
Citation: Wang, H.; Xuan, Y. An

Area-Orientated Analysis of the

Temporal Variation of Extreme Daily

Rainfall in Great Britain and

Australia. Water 2023, 15, 128.

https://doi.org/10.3390/w15010128

Academic Editor: Aizhong Ye

Received: 24 November 2022

Revised: 23 December 2022

Accepted: 28 December 2022

Published: 29 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

An Area-Orientated Analysis of the Temporal Variation of
Extreme Daily Rainfall in Great Britain and Australia
Han Wang 1,2,3 and Yunqing Xuan 3,*

1 China Institute of Water Resources and Hydropower Research, Beijing 100038, China
2 Research Center on Flood & Drought Disaster Reduction of the Ministry of Water Resources,

Beijing 100038, China
3 Department of Civil Engineering, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK
* Correspondence: y.xuan@swansea.ac.uk

Abstract: This paper presents an analysis of the temporary variation of the area-orientated annual
maximum daily rainfall (AMDR) with respect to the three spatial properties: location, size and shape
of the region-of-interest (ROI) in Great Britain and Australia using two century-long datasets. The
Maximum Likelihood and Bayesian Markov-Chain-Monte-Carlo methods are employed to quantify
the time-varying frequency of AMDR, where a large proportion of the ROIs shows a non-decreasing
level of most frequent AMDR. While the most frequent AMDR values generally decrease with larger-
sized ROIs, their temporal variation that can be attributed to the climate change impact does not
show the same dependency on the size. Climate change impact on ROI-orientated extreme rainfall
is seen higher for rounded shapes although the ROI shape is not as significant as the other two
spatial properties. Comparison of the AMDR at different return levels shows an underestimation by
conventionally used stationary models in regions where a nonstationary (i.e., time-varying) model is
preferred. The findings suggest an overhaul of the current storm design procedure in view of the
impact of not only climate change but also spatial variation in natural processes.

Keywords: extreme rainfall; spatial variation; return period; GEV; climate change; nonstationarity

1. Introduction

Applications of extreme value (EV) theory in modelling meteorological and environ-
mental processes have been widely practised in designing and validating many infras-
tructure systems [1]. A classical analysis approach adopted in these applications is to use
historical hydro-climatic data, such as rainfall, temperature, river flows, etc., to estimate
the parameters of the required EV model which would offer probability distributions of the
natural phenomenon in question, so as to address its occurrence or exceedance probability
at given thresholds. Since Jenkinson [2] proposed a generalized approach to analysing
the frequency distribution of annual maxima, many efforts have been made to quantify
natural phenomena at extreme levels using the Generalized Extreme Value (GEV) mod-
els whose parameters are often fitted by using the Maximum Likelihood (ML) method
and L-Moments (LM) method, especially in designing and planning water engineering
systems [3–7].

Recently, there has been a growing interest in studying natural events from a climate-
change perspective, given that the key hydroclimatic variables, such as precipitation,
temperature and streamflow, are indeed changing due to the impact of climate change [8,9].
To address the reliability of infrastructure designs based upon extreme value analysis,
stationary risk analyses have been re-assessed from a new adaptive perspective where
Sarhadi [10] proposed a multivariate time-varying risk framework for all stochastic multidi-
mensional systems under the influence of a changing environment. For the commonly used
nonstationary GEV models, this means that their scale and location parameters can vary
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with time or other climate indices [11]. For example, Hasan [12] proposed two nonstation-
ary GEV models for extreme temperature with each model assuming only one parameter
as nonstationary depending linearly and exponentially in time, respectively; Sarhadi and
Soulis [13] defined both the scale and location parameters for extreme precipitation analysis
using a linear, time-varying representation. Their results showed that stationary models
tend to have underestimation of extreme precipitation when compared with the nonstation-
ary ones; Panagoulia [14] generated 16 nonstationary GEV models of extreme precipitation
with linear time dependence of location and log-linear time dependence of scale, employing
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for
selecting the best model and examined confidence intervals for model parameters. Un-
like the research listed above which assumes a constant shape parameter, Ragulina and
Reitan [15] also explored the change in the shape parameter and found that it evidently
depends on the altitude of study areas.

