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Abstract: Water supply for drinking and agricultural purposes in semi-arid regions is confronted
with severe drought risks, which impact socioeconomic development. However, early forecasting
of drought indices is crucial in water resource management to implement mitigation measures
against its consequences. In this study, we attempt to develop an integrated approach to forecast
the agricultural and hydrological drought in a semi-arid zone to ensure sustainable agropastoral
activities at the watershed scale and drinking water supply at the reservoir scale. To that end, we used
machine learning algorithms to forecast the annual SPEI and we embedded it into the hydrological
drought by implementing a correlation between the reservoir’s annual inflow and the annual SPEI.
The results showed that starting from December we can forecast the annual SPEI and so the annual
reservoir inflow with an NSE ranges from 0.62 to 0.99 during the validation process. The proposed
approach allows the decision makers not only to manage agricultural drought in order to ensure
pastoral activities “sustainability at watershed scale” but also to manage hydrological drought at a
reservoir scale.

Keywords: Bouregreg basin; artificial neural network; hydrological drought; agricultural drought; SPEI

1. Introduction

Water resource planning and management in semi-arid regions are confronting several
constraints, such as frequent drought phenomena. This natural hazard can impact several
ecosystems, such as climatic, hydrological, agricultural, and ecological systems, that can
impact socioeconomic activities [1,2]. Indeed, drought is generally caused by hydro-
climatic anomalies that result in water shortage in some (or all) processes involved in the
hydrological cycle. Various climate variables and their combination can influence droughts,
such as an increase in evaporation in the atmosphere, and evaporative atmosphere demand,
which lead to water stress [3]. Consequently, as defined by [4], drought is a process in
which the hydrological cycle reaches its limit that stresses the related ecosystems. In recent
years, droughts have impacted many regions of the world. For example, drought events
in Syria [5] and Pakistan [6], the Millennium Drought in Australia (2001–2009) [7], and
drought events in the USA, namely: Texas and the Central Great P(2012) and California
(2012–2015) [8]. Consequently, the evaluation and prediction of this natural hazard are
crucial in water resource management.

For decades, various indices have been developed and applied to evaluate drought
risk, such as the standardized precipitation index (SPI), which relies on long-term rain-
fall records to quantify water scarcity during different time scales [9]. In contrast, the
Standardized Precipitation Evapotranspiration Index (SPEI) measures the impact of an
increase in temperature on drought by including an evapotranspiration component in the
calculation [10]. This approach has been broadly applied to assess and monitor drought
episodes in several regions of the world [3,11–14]. Besides, the use of spatial techniques is
helpful in quantifying and classifying drought severity by location [15–17].
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However, early prediction of the drought index is challenging in water resource plan-
ning and management processes, as it allows the decision makers to mitigate the impacts
and ensure the sustainability of the related socioeconomic activities. Machine learning
algorithms are promising methods for modeling complex hydrological phenomena [18–20].
Drought prediction is a field in which machine learning can present good results, as it
requires less time and minimal inputs, and it is relatively less complex than physical or
dynamic models [21,22]. For instance, Ref. [23] applied Long Short Term memory to predict
SPEI in Australia. Thus, the authors found that the developed models were accurate, with a
coefficient of correlation of about 0.99 [24]. They compared the Gaussian Process regression
with two ML models and showed its potential accuracy to forecast the SPEI in Iran. Simi-
larly, the Heuristic algorithms, namely: hybrid Adaptive Neuro-Fuzzy Inference System
(ANFIS) combined with particle swarm optimization (PSO and genetic algorithm (GA),
have been investigated and demonstrated to be accurate approaches to predict drought
index SPI [25]. Also, Tree-Based ML models were applied to drought risk assessment and
monitoring processes using satellite datasets for different climatic regions [26,27]. The
authors found that Random Forest models presented high accuracy compared to Boosted
Regression and Tree models with R2 = 0.93. Moreover, it has been reported that the artificial
Neural Network (ANN) and Deep Neural Network (DNN) are outstanding approaches in
ML models in water resource studies [28–30]. In [31], the researchers concluded that the
DNN model outperformed the support vector machine and ANN optimized with GA with
an accuracy of about 95% in predicting and assessing drought risk. Table 1 presents the
most recent and relevant references published in the literature for predicting drought. In-
terestingly, the application of data driven techniques showed high accuracy for forecasting
drought index in several regions in the world and for different climates.

