for vertical velocity ω is
given as

∂ω

∂σ
=

∂(DU − Du)
∂x

+
∂(DV − Dv)

∂y
. (42)

For the space discretization of Equation (42), suppose that for all φ ∈ Vh,3d and
Ω(e,L) ∈ Ωh,3d, we have

∫
Ω (e,L)

φ
∂ωh
∂σ

dx +
∫

Ω (e,L)
φ

(
∂((Du)h − (DU)h)

∂x
+

∂((Dv)h − (DV)h)

∂y

)
dx =∫

∂ΩLat
(e,L)

φnx
[
((Du)h − (DU)h)− ((Du)h − (DU)h)

∗]dx+∫
∂ΩLat

(e,L)
φny

[
((Dv)h − (DV)h)− ((Dv)h − (DV)h)

∗]dx+∫
∂ΩTop

(e,L)
φnσ

(
ωh −ω∗h

)
dx +

∫
∂ΩBot

(e,L)
φnσ

(
ωh −ω∗h

)
dx,

(43)

where ah is the approximate solution to a and belongs to Vh,3d. In Equation (43), the bound-
ary of Ω(e,L) is split into three parts, i.e., the lateral boundary ∂ΩLat

(e,L), the top boundary

∂ΩTop
(e,L), and the bottom boundary ∂ΩBot

(e,L), and terms marked with an asterisk are the numer-

ical flux terms. Here, the numerical flux nx(Du)∗h + ny(Dv)∗h defined on ∂ΩLat
(e,L) is calculated

according to the HLLC Riemann solver, and nx(DU)∗h + ny(DV)∗h is the depth-averaged
counterpart. At the bottom boundary, ∂ΩBot

(e,L), ω∗h is taken as follows:

ω∗h =

 ω
Top
h,(e,L−1), L > 1,

0, L = 1.
(44)

The numerical flux is taken to be the boundary condition at the bottom in the case
of the bottommost element or using the solution from the element below. Thus, the
integral defined over ∂ΩTop

(e,L) diminishes. With such a definition of numerical flux about ω∗h
given in Equation (44), we can obtain the vertical velocity ωh layer by layer in each water
column starting at the bottom and using the solution from the element below to provide an
initial condition.

3.5. Time Stepping

In the discretization presented above, the ordinary differential equations Equation (28)
and Equation (41) are obtained for the momentum equations and the primitive continuity
equation, and they can be formulated as

dy
dt

= fexp l(y(t), t) + fimpl(y(t), t), (45)

where y(t) denotes the vector of all discrete degrees of freedom of a step and fexp l(y(t), t)
and fimpl(y(t), t) denote the terms treated explicitly and implicitly. For the momentum
equations, the explicit terms consist of nonlinear advection, horizontal eddy viscosity, and
bottom topography source terms, while the implicit terms consist of the vertical eddy
viscosity and Coriolis acceleration terms. For the primitive continuity equation, all terms
are treated explicitly.

In this study, the implicit-explicit Runge–Kutta method is adapted to integrate system
(45) in time. For an s-stage implicit Runge–Kutta method defined by coefficients ai,j, bi, and
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ci and a σ′ = s + 1 stage explicit Runge–Kutta method defined by coefficients âi,j, b̂i, and ĉi,
this time-stepping method is formulated as

yi = yn + ∆t
i

∑
j=1

âi+1,j
ˆ
K j + ∆t

s
∑

j=1
ai,jKj, i ∈ [1, s],

yn+1 = yn + ∆t
σ′

∑
j=1

b̂j
ˆ
K j + ∆t

s
∑

j=1
bjKj,

(46)

where yn are the known values at time tn, ∆t is the time step,
ˆ
K1 = fexpl(yn, tn),

ˆ
Ki+1 =

fexpl
(

tn +
ˆ
ci+1∆t, yi

)
, Ki = fimpl(yi, tn + ci∆t), and yn+1 are the unknown values at tn+1 =

tn + ∆t. The time-stepping method adopted is derived by Ascher [38], and the correspond-
ing coefficients are
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with γ =
(

2−
√

2
)

/2 and δ = 1− 1/(2γ). The global time-stepping algorithm from tn to
tn+1 = tn + ∆t is as follows:

1. Calculate the explicit terms Kexpl
1 and Kexpl

D,1 for the three-dimensional momentum
equations and primitive continuity equation according to the variables at tn.

