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Abstract: As groundwater quality monitoring networks have been expanded over the last decades,
significant time series are now available. Therefore, a scientific effort is needed to explore innovative
techniques for groundwater quality time series exploitation. In this work, time series exploratory
analysis and time series cluster analysis are applied to groundwater contamination data with the
aim of developing data-driven monitoring strategies. The study area is an urban area characterized
by several superimposing historical contamination sources and a complex hydrogeological setting.
A multivariate time series cluster analysis was performed on PCE and TCE concentrations data
over a 10 years time span. The time series clustering was performed based on the Dynamic Time
Warping method. The results of the clustering identified 3 clusters associated with diffuse background
contamination and 7 clusters associated with local hotspots, characterized by specific time profiles.
Similarly, a univariate time series cluster analysis was applied to Cr(VI) data, identifying 3 background
clusters and 7 hotspots, including 4 singletons. The clustering outputs provided the basis for the
implementation of data-driven monitoring strategies and early warning systems. For the clusters
associated with diffuse background contaminations and those with constant trends, trigger levels
were calculated with the 95° percentile, constituting future threshold values for early warnings. For
the clusters with pluriannual trends, either oscillatory or monotonous, specific monitoring strategies
were proposed based on trends’ directions. Results show that the spatio-temporal overview of the
data variability obtained from the time series cluster analysis helped to extract relevant information
from the data while neglecting measurements noise and uncertainty, supporting the implementation
of a more efficient groundwater quality monitoring.

Keywords: groundwater contamination; diffuse contamination; dynamic time warping; anthropic
background level; time series analysis; early warning system

1. Introduction

Groundwater is a crucial resource, providing social, economic, and environmental
benefits and opportunities, currently constituting half of the volume of water withdrawn
for domestic purposes by the global population [1]. On the other hand, groundwater pollu-
tion reduces the suitability of abstracted groundwater for drinking purposes and affects
groundwater-dependent ecosystems [2]. Groundwater quality management, especially for
drinking purposes, involves monitoring through regular collection and analysis of water
samples over prolonged periods, and a considerable effort is needed to collect high-quality
data with sufficient frequency [3]. In this regard, a scientific effort is needed to explore new
techniques to exploit and interpret the time series resulting from the prolonged effort for
water quality monitoring of the last decades.

Currently, monitoring data of raw groundwater quality are mostly used by water
suppliers and agencies at every survey as a picture of the current state with respect to the
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regulatory limit. On the other hand, if those data are compared with a longer-term trend,
they can help to identify the processes that may lead to an improvement or aggravation of
the current situation, facilitating wells management and further monitoring. Particularly,
observing single time-pictures or averages can be useful for major ions or physico-chemical
parameters mostly associated with natural, and therefore stable, processes. However, when
studying anthropic contamination, evaluating pluriannual trends can provide valuable
additional information.

Time series analysis is increasingly adopted to treat, understand and forecast water
availability and quality data and earthquake-induced hydrogeochemical changes [4-13].
Indeed, interpreting trends of several monitoring stations can become confusing and time
demanding when working with a large set of wells. In this regard, clustering techniques
can help to group data with similar trends. Clustering is a data mining technique that
arranges similar data into related or homogeneous groups without previous knowledge of
the groups’ definitions [14]. It has been proven to be a useful methodology for exploratory
data analysis as it recognizes structure(s) in datasets by objectively organizing data into
similar groups (clusters) [15]. A special type of clustering is time-series clustering. While
each time series consists of multiple data, it can also be seen as a single object [16], and
clustering these kinds of complex objects can be advantageous, allowing for the discovery
of relevant patterns in time series datasets [17,18]. Time series clustering allows for the
identification of homogeneous groups of monitoring stations with similar behaviors over
time [19-22].

In the last few years, successful attempts have been made to apply time series clus-
tering to water data. Among those, some works applied time series clustering to water
availability datasets related to surface water discharges [23-25] and groundwater level
data [26-29]. On the other hand, only a few works applied time series clustering to water
quality data: Huang et al. [30] and Lee et al. [31] analyzed water quality parameters in
river monitoring stations while, to the best of our knowledge, time series cluster analysis
application to groundwater quality data is yet to be explored.

The main aim of this work is to explore the application of univariate and multivari-
ate time series cluster analysis for the interpretation of groundwater quality data. This
work constitutes a novel approach for groundwater quality data investigation through
time series cluster analysis, which can become a valuable tool for monitoring and inves-
tigating any kind of physico-chemical data. In this work, time series cluster analysis is
applied to groundwater contamination data, to support water quality monitoring and wells
management in a historically contaminated urban area.

Urban and industrial sprawl is often associated with the presence of wide areas with
contaminated groundwater, where it becomes difficult to discriminate and manage different
local sources and plumes of contamination [32]. These areas are often characterized by mul-
tiple superimposing point sources of contamination, generating diffuse contamination over
wide areas, together with local high-concentration plumes [33]. In these cases, for proper
use and monitoring of water, the need emerges for scientific-based tools to discriminate the
areas affected by diffuse anthropic contamination from local hotspots linked with different
processes [34] since the associated risks can be different.