Table 1. Recent works of drought prediction using machine learning.

Reference Model/Method Drought Index Performances Country

[32] Bagging, Random Forest, Random
Subspace, Random Tree SPI Radom Tree outperformed other

models Syria

[33]
Spatial and temporal variation of

sustainability in response to
meteorological droughts

SPI *** Afghanistan

[24]
Three machine learning, MLP,
GRNN, and Gaussian process

regression (GPR)
SPEI GPR outperformed other models Iran

[34] ANN, SVM, ANFIS, Decision Tree, SRI SVM outperformed other models Algeria

[35] ANN, SVM SHMI Both models showed accurate
results Slovakia

The water department in Morocco relies on water surfaces to supply water for agricul-
tural, drinking, and industrial purposes through several dam reservoirs, as the groundwater
is under continuous overexploitation. The Bouregreg is a typical basin in the country, as
it supplies drinking water for the main coastal cities, especially Rabat and Casablanca.
However, the water availability in this zone is confronted with several constraints, like
frequent drought as an impact of climate change [36] and environmental issues [37]. The
drought phenomenon in the Bouregreg Basin is threatening both water availability at the
reservoir scale for drinking purposes and the sustainability of the socioeconomic activ-
ities related to agropastoral activities at the watershed scale. Consequently, forecasting
hydrological and agricultural drought risk is valuable to manage water resources in this
area. In this study, the ANN algorithm is used to predict the severity of drought at the
end of the hydrological year (month of August) through SPEI. Thus, the timescale used is
one month (SPEI-1). Eleven models (ANN_Sep to ANN_Jul) starting from the month of
September to the month of July were trained and validated using the data of precipitation
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and temperature of twelve stations to predict the annual drought (in August). Then, the
relation between the SPEI and the water inflow rate into the reservoir was established to
predict hydrological drought risk.

2. Materials and Methods
2.1. Study Area

The study area is the Bouregreg Basin, which is located between Rabat-Salé-Kenitra,
Casablanca-Settat, and Beni-Mellal-Khénifra provinces, Morocco. This basin covers 9975 km2

and consists of 4 watersheds; 4 main rivers compose the hydrographic network and they
are named Bouregreg River (264 km), Grou River (249 km), Korifla River (139 km), and
Mechraa River (132 km). Climatically, the area is a Mediterranean semi-arid region with
an annual average of precipitation of about 400 mm in its North West part and 760 mm in
the mountainous part. As for the temperature, it varies between 35 ◦C and 45 ◦C during
the summer and ranges from 5 ◦C to 15 ◦C during winter periods [38]. The reservoir of the
SMBA dam, which controls this basin, presents a normal capacity of 975 hm3; it supplies
drinking water to urban and rural areas in the coastal area between Sale and Casablanca
cities, where the mean inflow rate is about 680 hm3·r−1. Meanwhile, at the watershed scale,
pastoral and agricultural activities are the main socioeconomic activities related to water
availability.

2.2. Datasets
2.2.1. Precipitation and Temperature

The studied basin is monitored by nine rainfall monitoring stations, as presented in
Figure 1. In this study, monthly datasets related to rainfall recorded from the period from
1971 to 2021 were provided by the River Basin Agency of Bouregreg and Chaouia (AB-
HBC). Table 2 presents the statistical characteristics of these data, such as mean, minimum,
maximum, and standard deviation (STD). From this Table, it can be observed that high
variability of rainfall is noticed in the high standard deviation for all stations, which can
lead either to flood events or drought disasters. The temperature data were recorded at
six climatological stations (Figure 1) where three of them are managed by the Bouregreg
and Chaouia Hydraulic Basin Agency (ABHBC) and the other three are operated by the
National General Direction of Meteorology. Table 3 presents the statistical characteristics of
the temperature datasets used in this study.

Table 2. Statistical characteristics of the monthly precipitation data recorded at nine monitoring
rainfall stations.