Although in the last few decades there have been many studies that apply nonstation-
ary GEV distributions to fit extreme rainfall at different scales, most of them were associated
with a limited number of regions of interest (ROIs) within predefined boundaries such
as political regions and river catchments [16–19]. It is clear that extreme rainfall can be
affected by its local features, not least the topography but also the orientation (shape) and
size of the area [20]. However, how the area-orientated rainfall extremes vary with the
ROIs’ geographical location, size and shape in an context of nonstationarity has not been
fully studied; yet it is challenging as the variability of extremes can be sensitive to the size
of the regions studied, e.g., substantial trends over smaller regions can arise purely from
the natural variability [21–23]. Therefore, this paper presents a comparative study of Great
Britain (GB) and Australia (AU) moving forward from our previous study [20], aiming to
gain much-needed insights into the spatial variability of extreme rainfall associated with
dramatically different climate and geomorphological features (GB and AU), as represented
by the nonstationary probability distribution parameters. Not limited by the regional
boundaries, a large number of ROIs generated by Wang and Xuan [20] by randomizing
their locations, sizes and shapes are reused. The century-long annual maximum daily
rainfall (AMDR) time series were extracted with assistance from a high-performance com-
puting (HPC) system. They were then used to fit both stationary and nonstationary GEV
models to address the impact of climate change on extreme rainfall. Finally, the patterns
changing with three spatial features and the contrasting differences between stationary and
nonstationary conditions at different return levels were analysed.

The remainder of this paper is organised as follows: Section 2 describes the ROI-
based methods, the data and the trend analysis of extreme rainfall over the last century
in two countries. The results are discussed in details focusing on the spatial feature of the
stationary and nonstationary GEV models (Section 3.1); spatial changes with ROI sizes
(Section 3.2) and shapes (Section 3.3); and the comparison (Section 3.4). The conclusions
and recommendations are given in Section 4.

2. Methods

The steps below are followed in this study and the details are presented in Figure 1:

• Generate ROIs with varying locations, sizes and shapes and extract the annual max-
imum daily rainfall (AMDR) time series with the assistance of high-performance
computing (HPC).

• Fit the time series obtained at every ROI with stationary and nonstationary GEV
models with different parameter estimation methods.

• Evaluate the performance of all models and analyse the changes of time-varying
parameters with regard to the geographical locations, sizes, and shapes as well as the
level of extremity.
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Figure 1. The methodology of the study. 

2.1. Data, ROIs and Extreme Rainfall in Two Countries 
The two century-long datasets, i.e., the ‘Gridded Estimates of daily Areal Rainfall’ 

(GEAR) and the ‘Australian Data Archive for Meteorology’ (ADAM) are applied. The 
GEAR dataset is a grid-based (1 × 1 km ) rainfall estimation covering the mainland of 
Great Britain (GB) from 1 January 1898 to 31 December 2010 projected onto the National 
Grid Reference coordinate system [24] with the easting (𝑥-) and northing (𝑦-) expressed in 
linear kilometres [25]. The ADAM dataset is also a grid-based (0.05° × 0.05°, approx. 5 × 5 km ) rainfall dataset from 1 January 1900 to 31 December 2018 over Australia (AU) 
based on the Geocentric Datum of Australia 1994 [26] with the origin of (44° S, 112° E) and 
easting (𝑥-) and northing (𝑦-) transformed to kilometres [27]. The daily rainfall amount of 
two datasets refers to the 24 h prior to the reporting time for the ADAM dataset and the 
24 h after for the GEAR dataset, respectively. 

To have an initial assessment of the spatio-temporal variation in the daily rainfall 
extremes, we employed the Block Bootstrapping Mann–Kendall (BBS-MK) trend analysis 
[28–30] to test whether the trend of the grid extreme rainfall is significant during the study 
periods at a significant level of 0.05. The magnitude of the trend, indicated by the Ken-
dall’s tau (see Figure 2a,b), shows that the majority of regions in the Midland of England, 
Wales and the Coastal regions of Scotland present a positive trend whilst western Aus-
tralia shows an increasing trend but eastern regions show no or decreasing trend. This 

Figure 1. The methodology of the study.