Here, time series exploratory analysis and time series cluster analysis are applied to
contamination data of raw water samples from an urban area characterized by several
superimposing historical contamination sources and a complex hydrogeological setting.
The results of the cluster analysis are exploited to investigate the wells’ temporal profiles of
the contamination, discriminating between diffuse and local contaminations with the aim
of designing data-driven monitoring strategies.

Implementing data-driven monitoring strategies can lead to more efficient monitoring
networks tailored for specific territories and focused on relevant ongoing processes. Fur-
thermore, data-driven monitoring strategies can help to avoid redundant analyses while
targeting relevant trends by implementing early warning systems.
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The proposed approach constitutes a widely applicable tool, easily reproducible by
researchers, water suppliers, practitioners and environmental protection agencies.

2. Materials and Methods
2.1. Study Area

The study area is the municipality of Brescia (N Italy, Figure 1, cross-section in
Figure 5S1), the second largest municipality in the Lombardy region by population, hosting
ca. 200,000 inhabitants and one of the 20 most populous municipalities in Italy. According
to Kottek et al. [35], the climate in the area is classified as Cfa (Humid subtropical climate):
the average annual temperature is 13.1 °C, whereas the average annual rainfall is 1091 mm.

The municipality of Brescia lies downstream of the Trompia valley. From the hydro-
logical point of view, the study area includes the Mella river fan in the northern part of the
study area and a Higher Plain area in the southern part [36-40].

In the Mella fan area, northern zone, the structure of the aquifers was strongly influ-
enced by the incision of the bedrock, in correspondence with the Mella River, flowing from
the upstream Trompia valley, which caused a large depression subsequently filled by river
deposits. The Mella river runs through the valley, divagating and creating considerable
lithological variations with zones with different permeabilities laterally and vertically. The
water circulation mainly occurs among overlaying levels generating a multilayer aquifers
system consisting of a shallower aquifer hosted in the more gravel-sandy deposits (gravel-
sandy unit) and a deeper aquifer within conglomerate deposits (conglomerate units). This
structure limits, but does not prevent, exchanges and intercommunications between the
aquifers, especially on a local level. The groundwater flow inside the gravelly-sandy mate-
rial encounters lower permeability layers, consisting of fine-grained levels and compact
conglomerates. The shallower aquifer, with greater permeability and transmissivity, is also
highly vulnerable to anthropogenic contamination, while the deeper aquifer, hosted in
conglomerates, is less vulnerable to pollution from the surface.

Moving southward toward the higher plain area, the conglomerate gradually disap-
pears, and the higher plain area hosts a multilayer aquifer system with several superim-
posed aquifers separated by low permeability aquicludes.

Due to the hydrogeological setting and the high-density urbanization and industri-
alization, the piezometric map shows a complex situation. The main flow direction is
North-South, with a first significant piezometric depression on the left bank of the Mella
River, due to water withdrawals and a second one in the southern area. Since the shape of
the water table is mainly driven by anthropic withdrawals, it can also rapidly variate over
time, determining wide and rapid changes in the flow directions, which can hamper the
interpretation of chemical data.

The industrial growth in the Trompia valley and Brescia city goes back to the early
1900s and includes mainly metallurgic activities, foundries, weapons and ammunition
manufacturing, tanning, paints, and varnish production.

The monitoring network of the environmental authorities showed evidence of widespread
qualitative degradation of the groundwater tapped by public and private wells since the
1980s, with the presence of anthropic contaminants such as organo-halogen compounds
and hexavalent Chromium [41]. The local environmental Protection Agency observed local
and widespread contaminations throughout the territory, especially in the northern and
central parts of Brescia municipality, and associated them with inadequate waste and
discharge management [41].

In 2002 part of the Brescia municipality (ca. 262 hectares, Figure 1) was included in the
National Priority List of contaminated sites according to Italian law, based on its extension
and quantity and concentrations of pollutants, including chlorinated compounds and heavy
metals [41].

The Trompia valley as well, upstream to the city center, has been known for a gen-
eral deterioration of the aquifer from the 90s, related to various outbreaks of hexavalent
Chromium and chlorinated solvents. The environmental protection agency described such
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degradation as mainly related to point sources of pollution, which are responsible for the
most relevant pollution phenomena, as well as to the persistent or occasional discharge of
effluents or waste on the ground or in the surface water [42].
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Figure 1. Study area: (a) elevation, and piezometric map by Osservatorio Acqua Bene Comune [40]
and (b) land use, (c) study area location (WGS 84 UTM 32N).

2.2. Available Data

Water quality data were made available by A2A Ciclo Idrico SpA, water supplier
of several municipalities in the province of Brescia. Data refer to raw water prior to any
potabilization treatment. For a broader understanding of the ongoing processes, available
data concerning the municipalities surrounding Brescia city were considered in this study,
for a total of 68 wells and 16 springs in the dataset.