Hydrological Station River Period Mean (mm) Max (mm) Min (mm) Standard
Deviation

Aguibat Ziar Bouregreg 1976–2021 269.5 725 0 198.9
Ras Fathia Grou 1976–2021 245.2 780.7 0 185.2
S.M. Cherif Mechraa 1972–2021 232.3 785.7 0 175.5
Ain Loudah Korifla 1972–2021 225.7 671 0 162.8
Lalla Chafia Bouregreg 1971–2021 225.5 689 0 166.1
Sidi Amar Tabahart 1977–2021 225.4 657.7 0 180.1
Sidi Jabeur Grou 1971–2021 195.5 592.1 0 142.9

Tsalat Guennour 1976–2021 284.8 868.7 0 212.3
Ouljet Haboub Grou 1972–2021 184.6 563.4 0 133.7

Table 3. Statistical characteristics of temperature data of the six climatological stations used.

Climatological Station Period of Observation Mean (◦C) Max (◦C) Min (◦C)

Rabat 1960–2021 17.5 31.6 3.9
Khémisset 1971–2021 20.2 39 2
Khouribga 1972–2021 19.7 41 −1
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Table 3. Cont.

Climatological Station Period of Observation Mean (◦C) Max (◦C) Min (◦C)

Ain Loudah 1971–2021 19.6 38.3 2
Sidi Jabeur 1971–2021 19.7 38 2

Ouljet Haboub 1972–2021 19.8 39 1
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Figure 1. Bouregreg Basin location, in Morocco.

2.2.2. Runoff Data

The annual inflow data were measured in the SMBA dam for the period from 1985
to 2021 and provided by the Bouregreg and Chaouia Hydraulic Basin Agency (ABHBC).
Table 4 presents the statistical characteristics of the whole dataset related to the inflow rate
recorded at the SMBA dam reservoir. From this Table, it was observed that high variability
in the water inflow rate was noticed in the high value of the standard deviation, which
indicates recording drought and flood events.
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Table 4. Statistical characteristics of the inflow rate dataset of the SMBA dam.

Inflow Station
Max

Annual Inflow
(Mm3)

Min
Annual Inflow

(Mm3)

Mean
Annual Inflow

(Mm3)

Standard
Deviation

SMBA’s Dam 2583.9 67.2 541.9 530.6

2.3. Methodology
2.3.1. Standard Precipitation Evapotranspiration Index (SPEI)

The SPEI is one of the recently developed drought indexes [10]; it shows a growing
consensus about its use because it uses rainfall and temperature data rather than only
rainfall, as in the case of the Standard Precipitation Index (SPI). It uses the difference
between precipitation and evapotranspiration to represent the regional drought. The SPEI
uses a simple water balance calculation, and the potential evapotranspiration (PET) is
based on the Thornthwaite (1948) model. It has the potential to track agricultural drought
more efficiently.

Di = Pi− PETi (1)

where: Di: Deficit in mm, Pi: Precipitation in mm, and PETi: Potential evapotranspiration
in mm for the month i.

The calculated Di values are aggregated to a 1-month time scale, Log-logistic distribu-
tion is used to model the D series, and the probability density function of a 3-parameter
Log-logistic distributed variable x is expressed as:

f (x) =
β

α
∗
(
(x− γ)

α

)β−1
×
(

1 +
(
(x− γ)

α

)β
)−2

(2)

where, α, β, and γ are the parameters of the Log-logistic distribution, and they are obtained
using the L-moment procedure (Ahmad et al., 1988), following Singh et al. (1993):

β =
2ω1−ω0

6ω1−ω0− 6ω2
(3)

α =
(ω0− 2ω1)× β

Γ
(

1 + 1
β

)
∗ Γ
(

1− 1
β

) (4)

γ = ω0− αΓ
(

1 +
1
β

)
Γ
(

1− 1
β

)
(5)

where Γ is the gamma function.
In the Vicente-Serrano et al. [10] study, the probability weighted moments (PWMs)

method was used to calculate α, β, and γ parameters, based on the plotting-position
approach (Hosking, 1990), where the PWMs of order s are calculated as:

ωs = 1/N
N

∑
i=0

(1− Fi)S × Di (6)

where: i is the range of observations, Fi = (i − 0.35)/N is a frequency estimator calculated
following the approach of Hosking (1990).

