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Abstract: Large-scale particle image velocimetry (LSPIV) provides a cost-effective, rapid, and secure
monitoring tool for streamflow measurements. However, surveys of ground control points (GCPs)
might affect the camera parameters through the solution of collinearity equations and then impose
uncertainty on the measurement results. In this paper, we explore and present an uncertainty analysis
for image-based streamflow measurements with the main focus on the ground control points. The
study area was Yufeng Creek, which is upstream of the Shimen Reservoir in Northern Taiwan. A
monitoring system with dual cameras was set up on the platform of a gauge station to measure
the surface velocity. To evaluate the feasibility and accuracy of image-based LSPIV, a comparison
with the conventional measurement using a flow meter was conducted. Furthermore, the degree
of uncertainty in LSPIV streamflow measurements influenced by the ground control points was
quantified using Monte Carlo simulation (MCS). Different operations (with survey times from one to
nine) and standard errors (30 mm, 10 mm, and 3 mm) during GCP measurements were considered.
Overall, the impacts in the case of single GCP measurement are apparent, i.e., a shifted and wider
confidence interval. This uncertainty can be alleviated if the coordinates of the control points are
measured and averaged with three repetitions. In terms of the standard errors, the degrees of
uncertainty (i.e., normalized confidence intervals) in the streamflow measurement were 20.7%, 12.8%,
and 10.7%. Given a smaller SE in GCPs, less uncertain estimations of the river surface velocity and
streamflow from LSPIV could be obtained.

Keywords: uncertainty analysis; image velocimetry; LSPIV; streamflow measurement; ground control
points (GCPs); Monte Carlo simulation

1. Introduction

Streamflow measurements, which provide fundamental data regarding river discharge
(by the measured velocity and bathymetry), play an essential role in hydro-environmental
research, e.g., hydrological condition analysis, numerical model calibration and valida-
tion, water resource management, and hydraulic engineering planning and design [1-5].
However, the workflow for effective streamflow measurements can be quite tedious, time-
consuming, difficult, and sometimes dangerous, especially during high-flow periods [6].
To gain the required hydrological information under different environmental constraints,
continuous efforts to develop low-cost, safe, efficient, and accurate measurement tech-
niques (less influenced by environmental or technical factors) have been made over the
past decades [7,8].

In general, two types of approaches are used for streamflow measurement: direct or
non-intrusive measurement. In the former group, several types of flow meters are directly
placed into the river to measure the flow velocity. By considering the issue of safety, this
method is not feasible for high-flow conditions. With advances in measuring instruments,
acoustic Doppler current profilers (ADCPs) have been developed and applied to measure
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bathymetry, velocity, and river discharge. Note that higher costs for the equipment and
regular maintenance are required to use these instruments [9]. Moreover, there are some
limitations. For example, the spatial variations in the flow field cannot be obtained if the
instrument is fixed in one location. When an ADCP is mounted on a boat, poor weather
conditions would hinder its measurement. Moreover, the operation of ADCPs in small
streams would be difficult and unsuitable [10,11].

Alternatively, non-intrusive methods, with advantages in cost, safety, and efficiency,
have drawn a lot of research attention (e.g., [12,13]). In particular, their non-intrusive
nature can be used to solve the undesired inconveniences of conventional direct streamflow
measurements, especially during flood events [11,14-17]. The basic idea of non-intrusive
methods is to measure the surface velocity and then provide a reasonable estimation
of discharge for various flow conditions. To facilitate surveys in the field, image-based
large-scale particle image velocimetry (LSPIV), which efficiently measures the motions of
floating objects (e.g., bubbles) in a rectangular grid, has been developed [18-33]. Without
tracking particles, it can effectively analyze the surface velocity through the ripple pattern
on the river surface. Additionally, stable results can be obtained even with low-resolution
images (if there are no external interference factors). Based on LSPIV and successive images
obtained from a fixed platform above riverbanks or mobile equipment, the variations in
surface velocities in both space and time can be sufficiently resolved [12,34-36]. For more
details and information on the characteristics of LSPIV, one can refer to the excellent work by
Muste et al. [22]. Currently, the development of LSPIV measurement is growing and becom-
ing popular. At present, a number of methods based on LSPIV for streamflow measurement
are available, e.g., digital particle image velocimetry (PIVlab) [37], Kanada-Lucas-Tomasi
image velocimetry (KLI-IV) [38], optical tracking velocimetry (OTV) [2], surface structure
image velocimetry (SSIV) [39], and space—-time image velocimetry (STIV) [3].

The application of LSPIV in streamflow measurement is promising, but there are still
several concerns [40]. One of the most important issues is its accuracy and uncertainty
resulting from camera intrinsic calibration (i.e., distortion adjustment for the camera) and
extrinsic calibration (i.e., scaling, direction, and projection for a position in the physical
domain). Thus, understanding the efficiency of LSPIV in achieving the goal of carrying out
unbiased and less uncertain streamflow measurements is essential. There are various factors
causing uncertainties when measuring river surface velocities with LSPIV. For example,
uncertainties associated with environmental effects (light and shadow, wind speed, etc.)
are difficult to quantify. Uncertainty due to the changes in camera parameters and the sizes
of the interrogation area (IA) has been reported [41,42]. Note that ground control points
(GCPs) are required in LSPIV measurements to obtain orthorectified images via projective
transformation (i.e., the relation between the pixel and physical spaces). There are currently
two ways to measure GCPs: (i) total stations (or electronic distance measuring devices) and
(ii) the Global Positioning System (GPS). As the GPS is more expensive, GCPs are usually
measured using total stations. In principle, the accuracy of LSPIV measurements can be
improved when a sufficient number of GCPs are used [43]. The number of GCPs depends
on how they are used. Generally, at least four to six GCPs should be included. Additionally,
the surveys for GCPs should be conducted several times and averaged to obtain accurate
results for the coordinates. It has been recommended that these crucial GCPs should be
evenly distributed in the image and should not be coplanar [42]. Furthermore, the surveys
of GCPs that could affect camera parameters through the solution procedure of collinearity
equations might impose uncertainty on the streamflow measurement results [44,45]. To the
best of our knowledge, information or rules in the literature are still quite limited for GCP
quality control and its resultant effects.