2.1. Data, ROIs and Extreme Rainfall in Two Countries

The two century-long datasets, i.e., the ‘Gridded Estimates of daily Areal Rainfall’
(GEAR) and the ‘Australian Data Archive for Meteorology’ (ADAM) are applied. The
GEAR dataset is a grid-based (1 × 1 km2) rainfall estimation covering the mainland of
Great Britain (GB) from 1 January 1898 to 31 December 2010 projected onto the National
Grid Reference coordinate system [24] with the easting (x-) and northing (y-) expressed
in linear kilometres [25]. The ADAM dataset is also a grid-based (0.05◦ × 0.05◦, approx.
5 × 5 km2) rainfall dataset from 1 January 1900 to 31 December 2018 over Australia (AU)
based on the Geocentric Datum of Australia 1994 [26] with the origin of (44◦ S, 112◦ E) and
easting (x-) and northing (y-) transformed to kilometres [27]. The daily rainfall amount of
two datasets refers to the 24 h prior to the reporting time for the ADAM dataset and the
24 h after for the GEAR dataset, respectively.
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To have an initial assessment of the spatio-temporal variation in the daily rainfall
extremes, we employed the Block Bootstrapping Mann–Kendall (BBS-MK) trend analy-
sis [28–30] to test whether the trend of the grid extreme rainfall is significant during the
study periods at a significant level of 0.05. The magnitude of the trend, indicated by the
Kendall’s tau (see Figure 2a,b), shows that the majority of regions in the Midland of Eng-
land, Wales and the Coastal regions of Scotland present a positive trend whilst western
Australia shows an increasing trend but eastern regions show no or decreasing trend. This
analysis provides the evidence for further detecting the possible nonstationarity in the daily
rainfall and its strong association with geophysical locations, which moves forward from
and complements our previous study [20] that focused only on the AMDR itself under the
stationary assumption.
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Figure 2. The trend of gridded AMDR over the last century in GB (a) and AU (b).

The spatial features of the sampled ROIs (see Figure 3a,b) generated by the SRS-GDA
toolbox [31] follow the same setups in [20], uniformly positioned across two countries
marked by their geometric centroids, randomized with sizes (10–1050 km2 for GB case and
125–9900 km2 for AU case) and shapes (controlled by the spatial index sp varying from
elongated to rounded with east–west and north–south orientations). For each ROI, the
areal daily rainfall is calculated by taking the arithmetic average before the ROI-orientated
AMDR is generated. This procedure is carried out using the HPC-Wales resources due to
the huge amount of data.
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size of 500 km2 and a relatively rounded shape for the analysis in Section 3.1; the middle demon-
strates a group of 10 ROIs which have a fixed shape but an incrementally increased size by defining 
an 20% increase in the main axis (marked as red dash line) in each iteration for the analysis in Section 
3.2; the right panel depicts a group of 7 ROIs which have fixed size but varying shape described by 
spatial index sp. “×” marks the central location of these single or group of ROI(s) which are distrib-
uted uniformly over two countries. More details for generating ROIs can be checked in [20]. 
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tribution. 

In the stationary model (S), three parameters are invariable with time or other covari-
ates and estimated by the commonly used Maximum Likelihood method (ML). Several 

Figure 3. ROIs and their locations spatially distributed in GB (a) and AU (b) for this study: each
subfigure can be divided into three panels where the left one demonstrates an ROI with the same size
of 500 km2 and a relatively rounded shape for the analysis in Section 3.1; the middle demonstrates a
group of 10 ROIs which have a fixed shape but an incrementally increased size by defining an 20%
increase in the main axis (marked as red dash line) in each iteration for the analysis in Section 3.2; the
right panel depicts a group of 7 ROIs which have fixed size but varying shape described by spatial
index sp. “×” marks the central location of these single or group of ROI(s) which are distributed
uniformly over two countries. More details for generating ROIs can be checked in [20].