The SPEI value is obtained as the standardized value following the classical approxi-
mation of Abramowitz and Stegun (1965) [39] given as:

SPEI = W −

(
c0 + c1W + c2W2

)
1 + d1W + d2W2 + d3W3 (7)
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where c0, c1, c2, d1, d2 and d3 are constant: c0 = 2.5155, c1 = 0.8028, c2 = 0.0103, d1 = 1.4328,
d2 = 0.1892 and d3 = 0.0013, W is calculated using:

W =
√
(−2 ln(Pr))

For Pr ≤ 0.5 (8)

where Pr is the probability of exceedance of a given D value, the cumulative distribution of
D being F(D). When Pr > 0.5, it is replaced with the non-exceedance probability (F(D) = 1 −
Pr) and the sign of the calculated SPEI is reversed.

2.3.2. Artificial Neural Network (ANN)

In the present study, we applied the ANN model to predict drought. ANN has
presented potential accuracy compared to other machine learning algorithms, such as the
Support vector machine (SVM), Random Forest (RF), and Linear regression (LR) in several
studies as it can map complex and nonlinear systems [40,41].

This subsection provides a short description of this approach. Meanwhile, further
details on the ML-based models can be found in [42–47]. ANN models are constructed by
three layer types, namely: the input layer, hidden layers (HL), and the output layer [48].
They are interconnected through neurons, which are characterized by weight and bias.
The weighted input variables summed with the bias of the layer are transformed from
the jth layer to the j + 1th layer by a transfer function (f ), and so on, until the output [48].
The training phase is repeated by changing the weights and the biases of the layers until
good prediction accuracy (root mean square error) is achieved. To simplify this method,
let us take a simple model with one HL. The outputs (Yk) are given by the following
equation [49]:

Yk = fk(
m

∑
i=1

Wjk × f j(
n

∑
i=1

XiWij)) + W0 (9)

where n is the input variable numbers, m is the neurons in the HL, p is the neurons of
the output layer, and k is between 1 and p, W0 is the bias, Wjk and Wij are the weights
between the jth neuron and the kth output neuron and between the ith neuron and jth
neuron, respectively, whereas fk and f j are the transfer functions of the neurons k and j of
the output and hidden layers, respectively. Figure 2 presents the architecture of an ANN
model with three hidden layers.
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Figure 2. Architecture of ANN ML model.

The input data are used to calculate the SPEI at a 1-month time scale in all the stations.
The results are used first to characterize the drought in the basin and second to develop
models that can predict the annual SPEI so the data is decomposed into two parts: training
and validation datasets. Eleven ANN models were developed, trained, and validated;
each model predicts the annual SPEI from a corresponding month, from September to
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July. Furthermore, the annual SPEI is linked to the annual water inflow rate in the SMBA
reservoir to predict and evaluate hydrological drought at the reservoir scale (Figure 3).
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2.3.3. Performances of the Models

In this study, we used three statistical metrics to assess the applied ML model per-
formances, namely: the Nash–Sutcliffe model efficiency coefficient (NSE) [50], root mean
square error (RMSE), and correlation coefficient (R). Accordingly, an NSE value of 1 indi-
cates a perfect-fit model, greater than 0.75 is a very good fit, between 0.64 and 0.74 is a good
fit, between 0.5 and 0.64 is a satisfactory fit, and less than 0.5 is an unsatisfactory fit [51].
However, these performance statistics are defined as:

R =
n

∑
i=0

(
Oi−

_
O
)
(Pi− P)/

√
(

n

∑
i=0

(Oi−
_
Oi)

2
))(

n

∑
i=0

(Pi− P)2)) (10)

NSE = 1− ∑(Pi−Oi)2

∑
( _

O−Oi
)2 (11)

RMSE =

√
n

∑
i=0

(Pi−Oi)2/n (12)

where Pi and Oi are the predicted and the actual SPEIs, respectively,
_
O represents the

average values of the actual SPEI index, and n is the number of observations.