In this study, the purpose is to explore the uncertainty in image-based streamflow
measurements with the main focus on ground control points. The degree of uncertainty in
LSPIV streamflow measurement was quantified using Monte Carlo simulation (MCS), in
which a large number of camera parameters obtained from the collinearity equations and
ground control points were randomly sampled under different standard errors. The study
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area was Yufeng Creek, which is upstream of the Shimen Reservoir in Northern Taiwan.
A monitoring system with dual cameras was set up on the platform of a gauge station to
measure the surface velocity. To ensure the accuracy of image-based LSPIV, a comparison
with conventional measurements using a flow meter was also conducted. Finally, a range
of standard errors were introduced into the GCPs. The influence of GCPs on the surface
velocity and discharge of the river is discussed and presented.

2. Study Site and Measuring Instruments
2.1. Description of Study Site

This study was conducted at Yufeng Creek in Yufeng Village, Jianshi Township,
Hsinchu County, Northern Taiwan (Figure 1). The location of Yufeng Creek is in an
upper catchment area of the Shimen Reservoir. Moreover, Yufeng Creek is an upstream
tributary of the Danshui River, which flows through the metropolitan area of Taipei and
New Taipei City. Therefore, streamflow measurement of the creek is quite important, as
it provides necessary information for water resource management (water supply) and
disaster mitigation (flood control).
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Figure 1. Location map of the study site. (a—c) study area; (d) image of study site; (e) river cross-
sectional profile.

Yufeng Creek is about 75 m wide but is narrower (about 35 m) at the study site. The
Yufeng water level gauge station is on the right bank of the creek (Figure 1c). During normal
flow periods, elevation of the water level is about 684.5 m (above mean sea level) with a
depth of 1.2 m and a maximum current speed of about 1.2 m/s. A shoal (see Figure 1d,e)
that forms in the middle of the river would significantly affect the flow pattern. There
are about 100 m-long groundsill works downstream of the Yufeng gauge station, which
protects the river course without significant changes before and after flood events. The
study site is suitable for long-term streamflow observations.

In this study, we considered four normal flow events for comparison of river surface
velocity measured by LSPIV and the flow meter. The main reason for this was to ensure
the safety of the surveyors who used the flow meter to measure the river flow for 10 h
during the experimental periods. These benchmark data were utilized to evaluate the
performance (accuracy) of LSPIV under its control point setup. Moreover, a representative
event was used to demonstrate and discuss the uncertainty in LSPIV from the influence
of control points. Note that the LSPIV system was shown to be capable of carrying out
long-term continuous monitoring under severe weather conditions [16], although there
was no typhoon event in this study.
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2.2. Measuring Instruments

For digital image acquisition, a color industrial camera (i.e., model ICDA-acA1600-
20gc) manufactured by the Germany Basler company (https://www.baslerweb.com/en/,
accessed on 15 August 2022) was used (see Figure 2a). Its resolution is about two million
effective pixels, and its maximum acquisition frequency is 20 fps (i.e., 20 frames per
second), which fully complies with the image capture interval recommended by Gharahjeh
and Aydin [46]. Note that the image matching analysis requires slight differences in
two successive images. In a river, the ripples are quite dynamic. Therefore, this study
used a high acquisition frequency (i.e., 20 fps) to capture the ripples and to avoid large
distinctions in two images. A low-distortion lens (FV1520) produced by Myutron (https:
/ /www.myutron.com/en/lens/, accessed on 15 August 2022) was used along with the
camera. The focal length was 15 mm, with a maximum distortion of about —0.09%. Other
detailed specifications can be found on the manufacturers’ official websites.

() (©
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Camera and len
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Figure 2. Instruments for measurement: (a) camera, lens, and protective shell; (b) swivel base; and
(c) hand-held propeller digital flow meter.

The assembled camera and lens were placed into a protective shell (Figure 2a) that
was then installed on a swivel base (Figure 2b). The swivel base can be rotated horizontally
and vertically so that the camera’s shooting range can be adjusted to the region of interest
(ROI) for measurement. There was a level bubble on the swivel base to ensure a horizontal
state. In other words, only the azimuth angle would be changed when the swivel base
horizontally rotated. For the streamflow measurement, a system of dual cameras was
set up on the platform of the Yufeng gauge station (691.6 m above mean sea level) to
simultaneously photograph the water surfaces near the right and left banks of Yufeng
Creek (see the red boxes in Figure 1c). The images from the dual cameras covering the
entire cross-section of Yufeng Creek enabled measurements of surface velocity. Note that
the resolutions of both images could be estimated by the image and object space coordinates
of two adjacent pixels once the parameters of the collinearity equations are known. As
oblique images were used, the farthest positions in both near-field and far-field images
were taken to calculate the resolution. The farthest point of the near-field image was about
20 m from the right bank, with a resolution of 4.35 mm/pixel. For the far-field image, the
farthest point was 35 m, and the resolution was 23.5 mm/pixel.