2.2. Stationary and Nonstationary Generalised Extreme Value Models and Return Period

The AMDR time series extracted from each ROI is then fitted by the GEV distribution
whose cumulative distribution function (CDF) is defined as:

F(x; σ, µ, ξ) = exp[−(1 + ξ(
x − µ

σ
))

−1/ξ

] (1)

where F is defined for 1 + ξ(x − µ)/σ > 0, −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞;
µ, σ are the location and scale parameters, ξ is the shape parameter controlling the
three limiting types of GEV: Gumbel (ξ = 0), Fréchet (ξ > 0) and the reversed Weibull
(ξ < 0) distribution.
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In the stationary model (S), three parameters are invariable with time or other covari-
ates and estimated by the commonly used Maximum Likelihood method (ML). Several
widely used candidate distributions were employed to fit the AMDR series and the good-
ness of fit was tested by using the Kolmogorov–Smirnov (KS) [32,33] and Anderson-Darling
(AD) tests [34,35] at a significant level of 0.05, which shows that the GEV distribution per-
forms best where more details can be seen in Wang and Xuan [20]. The GEV distribution
fits well with the AMDR series of all ROIs with a 100% pass rate on the KS test and more
than 97% on the AD test.

For nonstationary models (NS1–3), an additional subscript t is added to GEV parameters
which indicates that parameters are time-dependent; and the nonstationary CDF is:

Ft(xt; σt, µt, ξ) = exp[−(1 + ξ(
xt − µt

σt
))

−1/ξ

] (2)

To create a stable quantile estimation consistent with the behaviour of rainfall ex-
tremes, four different GEV models are developed with different assumptions regarding the
parameters, as listed in Table 1.

Table 1. Stationary and nonstationary GEV models and the estimation methods used in this study.

Description Parameters Estimation Method(s)

Stationary model:
F(x; σ0, µ0, ξ)

σ0, µ0, ξ are constant ML 1

Nonstationary model 1:
Ft(xt; σ0, µt, ξ)

µt = µ0 + µ1 × t
σ0, ξ are constant

ML and B-MCMC 2

Nonstationary model 2:
Ft(xt; σt, µt, ξ)

σt = σ0 + σ1 × t
µt = µ0 + µ1 × t

ξ is constant

ML and B-MCMC

Nonstationary model 3:
Ft(xt; σt, µt, ξ)

σt = exp(σ0 + σ1 × t)
µt = µ0 + µ1 × t

ξ is constant

ML and B-MCMC

Note: 1 short for “Maximum Likelihood” method. 2 short for “Bayesian Markov-Chain Monte-Carlo” method.

Two parameter estimation methods, i.e., ML and the Bayesian Markov-Chain Monte-
Carlo (B-MCMC) methods are employed to estimate the parameters of nonstationary
models. Instead of obtaining the parameters directly, the B-MCMC method makes use of
the Bayesian inference to estimate the posterior distribution of parameters based on prior
knowledge. To make full use of the knowledge, the estimated parameters of stationary GEV
were used to define the initial priori values of the nonstationary parameters drawn from
uniform distribution sampling by the Latin Hypercube sampler [36]. Then, we broadly
followed the algorithm presented in Sarhadi and Soulis [13] and Sadegh, Ragno [37] to carry
out numerical iterations to explore the posterior distribution using the MCMC simulation
with Metropolis and Gibbs sampling [38–40]. The calculated Metropolis ratio is used to
accept or reject proposal status and the convergence of simulation is monitored by the
Gelman-Rubin R̂ diagnostic [41]. More details are provided in the Supplementary Text S1.

The criteria for selecting the best-fitted models include the root mean squared error
(RMSE), the Akaike Information Criterion (AIC [42]) and the Bayesian Information Criterion
(BIC [43]). Small values of these indexes indicate a better performance of the model in
question (see Text S2).

To define the nonstationary return period, the time-varying nature of the nonstationary
exceedance probabilities should be recognised, i.e., for a given threshold x0, the number of
expected exceedances over T years is [44]:

Kt(x0) =
∫ T

0
[1 − Ft(x0)]dt (3)
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For annual maxima over N years, this leads to

KN(x0) =
N

∑
i=1

[1 − Fi(x0)]× 1 (4)

where Fi is the nonstationary CDF for the ith year. Correspondingly, the return period is
τN(x0) = N/KN(x0). Note that a subscript N is used here to indicate the fact that both
the return level and the expected number of exceedances are dependent on the duration
(the N years).