2. Calculate the intermediate water depth as

Di = Dn + ∆t
i

∑
j=1

âi+1,jK
expl
D,j , i ∈ [1, 2] (49)

Likewise, the intermediate conservative variables Ui and Kimpl
i are

Ui = Un + ∆t
i

∑
j=1

âi+1,jK
expl
j + ∆t

i

∑
j=1

ai,jK
impl
j .i ∈ [1, 2] (50)

With Ui available, the intermediate depth-averaged momenta (DU)i and (DV)i
are calculated through the depth-integration of Ui, followed by the calculation of
the intermediate vertical velocity ωi. Later, the explicit terms Kexpl

i+1 and Kexpl
D,i+1 for

the three-dimensional momentum equations and primitive continuity equation, are
calculated according to the intermediate variables.

3. Calculate the water depth Dn+1 and the conservative variables Un+1 at tn+1 as

Un+1 = Un + ∆t
3
∑

j=1
b̂jK

expl
j + ∆t

2
∑

j=1
bjK

impl
j ,

Dn+1 = Dn + ∆t
3
∑

j=1
b̂jK

expl
D,j .

(51)

4. Integrate Un+1 along the water depth to obtain the final depth-averaged momenta
(DU)n+1 and (DV)n+1, followed by the calculation of the final vertical velocity ωn+1.
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4. Numerical Tests

In this section, several numerical experiments are conducted to verify the performance
of the developed model. For all the experiments, the acceleration due to gravity, g, is set to
9.81 m/s2. In addition, all the experiments are run on an Intel Xeon E5-2620 processor with
16 GB of internal memory. Our program is parallelized using OpenMP to run on six cores.

4.1. Manufactured Solution

This test is used to verify the convergence property of the developed model. As the 3D
SWEs are a non-linear system, designing a nontrivial function satisfying the equations and
the boundary conditions at the same time is not a trivial task. Following the philosophy
presented by Salari and Knupp [39], we manually give the solution that satisfies the
continuity equation and solve a Dirichlet problem for a modified system that includes a
forcing term.

For this test, the Coriolis acceleration terms are not included, the horizontal eddy
viscosity coefficient Kh is taken as 0.1 m2 s−1, the vertical eddy viscosity coefficient Km is
taken as 0.01 m2 s−1, and the analytical solution is given as follows:

b(x, y, t) = −(2− 0.005(x + y)),

η(x, y, t) = 0.01(sin(0.01(x + t)) + sin(0.01(y + t))),

u(x, y, σ, t) = 0.1(D(1 + σ))3 sin(0.01(x + t)),

v(x, y, σ, t) = 0.1(D(1 + σ))3 sin(0.01(x + t)).

(52)

The vertical velocity at an arbitrary location is obtained through the integration of the
continuity equation, Equation (11), from the bottom to the studied location. The horizontal
projection of the horizontal domain is Ω2d = [0, 100]× [0, 100], and the whole simulation
lasts for 86.4 s.

Tests are run with successively refined meshes. For the coarsest mesh, there is one
element in the horizontal direction and one layer in the vertical direction. We refine the
mesh up to four times by partitioning each quadrilateral prism into eight and compute the
L2 error of the numerical results against the analytical solutions as

L2 =
1

∑e
∫

Ωe
dx

(
∑

e

∫
Ωe

(
QS

e (x)−Qexact
e (x)

)2
dx

)1/2

, (53)

where QS
e (x) is the numerical result and Qexact

e (x) is the analytical solution. To measure the
convergence properties of the model, we further define the convergence rate (CR) as follows

CR = log2

(
Lm

2 /Lm−1
2

)
/log2

(
Lm/Lm−1

)
, (54)

where Lm
2 and Lm−1

2 are the numerical errors on two successive refined meshes and Lm

and Lm−1 are the characteristic lengths of the meshes, which are set to be the longest edge
length of the quadrilateral prisms. Tables 3 and 4 give the L2 error for each variable and
the corresponding CR for Nh = Nv = 1 and 2, respectively. Ne denotes the number of
elements in the horizontal direction and NL the number of vertical layers. We note that
for water depth D, horizontal momenta Du and Dv converge at the optimal rate, i.e., CR
= 2 for the former case and 3 for the latter, whereas the vertical velocity ω converges at
the suboptimal rate for both cases. We owe this to the fact that the vertical velocity is
computed from the numerical results for Du, Dv, and their depth-averaged counterparts
using the continuity Equation (42), and the CR for vertical velocity would be influenced as
the horizontal momenta are not exact, as pointed out by Dawson and Aizinger [25].
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Table 3. Nh = Nv = 1, the L2 error for each variable, and the corresponding CR.