The wells have different depths and different screens number and distributions. There-
fore, even wells close in space can be subjected to different contamination sources and
processes. For each well and spring, data are available for the 2009-2020 time window for
the following dissolved contaminants: tetrachloroethylene (PCE), trichloroethylene (TCE),
and hexavalent Chromium (Cr(VI)), for a total of ca. 3000 data points.

The WHO Guideline Value for drinking water for PCE and TCE are, respectively,
40 pg/L and 20 pg/L while a value of 50 pg/L is set for the total Chromium value [43].
The Italian regulation for drinking water (D Lgs 31/01) specified a more restrictive 10 pug/L
value for the sum of PCE and TCE, similarly to other countries and territories world-
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wide [43]. As for the Chromium, the Italian regulation for drinking water adopted the
WHO guide value of 50 pg/L for the total Chromium.

To perform the statistical analysis, data below the Limit of Detection (<LOD) were
substituted with the LOD/2 value. When considering wide periods, the LOD value for a
single parameter can vary over time in the dataset, which can cause fictitious variability [44].
Therefore, <LOD data were substituted with the minimum LOD/2 of the data available for
each parameter.

For most of the wells, one sample per year is available, but in several cases, sampling
and analyses were intensified for specific wells in specific periods; therefore, more data are
available. The wells’ time series were homogenized for the subsequent statistical analysis
by considering yearly averages. The use of yearly averages also reduces the effect of
seasonality and noise [10], which could affect the interpretation of pluriannual trends.

2.3. Data Analysis

The work was carried through three successive work phases. First, an exploratory data
analysis was carried out to assess the data variability. In the second phase, the time series
clustering technique was applied and the results were explored and interpreted. Lastly,
the results of the time series clustering were exploited for the development of data-driven
monitoring strategies.

2.3.1. Exploratory Analysis

In a first phase, an exploratory analysis of the dataset was performed through the
Mann-Kendall test and Sen’s slope estimator. The Mann-Kendall test [45,46] is a popular
test aimed at statistically assessing the presence of monotonic upward or downward trends.
It is a non-parametric test (i.e., no assumptions about the probability distribution of the
dataset are required) and robust to potential outliers. Hence, it is particularly suitable for
environmental data. Similarly, the Sen’ Slope estimator is a non-parametric and robust
statistic for calculating the trend’s slope [47,48].

2.3.2. Time Series Clustering

Time series clustering was applied on the time series of PCE, TCE and Cr(VI) to identify
homogeneous groups of wells with similar dynamic responses to anthropic pressures. The
‘dtw’” package [49] was used in the R environment version 4.1.0 (18 May 2021). As for the
clustering technique, in this study, the Ward hierarchical method was used, which has been
previously applied to hydrological data, resulting in more homogeneous and consistent
clusters than other methods [7,50].

The most common distance used for cluster analysis is the Euclidean distance, but
when working with time series objects the Euclidean distance may fail to produce an
intuitively correct measure of similarity between two sequences, being very sensitive to
small distortions in the time axis [51]. This is because the Euclidean distance would only
compare feature values at the same time-step without considering adjacent measurements
(Figure 2). Therefore, if two time series are very similar but even slightly shifted in time, they
will be classified as very different when applying straight Euclidean distance. To overcome
this issue, the Dynamic Time Warping (DTW) methodology has been proposed [52,53],
which is an elastic, shape-based similarity measure created to deal with temporal drift. The
DTW method matches time series considering all the directions that minimize the distance
between two time series and allowing data at different time steps to be compared.

The DTW method explores potential associations within the whole time series, search-
ing for similarities even in data points that can be far in time (Figure 2) and allowing for
sweeping shift and warping of the time series. This approach can be useful for several
applications but might become counterproductive for certain fields of work. Indeed, when
working with hydrological data, researchers can be interested in evidencing the significant
time shifts that can represent specific processes or geological structures. For this purpose,
a distance measure should neglect the time shifts which are considered insignificant in
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relation to the field of study and the time-resolution of the data, but it should also highlight,
with higher distance values, the time shifts that could have an informative meaning. In
this regard, Dau et al. [54] highlights the importance of tuning the maximum amount of
warping through the window size parameter (w). The parameter w constraints the DTW
algorithm allowing for time warping only on a specific time window around each data
point. In this work, considering the yearly time resolution and the hydrogeological struc-
ture and extension of the area, a 2-year window size was set, which is considered a relevant
temporal shift for the purpose of this study with respect to the distances of the wells, the
study area extension and the high geological and hydrodynamic variability.

By fixing the warping window size w, the DTW searches for similarities around each
data point considering w precedent and w successive time steps (Figure 2). Therefore, when
working with hydrological data, the choice of the parameter w should be based on the
time-resolution of the data (seconds, days, months, years) and the hydrogeological context
of the studied system to highlight temporal shift that could be meaningful and neglect
those that are not.