3. Results
3.1. Selection of Stationary and Nonstationary Models and Spatial Nonstationary Patterns

The best-fitted model of each ROI is selected by choosing the model with the smallest
values of the criteria (RMSE, AIC and BIC). Results show that overall: (1) around 35% of
ROIs in GB prefer stationary model while the rest 45% select NS1 (only µ is time-varying)
and 20% select NS2 and NS3 (NS2–3; both µ and σ are time-varying); (2) AU has a relatively
lower ratio of ROIs favouring stationary model (around 20%) while 50% prefer NS1 and
30% prefer NS2–3. As to the methods used to fit the preferred nonstationary models, the
ML method performs better for 60% of the GB cases compared with 40% performed by the
B-MCMC method. In the AU cases, the ML method is significantly more dominating, e.g.,
with a ratio of 90% vs. 10%. More details are shown in Text S3.

The spatial distribution of model preference, i.e., stationary GEV versus nonstationary
GEV, is further demonstrated in Figure 4a,e where ROIs with the same size of 500 km2

and a relatively rounded shape is used. Geographically, those ROIs in GB that prefer
nonstationary models are located along or near the coastal regions, especially in eastern
and northern GB and the Scotland Highland. In AU, nonstationary models dominate the
inland area and the majority of the south-western coastline while the north coastline of AU
and the majority inland of the Northern Territory favour stationary model.

As to the types of the selected GEV, Figure 4b,f present the spatial variation in the
GEV types of the best-fitted models of these ROIs where the majority follows the Fréchet
distribution. Out of all ROIs in GB, there are nearly 80% that follow the Fréchet distribution,
mainly located inland; around 16% follow the Weibull distribution located on the western
coast. In AU, around 90% of ROIs follow the Fréchet distribution and only a very small
proportion (3%) follows the Gumbel distribution (details in Table S2).

Figure 4c,d (UK case) and Figure 4g,h (AU case) reveal the time-varying changes of
µ and σ of the ROIs with their best-selected GEV model. If the ROIs prefer the stationary
model where all parameters are constant, the rate of change in parameters is zero and
marked as white colour. Additionally, for the ones preferring the nonstationary model, we
calculated the rate of the change that is the difference between the parameter values at the
end of the study period (i.e., 2010 for GB and 2018 for AU, µend or σend) and the starting
times (i.e., 1898 for GB and 1990 for AU, µstart or σstart) divided by the values at the starting
times (see Equation (5)).

rate(µ) = (µend − µstart)/µstart
rate(σ) = (σend − σstart)/σstart

(5)

In GB, the changes of µ are in the range of ±10% and the ROIs with a decreasing µ are
mainly located in southern Scotland and the regions between London and Birmingham
while the majority of areas show a non-decreasing µ which indicates that the level of most
frequent AMDR is non-decreasing. However, in AU, the south-middle zone and the eastern
coasts are dominated by an increasing µ up to the rate of +20% while the north coast of
Northern Territory and west-south coast of Western Australia are controlled by a decreasing
µ with the rate of −5%. The majority of regions of GB and AU are observed to have a
constant σ while the rest region shows a decreasing σ scattering near the coasts of England,
which somehow indicates a decreasing occurrence probability of extremes. These changes
are consistent with the BBS-MK trend analysis as presented in Figure 2.
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Figure 4. Spatial distribution of ROIs with the size of 500 km2 and relative rounded shape in terms
of (1) the best-selected model type in GB (a) and AU (e); (2) the best-fitted GEV type in GB (b) and
AU (d); (3) the changes of location (c,g) and scale parameters (f,h) in percentage within the record
periods (113 years for GB and 129 years for AU) and please noted that white colour (“w” specified in
the colour bar) indicates the ROI with no change in the parameters.