Ne NL Er(D) CR(D) Er(Du) CR(Du) Er(Dv) CR(Dv) Er(ω) CR(ω)

1 1 0.00033 0.00169 0.00169 5.224× 10−5

4 2 6.125× 10−5 2.42 0.00031 2.47 0.00031 2.47 1.277× 10−5 2.03
16 4 1.340× 10−5 2.19 6.086× 10−5 2.33 6.086× 10−5 2.33 3.748× 10−6 1.77
64 8 3.170× 10−6 2.08 1.350× 10−5 2.17 1.350× 10−5 2.17 1.239× 10−6 1.60

256 16 7.617× 10−7 2.06 3.083× 10−6 2.13 3.083× 10−6 2.13 4.527× 10−7 1.45

Table 4. Nh = Nv = 2, the L2 error of each variable, and the corresponding CR.

Ne NL Er(D) CR(D) Er(Du) CR(Du) Er(Dv) CR(Dv) Er(ω) CR(ω)

1 1 9.997× 10−6 0.00015 0.00015 4.95× 10−6

4 2 1.353× 10−6 3.10 1.804× 10−5 3.10 1.804× 10−5 3.10 5.71× 10−7 3.11
16 4 1.703× 10−7 3.04 2.187× 10−6 3.04 2.187× 10−6 3.04 1.13× 10−7 2.33
64 8 2.196× 10−8 3.05 2.649× 10−7 3.05 2.649× 10−7 3.05 3.00× 10−8 1.91

256 16 3.276× 10−9 3.02 3.264× 10−8 3.02 3.264× 10−8 3.02 6.99× 10−9 2.10

Figure 2 shows the relation between the L2 error and DOFs and the normalized CPU
time. Figure 2a indicates that the developed model is convergent, as the L2 error for each
variable diminishes in both cases as the computational mesh is refined. Figure 2b indicates
that we can achieve a given error tolerance with fewer DOFs on a coarser mesh when
a higher approximation order is adapted. For example, when the error tolerance about
water depth D is taken as 1.0× 10−6, the normalized CPU time is about 0.033 when the
approximation order is Nh = Nv = 2, whereas it is about 0.18 when the approximation
order is Nh = Nv = 1.
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imposed at the left boundary, i.e., x = 0, whereas the other boundaries are all treated as 
slip walls. Both the eddy viscosity terms and the Coriolis acceleration terms are not 
included. 

Figure 2. L2 error versus DOFs and normalized CPU time for water depth D, vertical velocity
ω, and horizontal momenta Du and Dv at different approximation orders (Nh = Nv = 1(black),
Nh = Nv = 2(red)) on a sequence of meshes. (a) L2 error versus DOFs; (b) L2 error versus normalized
CPU time.

4.2. Tide Wave Propagation in a Semi-Closed Bay

This test is used to indicate the accuracy of the developed model for the simulation
of both the horizontal and vertical velocity fields. Figure 3 shows the horizontal locations
of Gauge points A (2500, 5000), B (52,500, 5000), and C (92,500, 5000) and a sketch of the
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horizontal domain. This domain is 100,000 m long and 10,000 m wide and is partitioned by
a uniform quadrilateral element with a size of 1000 m in both directions. The still water
depth is h = 12 m. A cosine tidal wave with amplitude A = 0.25 m and period T = 12 h is
imposed at the left boundary, i.e., x = 0, whereas the other boundaries are all treated as slip
walls. Both the eddy viscosity terms and the Coriolis acceleration terms are not included.
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According to Neuman and Pierson [40], the analytical solution of the surface elevation
η, the horizontal velocities u and v, and the vertical velocity w at a point P(x, y, z) at time t
are given as
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(55)

where ω′ = 2π/T is the frequency. For the initial condition, all the velocity components
are set to zero, and the surface elevation is set according to the analytical solution. The
number of vertical layers is set to 12, and we run this simulation for 24 h.

Figure 4 gives the comparison between the numerical result and the analytical solution
for surface elevation η, horizontal velocity u, and vertical velocity w at Gauges A, B,
and C, and the vertical coordinate for the three Gauges is z = −2.5 m. It can be seen
that the numerical solution is generally in good agreement with the analytical solution,
indicating that the three-dimensional model developed in this study has good accuracy in
the simulation of water level and velocity.
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4.3. Wind-Induced Water Circulation

In this test, the wind-driven circulation in a rectangular closed basin is simulated.
Following Liu et al. [41], we run this case to test the accuracy of the proposed numerical
model in predicting the vertical stratified circulation.