The optimal number of clusters was selected by comparing the results of different
solutions by means of the internal clustering validity indices (CVIs). The CVIs are a set
of statistics developed to quantify and compare different clustering solutions properties
such as compactness, separation between clusters, etc. A large number of CVIs have been
proposed, and reports comparing different CVIs suggest that no single CVI can always
outperform the others [55,56] and that the performance of single CVIs can decrease when
working on small datasets or noisy data. Therefore, it is common practice to adopt and
compare several CVls, using a majority vote as a supporting tool for choosing the number
of clusters. Here, the seven most used CVIs were calculated and compared: Silhuette [57]
(Sil), to be maximized; Dunn index [56] (D), to be maximized; COP index [56] (COP), to be
minimized; Davies-Bouldin index [56] (DB), to be minimized; Modified Davies-Bouldin
index [58] (DB*), to be minimized; Calinski-Harabasz index [56] (CH), to be maximized;
Score Function [59] (SF), to be minimized.

In this work, two different cluster analyses were carried: (a) a multivariate analysis
on PCE and TCE data and (b) a univariate analysis on Cr(VI). The two datasets were
analyzed separately since they are associated with different kinds of anthropic sources,
they have different spatial distributions and different environmental processes. Hence,
a single multivariate analysis would only lead to known information about the different
distributions of the two types of compounds, while treating them separately allows for
a more specific investigation of the time variability of each type of compound. On the
other hand, PCE and TCE in a single well can be equally associated with a single source or
come from different sources [60]; therefore, analyzing them simultaneously can help reveal
useful information about different hotspots.

For the purpose of the time series clustering, highly incomplete time series (i.e., time
series with less than 7 years of data) and wells in which the analyzed compound was never
detected were excluded in each analysis.

In most cases, it is appropriate to standardize the data for clustering purposes and,
for time series clustering, it is sometimes appropriate to subtract the mean from each
time series (e.g., when working with piezometric data) [61-63]. Since this work aims to
cluster chemical data, it was important to separate wells with higher concentrations from
those with lower concentrations. Therefore, no mean subtraction was performed on the
time series. For the multivariate analysis, the two entire PCE and TCE datasets were
standardized as z-score so that they could have the same weight within the multivariate
analysis, but the relative differences among wells were preserved.



Water 2023, 15,

148

7 of 19

2.0

-0.5 0.0 0.5 1.0 1.5

-1.0

(a) Euclidean (b) Unconstrained DTW (¢) Constrained DTW w=2
\/ /
T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Time steps Time steps Time steps

Figure 2. Graphic representation on synthetic data of (a) Euclidean distance, (b) unconstrained
Dynamic Time Warping, (c) Dynamic Time Warping with reduced window size (w = 2). Black and
red lines are the synthetic time series generated through a sin function plus a random component,
while the dotted grey lines indicate the association among the data of the two time series calculated
with the three methods. Euclidean distance only allows for the comparison of the data at the same
time step without any warping of the series, and even the slightest shift would increase the distance
value. The DTW searches for similarities in the time series allowing for sweeping shift and warping
of the time series, coupling also data which can be far in time. In this example, DTW couples data
that are more than 10-15 time-steps away.

2.3.3. Development of Data-Driven Monitoring Strategies

The output of time series cluster analysis allows for a meaningful synthesis of the
chemical variability of the wells over space and time. Here, the characteristics of the
different clusters’ time profiles were analyzed to support the monitoring by designing
specific early warning systems tailored for each time profile.

First, the clusters interpretation, based on the time profile and spatial distribution of
the wells, is used for discriminating among diffuse background contamination and local
hotspots. Subsequently, based on the time profile, the early warning systems indications
and, when appropriate, the trigger levels are provided for each cluster. The trigger levels
are intended to be threshold values for the implementation of early warning systems: if
future data are above this threshold value, the monitoring should be intensified to check or
rule out the presence of new contamination processes.

In particular, for clusters associated with diffuse background contaminations, trigger
levels are here calculated as the 95° percentile of the data in the cluster. The 95° percentile
is the most used method for identifying threshold values for specific groups of wells in the
scope of both, natural and anthropic contamination [64—66].

On the other hand, using the 95° percentile is only appropriate for static conditions as
it would lead to an overestimation of possible threshold values in case of decreasing trends
or an underestimation in case of increasing trends.

Hence, calculating a trigger level through a percentile approach would hardly be
useful for the clusters that present peculiar time profiles with increasing or decreasing
trends or significant pluriannual oscillations. Instead, successive monitoring should aim
to verify that specific trend’s persistence or reversal over time. Here three likely cases
are considered:

e Increasing trends, which can be immediately considered as a warning situation. There-
fore, immediate actions must be taken, and no indications for future warnings can
be given.
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e  Decreasing trends, which indicate ongoing attenuation processes. For these wells any
threshold value would be overestimated if based on the entire time series, while the
early warning should be triggered if a peak or a new uptrend were to occur.

e  Trends characterized by at least one changing point determining the trend inversion.
For these cases, it is necessary to focus on the most recent part of the time series,
identifying the current trend, which leads back to cases a and b.