In order to offer a basis for comparison with the LSPIV measurements, an acoustic
Doppler current profiler (ADCP) and a hand-held propeller digital flow meter were used
to measure the river surface velocity in this study. However, the ADCP only provides
river velocities at a depth below 20 cm, while its sensors (i.e., acoustic transmitter and
receiver) must be placed under the water surface. On the other hand, the FP111 can
measure near-surface velocities because the diameter of the propeller is 5 cm. Therefore,
this study decided to utilize the FP111 for river surface velocity measurements. The hand-
held propeller digital flow meter (FP111 type) manufactured by Global Water is shown
in Figure 2c. The digital flow meter shares a similar principle to the Price flow meter, but
it provides a convenient means for surface velocity measurement within a range from
0.1 m/s to 6.1 m/s, with an accuracy of 0.1 m/s. Regarding its measurement method, the
surveyor pulls a cross-sectional line and uses the FP111 to measure the surface velocities
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every meter along the line. Finally, the mean surface velocity is computed, which can then
be used to validate the results from LSPIV. The procedures for both measurements are
illustrated in Figure 3.

Camera

LSPIV analysis to
yield mean surface
velocity

Digital flow meter FP111

Pull cross- Measure the surface velocity Calculate the
sectional line mean su.rface
velocity

Figure 3. Measurement procedure for using image-based surface velocimetry and a propeller digital
flow meter.

3. Methods: LSPIV Measurement and Uncertainty Assessment
3.1. LSPIV Measurement

To apply LSPIV for surface velocity analysis in river flows, the key procedures include
the solution of collinearity equations and the matching of images. Furthermore, the cross-
sectional mean velocity can be estimated from the surface velocity by a coefficient (k).
Finally, the discharge is obtained by the product of the mean velocity and the cross-sectional
area. The overall procedures are summarized as follows.

3.1.1. Collinearity Equations

To analyze any point in the object space of an image, the so-called collinearity equations
can be established based on perspective theory. The main idea is that a point in the object
space O(x;, y;, z;) corresponds to a point in the image space P(u;, v;) and then converges
to the perspective center C behind the image. Hence, the perspective center point C, the
image point P, and the object point O construct a collinear line.

In collinearity equations, nine parameters of the camera should be considered, includ-
ing the perspective center in the object space coordinates (Cy, Cy, and C;), the perspective
center in the image space coordinates (C;, Cy, and f), and three rotation angles (azimuth
angle 6, roll angle 3, and tilt angle T). Figure 4 depicts the relationship of the three rotation
angles between the object and image spaces. It indicates that X, Y, and Z are the three coor-
dinate axes in the object space, while U, V, and F are the three coordinate axes in the image
space. The azimuth angle 6 denotes the angle between the F-axis direction (in the image
space) and the Y-axis direction (in the object space); the roll angle 3 expresses the angle
between the V-axis direction and the Z-axis direction; and the tilt angle T represents the
angle between the F-axis direction and the Z-axis direction. Since the coordinate systems in
the object image spaces are different, a transformation/conversion needs to be performed
through the rotation angle matrix. The collinearity equations and rotation coefficients can
be expressed as
M1 Xgif + MaYais + MaZgis
M7 Xgif + MgYais + MoZgis

Ugif — Du = —f (1a)
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My Xgif + MsYais + MeZgis

Viirg — Av = —
aif fM7Xdif + MsYair + MoZgis

(1b)

where Au and Av denote errors caused by lens distortion, which can be divided into radial
and tangential components. The equations can be written as

Au = (u; — Cy) (klr,'z + k27’,‘4) +p1 (r,-z +2(u; — Cu)z) +2py(u; — Cy)(vi — Cy)  (2a)

Av = (Z)l- — Cv) (k]?’iz -+ k27i4) + p2 (7’1‘2 + 2(2)1' - Cv)2> + 2}?1(141‘ — Cu)(vi — Cv) (2b)

where r; denotes the distance from any image point to the center of the image; k; and k; are
the coefficients of radial distortion; p; and p, express the coefficients of tangential distortion;
Uaif/V aif represents the difference between the perspective center C,/Cy, and any image point
u;/v; projecting in the u/v coordinate system (the image space); f denotes the distance from
the perspective center to the image or the equivalent focal length; X;/Y 4i7/Z4ir expresses the
difference between the perspective center C,/Cy/C; and any object point x;/y;/z; projecting in
the x/y/z coordinate system (the object space). The parameters of the rotation angle matrix
(My~Mo) are composed of the azimuth angle 6, the roll angle 3, and the tilt angle T [47], i.e.,

M1 = —cosT cosO — sinT cosf3 sinb;

M, = cost sin® — sinT cosf3 cosb;

M3 = —sinT sinf3;

My = sint cos® — cosT cosf} sinb;
M5 = —sinT sin® — cosT cosf} cosb;
Mg = —cosT sinf3;

My = —sinf} sinb;
Mg= —sinf3 cosb;
My = cosf3.

Y Z Z

U

Figure 4. Schematic diagram of the rotation angles (i.e., 6, 3, and T for azimuth, roll, and tilt,
respectively) among the collinear parameters.

3.1.2. Image Matching

Image matching is an important part of LSPIV. The basic concept is to search similar
features on the surface of a river, e.g., a ripple in the first image at time t and that with a
movement in the second image at time t +At. Therefore, an interrogation area (IA) and a
search area (SA) in the first and second images should be determined. If the flow direction is
uncertain, the SA can be centered on the IA of the first image and then expanded. When the
flow condition is constant and known, the SA can be extended along its direction, reducing
the ranges of the SA with improved computational efficiency (Figure 5). Later, starting
with time t +At, an IA can be established in the SA of the second image by a progressive
movement and comparison to the old one. The position with the highest similarity can be
regarded as the new position of the A after At.