With a homogeneous Dirichlet boundary condition adapted at the bottom boundary,
Koutitas et al. [42] derived the analytical solution of the horizontal velocity in the center of
the basin as

u(σ) =
τsx(σ + 1)h(3σ + 1)

4Kvρ0
. σ ∈ [−1, 0] (56)

where h is the still water depth of the basin. Likewise, Huang [43] also derived that when
the Neumann boundary condition is adapted, the result reads

u(σ) =
1

6Kv
g

∂η

∂x
h2(3σ2 − 1

)
+

τsxh
2ρ0Kv

(2σ + 1), σ ∈ [−1, 0]

∂η

∂x
=

3
2

τsx

ρ0gh
2Kv + C f |uc|h
3Kv + C f |uc|h

,
(57)

where |uc| is the velocity magnitude at the center of the bottommost element, and C f |uc| =
0.005 m/s in this study. In this part, these two situations are simulated.
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This case is set as follows: the basin is 2000 m long and 800 m wide, h = 10 m, and
τsx = 1.5 Pa. The Coriolis acceleration and horizontal eddy viscosity terms are ignored,
and the vertical eddy viscosity coefficient Km is set to be 0.001 m2 s−1; the whole simulation
lasts for 3600 s.

Figure 5a,b shows the comparison between the numerical results and the analytical
solution for the vertical distribution of horizontal velocity at the center of the basin. The
comparison indicates that the numerical results match well with the analytical solution for
both cases.
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We also run the simulations with different numbers of vertical layers (NL). To quan-
titatively measure the difference between different simulations, we define the root mean
square error (RMSE) as

RMSE =

√√√√√√
NT
∑

j=1

(
ua,j − uj

)2

NT
, (58)

where NT is the number of simulated results, uj is the numerical result at point j, and ua,j is
the analytical solution at the same point. Table 5 gives the RMSE for different simulations.
We find that the more vertical layers there are, the better the result will be for each case.

Table 5. RMSE for simulations with different vertical layers and different boundary conditions.

NL 5 10 15 20

Homogeneous Dirichlet boundary condition
RMSE 0.0107 0.0051 0.0041 0.0037

Neumann boundary condition
RMSE 0.0219 0.0138 0.0114 0.0103

4.4. Generation of the Ekman Profile

Following Trahan et al. [44], we run this test to check whether the developed model
can generate the Ekman layer, where the Coriolis acceleration terms, the pressure gradient,
and the turbulent drag are in balance. The analytic solution for the Ekman velocity profile
was developed by Ekman [45] and is expressed as
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u = u0e(−z/D f ) cos

(
π

4
− z

D f

)
,

v = v0e(−z/D f ) sin

(
π

4
− z

D f

)
,

v0 =
τsx

ρ(Kv f )0.5 ,

D f =

(
2Kv

f

)0.5
,

f = 2v sin θ.

(59)

where D f is the folding depth, Kv = 0.1 m2/s, τsx = 0.1 Pa, and θ is the geophysical
latitude (45

◦
). Theoretically, the flow direction at the surface would rotate counterclockwise

45 degrees to that of the wind stress.
The computational domain is 40,000 km long and 40,000 km wide and is partitioned

by a uniform quadrilateral element with a size of 2000 km in both directions. A constant
depth of 200 m is set, and 50 vertical layers are used. The bottom drag coefficient C f is
set to 0.0025. We run this simulation for 200 days. Figure 6 gives the comparison of the
analytic solution and the computed Ekman profile. The numerical results accurately match
the analytic solution and individual velocity components with an average error of less than
0.001 m/s.
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Figure 6. Comparison between the numerical results and the analytical solution for individual
velocity components and velocity magnitude for the Ekman profile.

4.5. Tidal Flow in Bohai Bay

For the last case, we simulate tidal flow in the western region of Bohai Bay to test the
ability of the developed model for the simulation of actual tidal wave motion problems.
The Bohai Bay is one of the three major bays of the Bohai Sea in China. It is located in the
west of the Bohai Sea and connected with Hebei and Shandong Province and Tianjin City.
It’s a typical semi-closed sea area. The average tidal range in Bohai Bay is 2.5 m, and its tidal
current is irregularly semi-diurnal. In recent years, a lot of port and reclamation projects in
Bohai Bay have been carried out, which has led to a large number of large-scale engineering
structures. The accurate simulation of the tidal current field is of great significance for the
convection–diffusion process of temperature, salt, pollutants, etc., as well as the sediment
transport in Bohai Bay.