3. Results and Discussion
3.1. Exploratory Analysis

Results of the exploratory analysis are reported in Figure 3. For each well, the time
series of PCE (Figure 3a), TCE (Figure 3b) and Cr(VI) (Figure 3c) were analyzed, searching
for potential trends, with regard to the most recent situation. In Figure 3 the symbol
indicates whether the time series showed a non-significant trend or a significant upward
or downward trend. The wells are color-coded based on the concentration of the last

available measurement.

Figure 3. Exploratory trend analysis for (a) PCE, (b) TCE and (c) Cr(VI).
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The PCE shows a heterogeneous situation, with several zones of higher concentration
with a static or increasing trend, mainly in the city center, and surrounding areas with
lower concentrations and static, increasing or decreasing trends. TCE, on the other hand,
shows a more homogeneous pattern, with generally lower concentrations and mostly
non-significant or decreasing trends.

The Cr(VI) data also show a heterogeneous situation, with high concentration and
static trends in the city center and increasing trends with both low and high concentrations
in the southern part.

3.2. Time Series Clustering
3.2.1. Multivariate Time Series Clustering of PCE and TCE

Multivariate time series clustering was performed on PCE and TCE data. For the
purpose of this analysis, one well was excluded, due to its extreme PCE concentrations, out
of the range of the remaining wells, potentially masking the variability of the other wells.

The solutions from 5 to 10 clusters were compared, and the CVI results (Table 1) sug-
gested that the 10-cluster solution was the best performing one. Furthermore, the analysis
of the results confirmed that it was an environmentally interpretable solution.

Table 1. CVIs results for the multivariate time series analysis on PCE and TCE data: Silhuette (Sil), to
be maximized; Dunn index (D), to be maximized; COP index (COP), to be minimized; Davies-Bouldin
index (DB), to be minimized; Modified Davies-Bouldin index (DB¥), to be minimized; Calinski-
Harabasz index (CH), to be maximized; Score Function (SF), to be minimized. Bold font indicates the
best solution according to each CVI.

No. of Clusters Silt SFt CH? DBJ DB*| Dt cor|
5 0.44 4.89 x 10~ 35.48 0.85 1.05 0.14 0.15
6 0.43 141 x 107° 30.93 0.87 1.18 0.14 0.13
7 0.40 1.83 x 1077 27.55 0.99 1.27 0.18 0.12
8 0.40 1.35 x 1077 25.50 0.88 1.20 0.18 0.11
9 0.40 2.26 x 1077 23.11 0.81 1.12 0.20 0.11
10 0.39 3.67 x 1077 21.11 0.77 0.98 0.24 0.10

In Figure 4 the temporal profiles of the ten clusters are shown, together with their
spatial distribution.

The cluster PTA groups 23 abstractions, including wells and springs. The PCE values
range below 6 pg/L and TCE values are below 1 pg/L. The wells are scattered, mostly
in peripheral areas (Figure 4). No relevant pluriannual trend is evident from the data
regarding both, PCE and TCE.

The cluster PTB includes 7 wells. Concentrations of PCE range from 1 to 7 ug/L while
TCE mostly ranges from 0.5 to 1 pg/L with two peaks above 2 pg/L in 2010. No relevant
pluriannual trend is evident from the data regarding PCE, while TCE shows slightly higher
concentrations around 2010 (Figure 4). As in the case of the PTA cluster, the PTB wells are
scattered in marginal areas.

The cluster PTC includes 10 abstractions, including wells and springs, with PCE values
below 8 pug/L and TCE mostly ranging between 1 and 2 ng/L. No relevant pluriannual
trend is evident from the data regarding PCE. TCE shows a wider pluriannual variability,
but no environmentally relevant trend emerges (Figure 4). Also in this case, the wells are
mostly scattered in peripheral areas. The position of the wells, the costantly low concentra-
tions over time, and the absence of relevant trends, suggest the association of these three
clusters with the diffuse background contamination connected with the multiple historical
sources in the upstream valley and the Brescia or surrounding municipalities.

The cluster PTD represents a group of 7 neighboring wells in the plain area with a
peculiar temporal profile for PCE and TCE and a well in the northern valley area (Figure 4).
The PCE concentrations in PTD show an increasing trend up to 2015, followed by a
static/decreasing behavior. TCE instead shows an oscillatory behavior from 2009 to 2016,
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followed by a slightly decreasing trend. The specific time profile and the geographical distri-
butions led to the association of this cluster’s wells with two local hotspot contaminations:
one in the northern part and one in the southern part of the study area.
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Figure 4. Results of multivariate time series cluster analysis on PCE and TCE: (a) PCE time profile of
the clusters (dashed lines indicate WHO guide value for PCE in drinking water), (b) TCE time profile
of the clusters (the WHO guide value for TCE is 20 ug/L, outside the range of the graphs) and (c) spa-
tial distribution of the clusters, black rectangle in the legend indicates clusters associated with diffuse
background contamination, while red rectangle indicates clusters associated with local hotspots.
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The cluster PTE includes two neighboring wells in the city center, with an evident
monotonous increasing trend for PCE and a decreasing trend for TCE (Figure 4). This
distinct temporal profile marks these two wells as a hotspot but differentiates them from
the surrounding wells in clusters PTF and PTG.