Several criteria including the correlation coefficient, covariance, and least squares have
been used for image matching. In this study, the correlation coefficient was adopted [33,46].



Water 2023, 15, 123

7 of 23

Figure 5. Schematic sketch of image matching.

3.1.3. Surface Velocity and River Discharge

The surface velocity and river discharge in a region of interest (ROI) can be estimated
after the aforementioned steps. In general, a visible range should be determined while
setting up the camera. The camera first detects the GCPs through a horizontal rotation
so that the nine parameters in the collinearity equations can be resolved. The camera is
then rotated back to the ROI for observations. Notice that the azimuth angle (6) does not
affect the analysis of surface velocity, as demonstrated in previous studies [16,48]. Once the
parameters are obtained, image acquisition and river surface velocity measurements using
LSPIV can be initiated. The image matching step is utilized to find the moving ripple on the
river surface. The coordinates in the image space are mapped to the object space through the
collinearity equations. Note that only the X and Y coordinates require the transformation
(since the water level can be obtained from the gauge station). A simple computation of the
moving distance over the traveling time returns the river surface velocity.

In this study, three groups of images were recorded each time, and five consecutive
pictures were taken in each group. In other words, the surface velocities were calculated
three times and averaged. Note that image matching was performed directly to analyze the
surface velocity after acquiring the images. In this step, the IA was 50 pixels x 50 pixels,
and the SA was 50% of the IA (i.e., 25 pixels x 25 pixels). The oblique images were not
corrected to orthophotos, which provides the advantage of requiring less computation time
for LSPIV. Meanwhile, a large number of interpolations can be avoided, reducing noise
and image matching errors [45]. Indeed, the oblique image would generate more velocity
vectors in the near field and fewer velocity vectors in the far field. The surface velocity field
in the near-field image was composed of up to 660 vectors, while the velocity distribution in
the far-field image was composed of up to 330 vectors. When calculating the mean surface
velocity, a distance-based weighting procedure was used to obtain the correct velocity.

Furthermore, the cross-sectional mean velocity was estimated using the so-called index
velocity method. The index velocity method relates the mean velocity to the surface velocity
by a site-specific constant k. In this study, the average surface velocity was measured via
LSPIV, and the cross-sectional mean velocity was obtained by the flow meter using the
two-point method. Typically, the value of k is about 0.85 for a normal flow condition and
0.93 during flood events [18]. Later, the cross-sectional area can be calculated using the
water level and bathymetric data. The river discharge as a product of the mean velocity
and the cross-sectional area can finally be obtained.

A flow chart for the overall streamflow measurement (surface velocity and river
discharge) with LSPIV is shown in Figure 6. The in-house developed LSPIV program was
written with MATLAB (2019b, 64-bit) and executed on a Windows 7 operating system. The
computer was equipped with an Intel Core i7-4770 3.4 GHz processor with 32 GB DDR3
memory. The analysis of surface velocity within a time interval takes about 10 s to complete
the computation.
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Figure 6. Flow chart for the measurement of surface velocity using LSPIV and the estimation of river
discharge.

3.2. Uncertainty Assessment: Monte Carlo Simulations

The Monte Carlo simulations (MCS) has been widely used for uncertainty assessment
in many different fields, e.g., hydrology and measurement studies [42,49-53]. Based on
the theory of probability statistics, this method solves and evaluates the uncertainty of a
mathematical problem with a large number of randomly generated samples.

The Monte Carlo simulations used in this study consisted of three major steps. The
first step was to determine the influential factors (i.e., the GCPs and associated camera
parameters through the solution of the collinearity equations); the second step was to
obtain a probability distribution function for the random variables; and the third step was
to randomly generate a large number of samples using the probability density function.

In this study, uncertainty in the LSPIV measurement (surface velocity and river dis-
charge) due to the GCPs (and nine associated camera parameters) was analyzed. A total
of 29 GCPs were placed on the ladder of the gauging platform. For the coordinates of the
GCPs, three repeated measurements were carried out, which returned a small standard
error (SE) of less than 10 mm. Note that continuous efforts have been made to improve
the accuracy of experimental instruments over the decades. Here, we considered 3 times
and 0.3 times the standard error in the GCP measurement to represent worse and better
quality (due to the old- and new-generation instruments or other factors), respectively. To
quantify the influence of GCPs, a large number of samples were randomly generated by a
superposition of the original coordinates and the Gaussian-distributed standard errors (i.e.,
30 mm, 10 mm, and 3 mm). The camera parameters were then solved using the collinearity
equations for each GCP sample. To reduce the large amount of computation, frequency
analysis was also performed for these camera parameters (including the beta, gamma,
normal, Weibull, and log Pearson type III probability functions determined by the standard
error and correlation coefficient). In other words, these nine camera parameters with their
optimal probability functions representing GCPs with various standard errors could be
directly used for the uncertainty assessment (see Figure 7).
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analysis.

4. Results and Discussion
4.1. Streamflow Measurement Using LSPIV

There were four field experiments conducted on 3 May, 26 July, 1 November, and 3
December in 2020. The measured surface velocities were compared with those obtained
from the flow meter for validation.

To begin the LSPIV measurement, the GCPs were first placed on the ladder of the
gauging platform, as illustrated in Figure 8, where 11 and 18 GCPs were deployed for
the near-field and far-field cameras (Figure 8a,b), respectively. Each GCP was measured
three times using a total station (Nikon NE101), returning a standard error of about 10 mm.
The cameras were rotated to take the images of the GCPs to calculate the nine camera
parameters based on the collinearity equations. The dual cameras were rotated backwards
horizontally to observe the ROI (see Figure 8c,d).