3.2. Spatial Variation in Nonstationary Patterns over ROI Size

In GB, the proportion of ROIs that prefer a stationary model gradually increases as the
ROI size increases (60% for ROI size < 100 km2; 65% for ROI size in 100 km2 ∼ 500 km2

and 67% for ROI size > 500 km2). However, such proportion in AU is relatively stable and
stays around 25% for stationary model and 75% nonstationary models, regardless of the
ROI size (see Table S1).
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To help the discussion, we introduce the rate of the change in GEV parameters asso-
ciated with the incremental change in ROI size (i.e., +20% each), denoted as ∆. ∆ is the
Sen’slope [45] of the BBS-MK test applied to detect the changes of parameters over region
size at the significant level of 0.05 and the white colour (∆ = 0) in Figure 5 indicates the
insignificant change. With the increase in ROI size, the reddish colour represents a positive
∆ which means the parameter increases as well, while the bluish indicates the negative case.
Four parameters for analysis are µ0 and σ0 which indicate the baselines, i.e., the estimation
of the baseline climate without taking climate change impact into consideration, referring
to the level of most frequent AMDR and the occurrence probability of extremes; and µ1 and
σ1 which are the time-varying changes from such baselines due to climate change while
equal to zero if the best-selected model is stationary.
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between the baseline parameters of ROIs with reciprocal shape indexes especially in AU, 
regarding a symmetric pattern around 𝑠𝑝 = 1.0. Additionally, in both countries, most 
ROIs with a relatively rounded shape have higher values of the most frequent AMDR and 

Figure 5. Spatial distribution of ROI groups whose parameters (µ0, µ1, σ0, σ1) change with the increase
in ROI size in GB (a–d) and AU (e–h). Please noted that the white colour indicates the ROI with an
insignificant change in the parameters. Noted that “w” shown in the colour bar indicates the colour
white which means the changes of the parameter is zero.



Water 2023, 15, 128 10 of 16

In both countries (Figure 5a,c,e,g), most regions show decreasing baselines (µ0 and
σ0) with the increase in ROI size, especially in AU. Such a decrease can be attributed to the
areal average when involving more grids in the sampled ROI. However, near the coastal
regions of GB and the boundary of the south-middle dry zone of AU, some ROIs have an
increased baseline because the increasing size will involve more grids of higher rainfall
which may overcompensate the reduction caused by the areal average.

In addition, the time-varying terms (µ1 and σ1, see Figure 5b,d) are insignificant in
most of GB while very few with significant change locate near the coasts and have a
decreasing µ1. In AU (Figure 5f), regions with a decreased µ1 are mainly located in the
middle-south zone while the others with an increased µ1 are closer to the coasts. However,
the spatial distribution of the changes of σ1 is more random than µ1 and most regions
present an insignificant trend of σ1 in both countries.

The time-varying terms µ1 and σ1 can reflect how the most frequent AMDR and the
occurrence probability of extremes change over time affected by climate change in the last
century. Interestingly, such impact is not always coincident with the decreased average
baseline climate estimation (µ0 and σ0) due to the statistical average of larger ROI sizes but
influenced more by the geographical locations. For example, for the ROIs near the coasts in
both countries, increasing their size can lead to an amplification of climate change impact
on the most frequent AMDR and a higher probability for extremes to occur. However, in
general, increasing region size will decrease both the average status of climate and climate
change impact.

3.3. Spatial Variation in Nonstationary Patterns over ROI Shape

Figure 6 presents the changes in baselines (µ0, σ0) and time-varying terms (µ1, σ1) of
the ROIs in GB and AU, parameterised by the ROI shape (sp) varying from an elongated
west–east orientated (sp = 0.2, 0.5), gradually to more rounded (sp = 0.8, 1.0, 1.25), then
to an elongated but north–south orientated (sp = 2.0, 5.0). A small difference is observed
between the baseline parameters of ROIs with reciprocal shape indexes especially in AU,
regarding a symmetric pattern around sp = 1.0. Additionally, in both countries, most ROIs
with a relatively rounded shape have higher values of the most frequent AMDR and the
occurrence probability of extremes than those of elongated ones, referring to the distribution
parameters µ and σ. In other words, compared with the analysis of temporal changes in
extreme daily rainfall in the study areas with a more elongated shape in these two countries,
the area with a relatively rounded shape is more likely to capture the temporal variation in
extremes. However, it should be noted that the temporal variability in these parameters
with different shapes of ROIs is insignificant compared with the changes with locations
and ROIs’ sizes.
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Figure 6. Both baseline and time-varying parameters (µ0, µ1, σ0, σ1) change over the ROI shape
indicated by the shape index of sp in GB (a,b) and AU (c,d). The vertical axis indicates the location of
the groups of ROIs (e.g., in Figure 6a, 10 groups (those at 240 km, 280 km, 320 km, 360 km, 400 km,
440 km, 480 km, 520 km, 560 km and 600 km) are presented from west to east while in each group,
ROIs are presented from south to north (e.g., 5 ROIs presented between 240 km and 280 km are all
geographically located at 240 km Easting from 580 km Northing to 900 km Northing)) and the colour
bar shows the values of parameters. Due to the limited length of figures, the completed AU case with
2646 ROIs is shown in Supplementary Figure S1.