The cluster PTF includes three neighboring wells in the city center, with a distinct time
profile for PCE, characterized by a minimum in 2010-2012, and a maximum in 2016-2017,
while the TCE shows consistently low concentrations (Figure 4). The grouped position and
the peculiar time profile indicate that this cluster represents a local hotspot.

The cluster PTG presents a time profile close to PTF, but it presents a lower minimum
in 20102012 and reaches lower values in the recent years, while TCE is still constantly low,
with a marked oscillation in 2013-2014 (Figure 4). Therefore, PTG can be associated with a
local hotspot.

The cluster PTH groups wells in the southernmost part of the area, with a well in
the northern area. These wells share a PCE time profile characterized by an increase
around 2014, followed by a more stationary condition. On the other hand, the TCE shows
concentrations slightly higher than the other clusters with decreasing values in the last
years (Figure 4).

The cluster PTI is a singleton, far from other monitoring wells, and presents a unique
profile for PCE with a maximum around 2013, reaching the highest values in the dataset
and a second peak around 2016 (Figure 4).

The cluster PTJ is another singleton, representing a well very close to one of the wells
in the PTH cluster, from which it differentiates due to a maximum in 2019 (Figure 4).

3.2.2. Univariate Time Series Clustering of Cr(VI)

For the Cr(VI) time series, a univariate time series clustering has been performed.
As for the PCE and TCE analysis, five solutions were compared, with 5 to 10 clusters.
The CVI output (Table 2) indicated the 5-clusters solution, which on examination are
not sufficiently environmentally interpretable and explicative. Therefore, the second-best
option was chosen, which was the 10-cluster solution.

Table 2. CVIs results for the univariate time series analysis on Cr(VI) data: Silhuette (Sil), to be
maximized; Dunn index (D), to be maximized; COP index (COP), to be minimized; Davies-Bouldin
index (DB), to be minimized; Modified Davies-Bouldin index (DB*), to be minimized; Calinski-
Harabasz index (CH), to be maximized; Score Function (SF), to be minimized. Bold font indicates the
best solution according to each CVIL.

No of Clusters Silt SFt CH?T DB, DB*| Dt cor|
5 0.54 224 x 10712 2052 0.39 0.45 0.13 0.06
6 0.38 363 x 10713 2097 0.44 0.60 0.09 0.04
7 0.38 933 x 10715 2205 0.46 0.55 0.16 0.04
8 0.34 222 x 1016 24.66 0.58 0.84 0.11 0.03
9 0.37 0.00 23.51 0.60 0.74 0.15 0.03
10 0.37 222 x 1016 21.93 0.52 0.64 0.16 0.02

Out of the ten clusters, three were associated with diffuse background contaminations.
These three clusters are CrA, which includes 5 wells and 3 springs, CrB, which includes
16 wells and CrC, which includes 10 wells. In terms of Cr(VI) concentrations, CrA, CrB and
CrC show consistently low values (i.e., 0-5 ng/L for CrA, 3-10 ug/L for CrB and 5-15 ug/L
for CrC), and their distribution appear scattered over the study area, including upstream
and lateral areas (Figure 5).

The cluster CrD groups three neighboring wells, which present an oscillatory pluri-
annual trend, with a maximum around 2012, a minimum around 2017 and increasing
values in the 2017-2020 time span (Figure 5). The specific time profile, together with their
proximity in space support the identification of these wells as a local hotspot.
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Figure 5. Results of univariate time series cluster analysis on Cr(VI): (a) Cr(VI) time profile of
the clusters, (b) spatial distribution of the clusters, black rectangle in the legend indicates clusters
associated with diffuse background contamination, while red rectangle indicates clusters associated

with local hotspots.

CrE groups 3 wells with constant concentrations in the range 20-30 pg/L. Two of
these wells are close to each other, in the south-eastern part of the area, while the third
one is separated, in a more eastern area (Figure 5). All the wells in CrE show values
consistently above the range of the background clusters (i.e., CrA, CrB and CrC) with
stronger interannual variability which supports the identification of these three wells as
local hotspots.

CrF groups 3 wells, scattered in different positions, with an evident decreasing trend
(Figure 5). CrH-CrJ are singletons, with time profiles different from the remaining wells of
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the dataset. CrH and CrI though, which are close in space, show similar trends with the
highest concentrations of the dataset reached respectively in 2014 and 2015 (Figure 5).

3.3. Data-Driven Monitoring Strategies

Here, specific monitoring indications are proposed for each cluster based on a detailed
interpretation of the characterizing time profile.

As regards the PCE and TCE monitoring, the PTA, PTB and PTC clusters were as-
sociated with diffuse background contaminations without significant trends. Therefore,
trigger levels were calculated, through the 95° percentile, leading to the values 4.1, 5.9 and
7.3 ug/L for PCE and 0.6, 0.9 AND 1.7 ug/L for TCE for respectively PTA, PTB and PTC.