The parameters of the near-field and far-field cameras in the four field experiments
are shown in Table 1. The camera parameters for each experiment were slightly different
because the cameras were installed on the experimental day. In the image space, the
coordinates of the perspective center were C,, = 812 pixels and C, = 617 pixels. The focal
length f was 0.018 m for the far-field camera, and it ranged from 0.012 m to 0.017 m for the
near-field camera. In the object space, the coordinates Cy, Cy, and C; ranged from —0.393 m
to 0.373 m, —1.749 m to 0.41 m, and 0.778 m to 1.744 m, respectively. Both the azimuth
angle 6 and roll angle 3 were close to 180° (from 168.15° to 189.17°). The tilt angle T of the
near-field camera (between 110.72° and 115.46°) was larger than that of the far-field camera
(96.63° t0 99.28°), giving an ROI close to the right bank for the near-field camera (Figure 8c)
and an ROI near the left bank for the far-field camera (Figure 8d).
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(a) Near-field camera — GCP {777 Stairway (b) Far-field camera — GCP Stairway
. o " S e

Figure 8. (a,b) GCPs and (c,d) ROIs from the view of the near-field and far-field cameras.

Table 1. Parameters of the near-field (NF) and far-field (FF) cameras in the four field experiments.

Ca Cy Cs C C, 0 B T

Date/Camera (Pixels) (Pixels) (IJ;) (m) (II?) (m) (Degrees)  (Degrees) (Degrees)
3 May 2020 FF 812 617 0.018 —0.16 —1.595 1.648 178.83 184.16 99.28
NF 812 617 0.015 ~0.261 ~0.629 1.064 168.15 186.42 111.77
26 July 2020 FF 812 617 0.018 ~0.189 ~1.69 1.605 178.65 184.09 97.38
NF 812 617 0.014 0.070 0.410 0.778 175.92 178.02 110.72
FF 812 617 0.018 ~0.393 —1.675 1.648 178.26 189.17 96.63
1 November 2020\ 812 617 0.017 —0.145 —0.634 1133 160.76 184.64 115.46
FF 812 617 0.018 0373 —1.749 1.744 178.86 178.25 98.76
3 December 2020 N 812 617 0.012 0.017 —0.080 1132 176.70 184.84 112.26

The surface velocity field and contour in the ROI measured by LSPIV are shown in
Figure 9. Note that the origin of the coordinates in Figure 9 is the control point on the
left-bank embankment, which is opposite to the water gauge station. The coordinates
of the camera are (0, 70). As can be seen, the main flow direction was from left to right.
Some variations may occur in the lower or middle part (Y = 5 m to 15 m) of Yufeng Creek,
e.g., the flow patterns measured on 26 July and 1 November (see Figure 9b,c). Moreover,
the maximum velocity was about 1.7 m/s near the shore area (Figure 9b). Furthermore,
contour plots for the magnitude of surface velocities are shown in Figure 9e-h. Interestingly,
the flow conditions of Yufeng Creek could be divided into three regions (i.e., Y =5 m to
10 m, 10 m to 25 m, and 25 m to 35 m), with higher velocities near the shore and lower
velocities in the middle of the river. The reason is that a shoal that formed around April
significantly affected the flow pattern. Note that these discontinuous changes in the velocity
field (see Figure 9e,f) from LSPIV are quite common. Typically, the river flows affected by
upstream discharges and the bottom topography are in a highly turbulent condition. The
LSPIV measurement estimated the velocity through the analysis of instantaneous ripples
(or objects) on the surface, possibly capturing the occurrence of discontinuous variations
in the velocity field (see contour maps in Figure 9). Similar results were also reported in
previous works [25,30].
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Figure 9. Surface velocity fields and contours measured using LSPIV at (a,e) 9:00 on 3 May 2020,
(b,f) 16:00 on 26 July 2020, (c,g) 11:00 on 1 November 2020, and (d,h) 14:00 on 3 December 2020.

The surface velocities along the cross-section obtained from the LSPIV and flow meter
measurements are compared in Figure 10. The spatial distributions of the river flows
were in good agreement, indicating lower velocities in the middle part of the river. As
mentioned above, this was attributed to local topography effects (i.e., higher riverbed
or shallower depth due to the shoal). Furthermore, the time series of averaged surface
velocities measured by LSPIV and the flow meter during the four field experiments are
shown in Figure 11. While some obvious oscillations were found in the continuous LSPIV
measurement, the averaged surface velocities obtained from both methods were in reason-
able agreement. In the 10 h experiment on 3 May, for example, the temporal mean of the
averaged surface velocity was about 0.5 m/s (0.528 m/s from the flow meter and 0.485 m/s
from LSPIV). Moreover, a scatter plot that demonstrates the correlation between pairs of the
measured results is shown in Figure 12. The averaged surface velocities measured by LSPIV
and the flow meter were highly correlated, giving the regression Y = 0.916X + 0.015, where
Xand Y represent the results from the flow meter and LSPIV measurements, respectively.
The regression with R? = 0.55 and a p-value ~1078 is statistically significant under a 95%
confidence interval. Furthermore, in terms of accuracy, the mean absolute error (MAE) and
root mean square error (RMSE) of the averaged surface velocity are summarized in Table 2.
The values of MAE and RMSE ranged from 0.097 m/s to 0.154 m/s and from 0.107 m/s
to 0.191 m/s, respectively. Overall, the LSPIV method demonstrated strong reliability in
measuring the river surface velocity. Among the four experiments, the best performance
was obtained on 3 May 2020. For the remaining three dates, the performances with slight
differences were also satisfactory.
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Figure 11. Comparison of surface velocities measured by LSPIV and the flow meter on (a) 3 May
2020, (b) 26 July 2020, (c) 1 November 2020, and (d) 3 December 2020.