3.4. Implication of Return Period

To demonstrate the difference between the nonstationary and stationary models,
6 reference return levels of x0 are selected, i.e., AMDRref2, AMDRref5, AMDRref10, AMDRref25,
AMDRref50 and AMDRref100 corresponding to the return periods of 2, 5, 10, 25, 50 and
100 years, and calculated from the stationary model. Then, these stationary return levels are
applied to calculate their corresponding return periods under the nonstationary condition
(Equations (3) and (4)). The difference is then quantified between the nonstationary return
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periods (NS-RP) and the referenced stationary return periods (S-RP) for the same given
reference return levels.

Figure 7a,b present the NS-RP estimated by their best-selected nonstationary model
for the three return levels x0 from low to high (i.e., AMDRref5, AMDRref25 and AMDRref50)
in GB and AU. In both countries, the difference between NS-RP and S-RP can be ignored
(marked as white colour) at the lower return level (e.g., AMDRref5). It means that for
estimating rainfall at a lower return level, the stationary model is able to capture the
magnitude of rainstorms. However, at higher return levels, the percentage of ROIs with
almost zero difference (marked as white) is decreased. In GB, higher return levels (e.g.,
AMDRref25 and AMDRref50) in North Wales, middle Scottish Highland and eastern and
southern England (shown by blueish symbols) are underestimated by the stationary model
while the coastal regions of Scotland and Wales witness an overestimation. In AU, the
middle region of New South Wales and the coastal region of North Territory are shown an
underestimation of higher return levels by the stationary model while the coastal area of
Queensland and most regions of western Australia show an overestimation.
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model and the spatial distribution referring to 1-in-5 years, 1-in-25 years and 1-in-50 years in GB
(a) and AU (b). An overall comparison between the nonstationary and stationary return levels
corresponding to the same return year is presented as a boxplot in (c) where the upper panel shows
the GB case and the lower shows the AU case. Noted that “w” in the colour bar indicates the colour
white which means there is no difference between stationary and nonstationary return periods.

Generally, with an increase in the return periods, the uncertainty that arises from the
difference between the return levels calculated by the nonstationary and stationary model
grows larger (see the length of the body and whiskers of each boxplot in Figure 7c). In GB,
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a left-skewed boxplot is observed at the higher return periods, which means that the return
levels in most ROIs estimated by a stationary model are higher than the corresponding non-
stationary model estimate; while in AU, the difference is small and randomly distributed
around zero and a half for overestimation and half for underestimation.

Combining the results with the best-selected models presented in Section 3.1, we
can see that in GB, the AMDR in coastal regions, most parts of Scotland and the east–
south of England, the nonstationary condition is preferred and underestimated by the
stationary model, e.g., 1-in-50-year rainfall becomes 1-in-30 year estimated by the best-
fitted nonstationary model. In AU the same situation happens in the inland areas which
are fitted better by the nonstationary model, such as the middle region of New South Wales
and the boundary area with Queensland, north coastal regions of North Territory, but the
underestimation is small, e.g., 1-in-50 years becomes 1-in-45 years. This demonstrates
that the currently used stationary model can result in high uncertainty and miss rare but
high-risk extreme event occurrences, especially for the regions where the nonstationary
condition is preferred, which leads to infrastructure damage.