The domain geometry for this case is shown in Figure 7a; the still water depth ranges
from 38 m at the east open boundary to 2 m at the coast. There are five measuring gauges
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in the computational domain, and the distribution of these points is shown in Figure 7b.
The computational domain is partitioned by 14,627 triangle grids, and the edge length of
the finite element mesh ranges from 2 km to 100 m. Five equidistant layers are used in the
vertical direction. Wetting/drying is not accounted in the present study.
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The tidal elevations at the east open boundaries were provided by Chinatide [46],
which is a tidal forecast system through nine harmonic constants of Q1, P1, O1, K1, N2, M2,
S2, K2, and Sa. The Coriolis parameter was taken as 9.1557× 10−5s−1, and the horizontal
eddy viscosity coefficient was set to 70 m2 s−1. The vertical eddy viscosity coefficient was
modelled using the k− ε turbulence closures provided by GOTM [47], and the coupling
between GOTM and the hydrodynamic model is established following the same philosophy
presented by Tuomas et al. [32]. The bottom roughness length is set as 0.1 mm. Field
measurements from 12/08/2018 to 12/09/2018 are used to verify the developed model.

Figure 8 shows the flow field at the surface and the middle and bottom layers at the
time of flood tide (left) and ebb tide (right), respectively. As we can see, there is little
difference between the velocity fields of the surface and the middle layers. Because of the
bottom friction, the velocity of the bottom layer is smaller than that of the surface and
the middle layers, which is about 60% of the magnitude of the latter two. The results of
the three-dimensional velocity field show that the model can reflect the three-dimensional
characteristics of tidal flow.

Figure 9 shows the comparison between the simulated surfaced elevation and the
field measurements at Gauges P1 and P2. The simulated data are quantitatively very
close to the field measurements, and the tidal phasing is virtually identical. The left
column of Figure 10 gives the comparison between the simulated velocity and the field
measurements at gauges P3, P4, and P5. Small discrepancies exist between the simulated
velocity and the field measurements. This is especially the case for P5, where the maximum
simulated velocity is about 15% smaller than that of the field measurements. It can be
attributed to that the computational mesh used in this simulation is relatively coarse,
and the wetting/drying is not considered. Although differences exist, the simulated data
are in phase with the field measurements as the comparison between the simulated flow
direction and the field measurements shows in the right column of Figure 10. Generally,
the developed hydrodynamic model can be used for the simulation of tidal wave motion in
realistic situations.
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Figure 9. Comparison between the numerical results and the measured surface elevation at Gauges
P1 and P2 for the Bohai Bay case. (a) P1; (b) P2.
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Figure 10. Comparison between the simulated results and the measured data for velocity (left column)
and flow direction (right column) at Gauges P3, P4, and P5 for the Bohai Bay case. (a) P3; (b) P4;
(c) P5.

5. Conclusions

In this study, a three-dimensional hydrodynamic model based on the Discontinuous
Galerkin method is developed. The σ-coordinate system is used in the vertical direction to
circumvent the mismatch of lateral faces due to the discontinuous nature of the solution
between different elements. Non-linear advective terms are included, and the model is
marched in time with the implicit-explicit Runge–Kutta method. The vertical eddy viscosity
and the Coriolis acceleration terms are discretized with the symmetric interior penalty
discontinuous Galerkin method and are treated implicitly, while others are treated explicitly.
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The developed model is validated with a series of numerical tests. The case with the
manufactured solution indicates that the model is convergent, and the L2 error about the
variables diminishes as we increase the approximation order or refine the computational
mesh. Calculating the CR indicates that water depth D and horizontal momenta Du and
Dv can all converge at the optimal order, whereas the vertical velocity converges in a
suboptimal order. This case also indicates that we can obtain a better numerical result on
a computational mesh with fewer DOFs when a higher approximation is adapted. Cases
of tide-induced three-dimensional flow in a semi-closed bay, wind-induced water circu-
lation, and the generation of the Ekman profile indicate that the developed model can
well simulate the velocity field in both horizontal and vertical directions, can reasonably
simulate the vertical stratified circulation, and can simulate water motion under the com-
bined effect of wind stress and Coriolis acceleration terms. For the Bohai Bay case, the
simulated surface elevation, velocity, and flow direction match reasonably well with the
field measurements, indicating the model can be used for the simulation of tidal wave
motion in realistic situations.

More applications of the developed model and development of the wetting/drying
treatment and the baroclinic model will be presented in forthcoming work.
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