Table 2. The averaged surface velocities and two statistical indices (MAE and RMSE) between the
results measured by LSPIV (Vi spry) and the flow meter (Vgy).

Date 3 May 26 July 1 November 3 December
Max water depth (m) 0.66 0.79 0.62 0.85
VEM (m/s) 0.528 0.750 0.554 0.829
VLSPIV (m/s) 0.485 0.665 0.492 0.758
MAE (m/s) 0.097 0.154 0.104 0.098

RMSE (m/s) 0.107 0.191 0.111 0.110
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4.2. Uncertainty in GCPs and Camera Parameters

In this study, the field experiment conducted on 3 May 2020 was chosen as the basis
for further uncertainty analysis, as the best performance of the LSPIV measurement was
obtained on this date. Hence, the original coordinates of GCPs were superimposed with
the Gaussian-distributed standard errors (e.g., 10 mm), returning a total of 5000 samples
and the corresponding camera parameters through the collinearity equations.

Figures 13 and 14 show the random samples and the fitted cumulative probability
distributions of the nine parameters of the near-field and far-field cameras, respectively.
Unlike other camera parameters, the coordinates of the perspective center C,, and Cy are
integers (i.e., the pixels in the image space), forming several groups in a vertical line for
the 5000 GCP samples. The probability distributions considered in this study included the
Gumbel, Weibull, beta, normal, and log Pearson type III functions. Two statistical indices,
i.e., the standard error SE and correlation coefficient R, were used to determine the optimal
probability function for each parameter. All the probability density functions have good
correlations, with R > 0.95. The values of the standard errors are listed in Table A1 in the
Appendix A. According to their fitness, the parameters and their distribution functions are
summarized as follows:

1. Near-field camera: C, (normal), C, (normal), f (log Pearson type III), Cy (beta), Cy
(beta), C; (log Pearson type III), 0 (normal), 3 (normal), and T (log Pearson type III);

2. Far-field camera: C, (log Pearson type III), C, (normal), f (log Pearson type III), C,
(log Pearson type III), C, (Weibull), C; (log Pearson type III), @ (normal), 3 (normal),
and 7 (log Pearson type III).
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Figure 13. Comparison of the samples and various probability distribution functions for the nine
parameters of the near-field camera.

4.3. Uncertainty in Streamflow Measurement: GCP Measurement Times

A repeated operation of the total station measurement for the coordinates of the GCPs
might reduce the uncertainty in LSPIV. In practice, the measurements of GCPs are repeated
at least three times and averaged to provide more accurate and less uncertain results for the
coordinates of the GCPs. Thus, reliable and successful LSPIV applications for streamflow
measurements can be ensured. To analyze the impacts from different operations (with a
given measurement accuracy), Monte Carlo simulations and an uncertainty assessment
were carried out. In this paper, the GCP measurements subject to a standard error of
10 mm were repeated one, three, five, seven, and nine times. Subsequently, a total of
100 realizations were carried out for the uncertainty assessment, providing a cumulative
distribution (e.g., 2.5%, 25%, 50%, 75%, and 97.5%) for these measured surface velocities.

Based on the 100 MCS realizations, Figure 15 presents the uncertainty assessment
of the surface velocities from the LSPIV measurement. Note that the light and dark blue
areas denote the 95% (2.5% to 97.5%) and 50% (25% to 75%) confidence intervals for the
measured velocities. In the meantime, the surface velocity obtained by the flow meter (the
black dots) is included for comparison. For the three repeated measurements of GCPs,
as an example, the median (or mode) of the surface velocity in these 100 realizations
(i.e., LSPIV measurements) was close to 0.485 m/s, again in excellent agreement with
the averaged results (0.528 m/s) from the flow meter. In terms of uncertainty, given the
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cumulative probabilities of 2.5%, 25%, 75%, and 97.5%, the surface velocities from the
LSPIV measurement were 0.44 m/s, 0.46 m/s, 0.50 m/s, and 0.52 m/s, respectively. Due to
the uncertainty in GCPs, deviations of —9.3% and 7.2% (lower and upper bounds) from the
median (or mode) were obtained for the surface velocities. Figure 16 further compares the
surface velocities obtained from LSPIV under different repeated GCP measurements (1, 3, 5,
7,and 9 times with 100 realizations). As shown in Figures 15a and 16, given the cumulative
probability of 97.5% (or 99%), a surface velocity of up to 0.612 m/s (or 0.708 m/s) can be
found in the case of a single GCP measurement. Clearly, the method of operation has a great
influence on uncertainty. The impacts (i.e., a shifted and wider confidence interval) can be
alleviated when the measurements of GCPs are repeated. Additionally, the uncertainty in
the measured surface velocities will converge to a small range (0.06 m/s) when the GCP
measurements are repeated more than three times.
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Figure 14. Comparison of the samples and various probability distribution functions for the nine
parameters of the far-field camera.
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4.4. Uncertainty in Streamflow Measurement: GCP Measurement Accuracy

The uncertainty in LSPIV streamflow measurements due to the measurement accuracy
of GCPs was explored. A range of standard errors in the GCP measurements, i.e., 30 mm,
10 mm, and 3 mm, were considered in this study. To avoid interference from the operations,
the GCP measurements were repeated three times.