4. Conclusions

This paper presents an analysis of the spatial variation in both the stationary and non-
stationary GEV modelling of annual maximum daily rainfall (AMDR) extracted from over
11,010 regions of interest (ROI) with different spatial properties (location, size and shape) in
Great Britain (GB) and Australia (AU) using two century-long grid-based datasets. Three
nonstationary models with different time-varying GEV parameters (µ and σ) schemes are
proposed and fitted using both the Maximum Likelihood (ML) and the Bayesian Markov-
Chain Monte-Carlo (B-MCMC) methods, before being compared with the stationary model.
Finally, the spatial patterns of the AMDR in both countries are analysed and quantified,
with respect to the ROI’s location, size and shape as well as the time-varying changes due
to climate change. The following conclusions can be drawn:

(1) In general, the majority of the ROIs in both countries favour the nonstationary GEV
model (NS-GEV) and most of them prefer the condition that only µ assumed to
be linearly changing with time; most NS-GEV applications show the ML method
performs better than the B-MCMC method (60% and 90% in GB and AU). AMDR of
over 80% ROIs in both countries follows Fréchet distribution.

(2) Geographic location is the most significant factor that affects not only the average
status of the baseline climate (with respect to µ0 and σ0) but also the time-varying
changes due to climate change (with respect to µ1 and σ1). During the last century
in GB, the changes in the level of the most frequent AMDR (with respect to µ) are in
the range of ±10% and the majority of areas show a non-decreasing trend. However,
in AU, the south-middle zone and the eastern coasts are dominated by an increasing
µ up to the rate of +20% while the north coast of Northern Territory and west-south
coast of Western Australia are controlled by a decreasing µ with the rate of −5%.
The majority of regions of GB and AU are observed to a still σ while some specific
regions with a decreasing σ scattering near the coasts of England indicate a decreasing
occurrence probability of extremes.

(3) Region size is shown to be a secondary factor. Generally, the two countries show
a decreased average status of climate with an increase in size because of the sta-
tistical average. However, near the coastal regions of GB and the boundary of the
south-middle dry zone of AU, some ROIs have an increasing status. Although the
effect of region size on time-varying changes is insignificant, the climate change im-
pact is not always decreased with the increase in region size but is influenced by
geographical locations.

(4) Region shape does not significantly affect either the average climate status or time-
varying changes; however, a symmetric pattern of average climate status is found for
regions with reciprocal spatial indexes and the average climate status in ROIs with a
relatively rounded shape is usually higher than the elongated ones
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(5) The stationary GEV models underestimate the risk in several specific regions such as
the coastal regions in both countries where the nonstationary model is preferred. It
may inspire a re-consideration of the current design storm determination procedure.

We trust that the findings from this study are valuable for the civil engineering com-
munity in a way that not only do they further corroborate other research findings on
extreme rainfall, e.g., extremes are likely to become more frequent due to climate change
impact, but they also quantitatively address how such changes over not only climate
but also the geographical location, size and shape may affect the prevailing engineering
design standard.

Further work is recommended to investigate closely the underlying datasets with
respect to potential inconsistency in the resolution of the data observed near the West coast
of Scotland and the AU coasts. In addition, a comparative study with long-term, single
gauge observations, as well as catchment-orientated sampling is likely to make more robust
conclusions. As the changes of rainfall extremes are very likely to be affected by many
other climate indices such as temperature, pressure, El Niño-Southern Oscillation (ENSO),
etc., further work is recommended to also include these related indices as covariates and
to explore more possible covariate-varying patterns where the distribution parameters
may follow.
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https://www.mdpi.com/article/10.3390/w15010128/s1, Text S1: Bayesian Markov-Chain Monte-
Carlo (BMCMC) Method; Text S2: Criteria for selecting best-fitted models; Text S3: Selection of
stationary and nonstationary models and spatial patterns; Figure S1: Both baseline and time-varying
parameters (µ0, µ1, σ0, σ1) change over the ROI shape indicated by the index of sp in AU. The horizon-
tal axis indicates the location index the ROIs and colour bar shows the values of parameters; Table S1:
the number of ROIs with their best-fitted model varying with regional sizes and shapes in GB and
AU; Table S2: the number of ROIs with their best-fitted model varying with regional sizes and shapes
in GB and AU. References [31,37,41,46–49] are cited in the supplementary materials.
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