Clusters PTD, PTF, PTG and PTI were associated with local hotspots, and they show
an oscillatory behavior in terms of PCE with at least 2 reversals of the trend directions
during the considered period. In all these clusters, the last part of the time profile of PCE
appears to be decreasing or stationary, starting from different years. Therefore, the PCE
monitoring could be intensified, evaluating the results with respect to the previous data,
and the early warning should be triggered if future data appear to be higher than the
previous data. In these clusters, the TCE shows constantly low concentrations. Even if
slight trends are visible, the range of values is very narrow, therefore it is appropriate to
calculate a trigger level through the 95° percentile method which results in the TCE values
of: 1.4 ug/L for PTD, 0.9 ug/L for PTF, 1.1 ug/L for PTG.

Cluster PTH was associated with local hotspots. Since 2014, the PCE has shown a
stationary behavior while the TCE shows decreasing values. In this case, the monitoring
should be aimed at verifying the persistency of these conditions and the early warning
should be triggered if new measurements give higher results than previous data.

Clusters PTE and PTJ were associated with local hotspots, and show an increasing
trend for PCE and stationary/oscillatory trend for TCE. Here, monitoring should be in-
tensified for a more detailed observation of the ongoing processes that could lead to an
increase in PCE, which could also be associated with future increase in TCE.

As regards Cr(VI) monitoring, results highlighted that CrA, CrB and CrC were associ-
ated to diffuse contamination, with no pluriannual trends and small variability. Therefore,
trigger levels were calculated, through the 95° percentile, leading to the values 4 ug/L,
9.3 ug/L and 13.1 ug/L for respectively the CrA, CrB and CrC clusters.

CrE was associated to local hotspots, and its wells show wider variability, but around
a static average without any evident pluriannual trend. Therefore, it is appropriate to
elaborate a trigger level with the 95° percentile, which result in 30.4 pg/L.

CrD, CrH, CrI and CrJ show clear pluriannual oscillation, with different behaviors.
In these cases, the monitoring should be aimed at evaluating the progress of the ongoing
processes, with regard to the most recent trends which are increasing for CrD and CrJ and
decreasing for CrH and Crl. Therefore, for CrD and CrJ the monitoring could be intensified,
and warning should arise if a significant positive trend takes place considering data from
2017 for CrD and 2014 for CrJ. While For CrH and CrI the warning should be activated for
new peaks or increasing trends, therefore for values higher than the previous data.

CrF and CrG show decreasing trends; in these cases, early warning should arise in case
of peaks and trend reversal, i.e., for concentration values higher than the previous data.

3.4. Methodological Approach Pros and Cons

Currently, monitoring data of raw groundwater quality are mostly analysed by envi-
ronmental agencies and water suppliers and at every survey to check the compliance with
regulatory limits [67,68].

On the other hand, if time series of data are available, analysing longer-term trend
can help to identify the processes that may lead to an improvement or aggravation of
the current situation, facilitating wells management and further monitoring. Particularly,
observing single time-pictures or averages can be useful for major ions or physico-chemical
parameters mostly associated with natural, and therefore stable, processes. However, when
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studying anthropic contamination, evaluating pluriannual trends can provide valuable
additional information.

In this work, an exploratory data analysis was performed, through the most common
methods for trend detection and quantification and, subsequently, a time series cluster
analysis was applied for a more detailed trend overview.

The results of the exploratory analysis reported a highly variable situation (Figure 3),
and no evident information about specific hotspots emerged. Coupling in the same vi-
sualization the concentration and the trend information is informative, but interpreting
different trends against concentrations requires a high level of interpretation and analysis.
Indeed, the most common statistical methods for trend analysis applied here, are valuable
and well standardized methods [10,69], mostly applied on groundwater level data [11,12]
but the results have shown how these methods present severe limitations when applied
on highly variable chemical data. Particularly, the Mann-Kendall test for trends detection
works properly only with monotonous trends, while its performances decrease when cop-
ing with oscillatory behaviors. Furthermore, the Mann-Kendall test mostly focuses on
the sign of the differences among data neglecting the amplitude of possible trends while,
for environmental applications, it can be useful to distinguish slight or dramatic trends.
For this last application, Sen’s slope estimator is applied, which provides information
about the slope amplitude. Nevertheless, the Sens’s slope estimator also performs better
on monotonous trends, while it can struggle with strong oscillations. Furthermore, for
environmental applications, it could be useful to discriminate between cases of similar
trend slopes but different ranges of concentrations (e.g., lower values or values closer or
higher to a regulatory limit).

Therefore, if working with anthropic contamination data, it becomes useful to assess
all these abovementioned aspects: the presence or absence of trends, their direction and
amplitude, the concentration ranges, and the presence of oscillatory behaviors or trend
reversals. Assessing all these aspects for each well for a significant number of wells and
parameters can become time demanding and confusing.

In this regard, the time series cluster analysis allowed for a concise representation of
the time profiles of different wells (Figures 4 and 5), by grouping them based on the most
relevant features of their time profiles.

Time series clustering has been increasingly adopted for the analysis of groundwater
level data [26,27,63,70], and recently its application was extended to the analysis of surface
water quality data [30].