Figure 17a—c shows the surface velocities obtained from LSPIV measurements for
different GCP accuracies, i.e., SE = 30 mm, 10 mm, and 3 mm. The medians of the surface
velocities for these three scenarios were 0.488 m/s, 0.485 m/s, and 0.483 m/s, respectively.
For the SE of 30 mm, the lower (2.5%) and upper (97.5%) bounds of the surface velocities
were 0.425 m/s and 0.560 m/s, giving a wider range (0.135 m/s) for the 95% confidence
interval. The measured surface velocities would be reduced to about 0.05 m/s if the SE
could be improved to 10 mm or 3 mm. Based on a large number of random samples
from the Monte Carlo simulations, a possible impact from larger but less frequent errors
(i.e., an extremely low probability for significant under- or over-estimations of the surface
velocities) was revealed. A greater uncertainty (especially in the upper bounds) attributed
to the larger standard error was found, although the median of the surface velocities from
LSPIV was still quite close to that measured by the flow meter. Overall, the measurement
accuracy of GCPs plays an important role in LSPIV surface velocity measurement.

Furthermore, the surface velocity was converted to the cross-sectional mean velocity
with k = 0.87 based on the measured data from four field experiments. Legleiter et al. [15]
measured five rivers and obtained the constant k in a range from 0.819 to 0.927, supporting
the reasonable setting of k in this study. The river discharge was then obtained by multi-
plying the depth-averaged velocity and the cross-sectional area. Figure 17d-f present the
histograms for river discharges.
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Figure 17. Uncertainty analysis of the averaged surface velocities from LSPIV and the estimated
river discharges based on Monte Carlo simulations: (a,d) SE = 30 mm, (b,e) SE = 10 mm, and (c,f)
SE = 3 mm in GCPs. Note that the red dots represent the average surface velocity measured by the
flow meter; the light blue area denotes the 95% (i.e., from 2.5% to 97.5%) confidence interval; and the
dark blue area expresses the 50% (i.e., from 25% to 75%) confidence interval.

Based on the MCS, the measured discharges ranged from 3.3 m?/s to 5.7 m3/s for the
case of SE = 30 mm. While the mean discharge Q,;;can Was 4.82 m3/s, the mode of discharges
with an occurrence probability of 24% was about 4.62 m3/s (Figure 17d). Note that the mean
of the surface velocities was potentially influenced by extreme values. The median (or mode)
would be a more appropriate way to represent the surface velocities for comparison. The
uncertainty in the discharge caused by the GCP measurement accuracy can be expressed as
half of the normalized confidence interval, i.e., Quifr = (Qo7.5% — Q2.5%)/ Qmean/2 = 20.7%,
where Qg75¢, and Q,5¢, denote discharges with cumulative probabilities of 97.5% and
2.5%, respectively. In the case of SE = 3 mm, the measured discharges were distributed
mainly in a range between 4.5 m®/s and 4.7 m3/s (with occurrence probabilities of 29%
and 26% or a total of 55% in the distribution), returning a mean discharge of 4.59 m3/s
and a normalized half confidence interval of 10.7% (Figure 17f). As the accuracy of the
GCP measurements increased (SE = 30 mm, 10 mm, and 3 mm), the uncertainty in the
LSPIV streamflow measurements (Qgsr =20.7%, 12.8%, and 10.7%) decreased, returning
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median discharges (Qyedian = 4.62 m3/s, 4.6 m3/s, and 4.59 m3/s) closer to those (4.59 m3/s)
obtained from the flow meter.

The results of the present study (cases of SE = 10 mm and SE = 3 mm) are similar to
the findings of Le Coz et al. [42], where the errors in the camera parameters were smoothed
out by employing more GCPs. The Qg was about 12% when the number of GCPs reached
19. Additionally, Schweitzer and Cowen [54] demonstrated that an accurate GCP-based
georeferencing method was able to reduce uncertainty in the streamflow measurement
by a factor of five or more in comparison to the direct method. Overall, both previous
and current works clearly imply that a high-precision instrument for GCP measurement is
necessary.

4.5. Limitations and Future Work

In this study, for the GCPs, the dimensions of the layout were about 3 m (width) x
7 m (length) x 5 m (height). Based on three repeated measurements, the standard error
of 10 mm indicated a measurement accuracy of about 1/300 to 1/1000. For the RO, the
image resolution was 1624 x 1234 pixels for a measurement distance over 5 m or 40 m. The
uncertainty in LSPIV streamflow measurements was about 12%. Overall, the results imply
that a person who completes the GCP measurements using a precise total station after
simple training would be able to obtain accurate streamflow measurements with a similar
degree of uncertainty to this study. If the ROl area and the image resolution are different, the
uncertainty in the LSPIV streamflow (surface velocity and river discharge) measurements
would be changed. It is recommended that a standard measurement procedure be applied
to check if there are any errors from other sources after the three repeated measurements
and to confirm the GCP measurement accuracy.

In addition to the camera parameters, the uncertainty in the LSPIV streamflow mea-
surements may result from other influential factors including the image resolution, orthorec-
tification, interrogation area (IA), and search area (SA). For example, Fleit and Baranya [55]
examined the influence of the SA (i.e., static SA, adaptive SA, isotropic SA, and anisotropic
SA) on the LSPIV surface velocity measurement. Rozos et al. [41] also investigated the
effects of IA size and the associated uncertainty in the LSPIV surface velocity measurement
using Monte Carlo simulations. The impacts of these factors on the LSPIV streamflow
measurement of a watershed area will be considered in future work.

5. Conclusions

Streamflow measurements, which provide essential data on river discharges, play
a critical role in hydro-environmental research. Conventional workflows for effective
streamflow measurements can be quite tedious, time-consuming, difficult, and danger-
ous [6]. Thus, through continuous efforts over the past decade, image-based velocimetry
algorithms [18,19,21] have been developed to provide a cost-effective, rapid, and secure
monitoring tool for streamflow measurements (including surface velocity and river dis-
charge), i.e., large-scale particle image velocimetry (LSPIV). Nevertheless, the surveys
of ground control points (GCPs) that affect the camera parameters through collinearity
equations might impose uncertainty on the LSPIV streamflow measurement results [43,44].

The purpose of this study was to explore the uncertainty in image-based streamflow
measurements with the main focus on ground control points. The degree of uncertainty in
the LSPIV streamflow measurement was quantified using Monte Carlo simulation (MCS),
in which a large number of camera parameters obtained from the collinearity equations
and ground control points were randomly sampled under different standard errors. The
study area was Yufeng Creek, which is upstream of the Shimen Reservoir in Northern
Taiwan. A system of dual cameras was set up on the platform of a gauge station to analyze
the surface velocity.

To ensure the accuracy of image-based LSPIV, through four field experiments, a
comparison with the conventional measurement using a flow meter was also conducted.
The results showed that the ranges of the mean absolute error (MAE) and root mean squared
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error (RMSE) were 0.097 m/s to 0.154 m/s and 0.107 m/s to 0.191 m/s, respectively. The
field experiment conducted on 3 May 2020 was chosen as the basis for further uncertainty
analysis since the best performance of the LSPIV measurement was obtained on this date.
The original coordinates of the GCPs were superimposed with the Gaussian-distributed
standard errors (e.g., 10 mm), returning a total of 5000 samples and the corresponding
camera parameters through the solution of the collinearity equations. To reduce the large
amount of computation, a common frequency analysis was also performed for these camera
parameters (including beta, gamma, normal, Weibull, and log Pearson type III probability
functions, determined by the standard errors and correlation coefficients).

Lastly, the uncertainty in the LSPIV measurement influenced by GCPs (due to various
measurement times and accuracies) was quantified. For the three repeated measurements
of GCPs, as an example, the median (or mode) of the surface velocity (close to 0.485 m/s)
in these 100 realizations (i.e., LSPIV measurements) was in excellent agreement with the
averaged results (0.528 m/s) from the flow meter. In terms of uncertainty, a range from
0.44 m/s to 0.52 m/s (or —9.3% to 7.2%) was obtained for the lower (2.5%) and upper
(97.5%) bounds of the averaged surface velocities. The method of operation in GCP
measurements interferes with uncertainty, e.g., a shifted and wider range of the confidence
interval. In terms of different measurement accuracies (i.e., SE = 30 mm, 10 mm, and 3
mm), the medians of the surface velocities for the three scenarios were 0.488 m/s, 0.485
m/s, and 0.483 m/s, respectively. In the case of SE = 30 mm, the lower and upper bounds
of the surface velocities were 0.425 m/s and 0.560 m/s, giving a wider range for the
95% confidence interval. Furthermore, the river discharge was obtained using the cross-
sectional area and the mean velocity. As the accuracy of the GCP measurements increased
(i.e., SE =30 mm, 10 mm, and 3 mm), overall, the uncertainty in the LSPIV streamflow
measurements decreased (i.e., Qdiﬁr =20.7%, 12.8%, and 10.7%), returning median discharges
(Quedian = 4.62 m3/s,4.60 m>/s, and 4.59 m3/s) closer to those (4.59 m3/s) obtained from
the flow meter.

Overall, the accuracy of GCPs plays a critical role in controlling the uncertainty in
LSPIV streamflow measurements, which is consistent with the results of some previous
studies [42,54]. The present study further indicates that the uncertainty in LSPIV measure-
ments of the surface velocity of a river can be greatly reduced if the coordinates of the
control points are measured and averaged with three repetitions. The accuracy of LSPIV
stream velocity measurements is satisfactory if the standard error for the coordinates of
the control points is less than 10 mm. LSPIV systems in a fixed study site have shown
that they are capable of carrying out long-term continuous monitoring (even under severe
weather conditions) [16]. Finally, in addition to the camera parameters, uncertainty in
LSPIV measurements may result from other influential factors [41,55]. The impacts of these
factors on the LSPIV measurement of a watershed area will be considered and reported in
the near future.
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Appendix A

Table A1. Standard errors of various probability distributions for the parameters of the near-field

and far-field cameras.

Near-Field Camera

Far-Field Camera

Parameter Beta Gamma Normal Log Weibull Beta Gamma Normal Log Weibull
Pearson III Pearson III

C. (Pixels) 0.5064 0.4716 0.4454 0.4964 0.7246 0.4924 0.6789 0.4223 0.4151 0.7273

C, (Pixels) 0.5715 0.5750 0.5064 0.5201 0.6487 0.5609 0.5482 0.4903 0.5005 0.6654
£ (m) 6 x107° 12 x 107° 15 x 107° 5x107° 35 x 105 15 x 10~ 27 x 107° 45 x 1075 11 x 107° 76 x 1075
Cy (m) 0.0013 0.0129 0.0042 0.0014 0.0059 0.0035 0.0042 0.0035 0.0022 0.018
Cy (m) 0.0134 0.0334 0.0306 0.0151 0.0269 0.0475 0.1521 0.1255 0.1131 0.0473
C, (m) 0.0030 0.0072 0.0123 0.0027 0.0295 0.0034 0.0100 0.0130 0.0032 0.0320

0 (Degrees) 0.0289 0.0533 0.0167 0.0209 0.1611 0.0731 0.0659 0.0400 0.0460 0.2977

B (Degrees) 0.0460 0.0718 0.0195 0.2213 0.2115 0.0392 0.0266 0.0218 0.0256 0.1393

T (Degrees) 0.0178 0.1120 0.0189 0.0176 0.1726 0.0670 0.0680 0.0714 0.0341 0.3639
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