The results of the study highlighted that time series clustering could become a valuable
tool for the analysis, exploration and exploitation of groundwater quality data, especially
in the scope of anthropic contamination.

Particularly, the time series cluster analysis, performed with the DTW method, with
a window size tuned to the hydrogeological characteristics of the study area and length
and resolution of the time series, provided a meaningful and environmentally interpretable
grouping of the different temporal profiles of the wells. There is a wide range of appli-
cations for these kinds of results, and two main applications were explored in this work.
As a first application, the time series cluster analysis helped to discriminate diffuse back-
ground contamination and different local hotspots. If looking, for example, at Figure 3 the
information of the concentrations at a single time step could have led to a flawed inter-
pretation, especially in the context of the neighboring wells in the zoom rectangle, which
have a similar range of concentration. The time profile analysis, instead, clearly showed
different behaviors for some of these wells. Indeed, by observing a single concentration or
an average it is not possible to to distinguish whether a value results from an increasing or
decreasing trend or is static over time, while this information is crucial for a proper water
resource management.

These results are particularly valuable when considering the complex hydrogeology
of the study area, with a wide geological variability over a narrow territory and complex
flow paths which are highly variable over time.
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In this work, the second application of time series cluster analysis highlighted that it
could be a valuable support for future monitoring. Also in this case, being able to deal with
groups of wells instead of single wells allows for a more immediate, efficient, and smart
design of successive monitoring standards and early warning system implementation.

On the other hand, a limitation of this application is that it can mix up different
hotspots with similar time profiles (e.g., PTD) since the information about the location of
the wells with respect to the flow path is not entered into the analysis. For this reason,
the interpretation of the results should not neglect all the hydrogeological information
concerning the structure of the aquifers, the flow directions, and the nature of the investi-
gated contaminants.

Another limitation of this type of analysis is associated with being unsupervised
techniques. Since it is a data-mining technique, it is does not support an absolute classifi-
cation of the wells, for a validation of the grouping obtained by the cluster analysis. As
for every data-mining application, the main validation is provided by the environmental
interpretability of the solutions and their information content which are also driven by
the dataset quality. In this regard, the choice of the w parameter was here performed
by exploring possible solutions, and it was based on the hydrogeological knowledge of
the study area dynamics. On the other hand, as mentioned, validation is not supported
for unsupervised applications. The CVI index could help to compare different solutions.
However, each CVI measures specific cluster characteristics such as intra-cluster variabil-
ity, compactness, and separation among clusters, but none of these characteristics are
exhaustive for determining the environmental interpretability and the solution’s usefulness
in highlighting relevant information for the specific purpose of the study. Furthermore,
there is no standardized use of the CVIs: different scientific works use different CVIs, and
comparison works highlighted that single CVIs have low performance, further decreased
when the structure of the analyzed dataset encompasses noisy data, overlapping clusters
or cluster which are closer in the variables space [56].

The specific application of the present study is out of the scope of source identification and
apportionment or attenuation processes assessment, mainly because of the data availability.
Nevertheless, the proposed method could easily be integrated with multivariate source
apportionment techniques, isotopic analyses and attenuation processes investigations.

4. Conclusions

In this work, time series analysis of contamination data in a historically contaminated
urban area was undertaken: first, an exploratory analysis was performed through Mann-
Kendall and Sen’s Slope estimator and then univariate and multivariate time series cluster
analysis were carried out.

The main conclusions of this work can be summarized in the following points:

e Time series analysis of contamination data provides deep insights on the processes
governing water quality, which would not be provided by the analysis of single
field surveys

e  Results of the exploratory analysis highlighted that the most common methods for
trend analysis such as Mann-Kendall and Sen’s Slope could be non-exhaustive when
dealing with highly variable groundwater chemical data since (a) they only work
with monotonous trends and struggle with oscillatory behaviors and (b) they do not
discriminate between lower and higher concentrations, focusing only on the trend’s
shape while even increasing trends, over very low concentrations, can have scarce
environmental relevance.

e  Time series clustering overcame these issues and demonstrated to be an efficient tool
for summarizing spatio-temporal variability of contamination data, allowing for an
easier interpretation, and supporting the implementation of data-driven monitor-
ing strategies
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e The implementation of data-driven monitoring strategies can lead to more efficient,
site-specific monitoring networks, able to avoid redundant analysis to focus on relevant
or alarming trends.

Future lines of research based on the results presented in this work may deal with a
validation of the cluster interpretations, through e.g., a backward approach thus investigat-
ing a contaminated site chemically and isotopically. Furthermore, possible future step of
this work involve the widening of the analysed contaminants set and the validation of the
developed monitoring strategies, evaluating their future effectiveness in identifying critical
situations and in monitoring ongoing processes.

The approach proposed in this work represents an easily reproducible methodology,
ready-to-use for researchers, water suppliers, practitioners and environmental protection
agencies. This methodology could indeed serve for several different applications in the
different fields of groundwater quality assessment, monitoring, and management.
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