3. Results
3.1. Analysis of the Drought Events and Characteristics during 1970–2021

The SPEI was calculated and its normal distribution was fitted and presented in
Figure 4. From this Figure, it was observed that 68.3% of the calculated SPEI in all the
stations is between −1 and 1, indicating a closer to normal, while 15.9% presented severe
to extreme drought. Furthermore, the calculated SPEI shows that several drought events
have occurred in the basin, the period of which varies between two and seven years. The
seasonal decomposition using an additive model shows clearly a trend and a season in
the time series. More importantly, Figure 5 shows the seasonality in the data fluctuation.
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However, it is still very weak, causing the SPEI to fluctuate by 0.02 over the course of a
year. Besides, the residual shows high variability.
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The Bouregreg Basin has been subjected to critical drought events that have heavily
influenced the socioeconomic development in the region by impacting the drinking water
supply and agropastoral productivity. As an effect of climate change, the basin can lose an
important water yield and, as a result, threaten the sociohydrologic systems [52]. Therefore,
early forecasting could be managing drought risks. In this study, we aim to forecast drought
using SPEI and ANN.
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3.2. Data Analysis

The selection of suitable variables is a master key in the development of machine
learning models, to guarantee good prediction accuracy and the generalization ability of
the models. In this study, the input variables to predict the annual SPEI corresponding
to August (of the hydrological and agricultural year) are the corresponding month, SPEI,
temperature data: min, max, and mean, and the corresponding station. A correlation
analysis of the dataset was carried out in order to explore the potential relationship between
the input variables. Figure 6 presents the matrix correlation of the variables for all the
stations in the studied basin. It was observed that, except for the mean temperature with
the max temperature, all other variables are not highly intercorrelated. Such results prove
that the selected variables are not redundant in the prediction of SPEI.
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3.3. Training Process of the Machine Learning Models

In this step, 11 ANN ML models were trained, tuned, and evaluated to improve
the prediction accuracy. The tuning process includes changing the hyper-parameters and
transfer functions of the models. However, Table 5 presents the adopted parameters in
this study.

Table 5. Adopted hyper-parameter and functions of the trained models.

Models Parameters/Functions/Algorithm

ANN_Sep, ANN_Oct, ANN_Nov, ANN_Dec,
ANN_Jan, ANN_Feb, ANN_Mar, ANN_Apr,

ANN_May, ANN_Jun, ANN_Jul

6 layers (including input and output layers)
310 neurons in hidden layers (10, 100, 100, 100)

Algorithm: Adam
Function activation: Softmax

Epoch number: 1000
Learning rate: 0.01

Table 6 presents the ANN model performances during the training phase. This Table
clearly shows that all models have a high potential accuracy in predicting the annual SPEI,
justified by the fact that the NSE ranges from 0.64 to 0.99, the R2 ranges from 0.65 to 0.99,
and the RMSE ranges from 0.06 to 0.59. It was observed that ANN_Nov to ANN_Jul
outperformed the ANN_Sep and ANN_Oct models during the training phase.

Table 6. Machine learning model performances during the training phase.

R2 RMSE NSE Performance Rank

ANN_Sep 0.65 0.59 0.64 Good fit
ANN_Oct 0.73 0.51 0.73 Good fit
ANN_Nov 0.82 0.41 0.82 Good fit
ANN_Dec 0.81 0.43 0.81 Good fit
ANN_Jan 0.87 0.35 0.81 Very good fit
ANN_Feb 0.90 0.31 0.87 Very good fit
ANN_Mar 0.96 0.19 0.90 Very good fit
ANN_Apr 0.96 0.18 0.96 Very good fit
ANN_May 0.98 0.12 0.96 Very good fit
ANN_Jun 0.99 0.08 0.98 Very good fit
ANN_Jul 0.99 0.06 0.99 Very good fit

3.4. Validation of the ML Models

This step was carried out to evaluate whether the trained ML models are generalizable
in order to predict the annual SPEI for the dataset unseen during the training phase. To
that end, we simulated the annual SPEI with 20% of the original dataset and evaluated
the model performances. Table 7 presents the models’ performances during the validation
phase. It was observed that, except for ANN_Sep, ANN_Oct, and ANN_Nov, all other
models presented good accuracy during the validation phase, with an NSE ranging from
0.62 to 0.99, an R2 ranging from 0.62 to 0.99, and an RMSE ranging from 0.07 to 0.58. Such
accuracy predictions were found by [34] in predicting the standardized runoff index (SRI)
in Algeria.

Table 7. ANN model performances during the validation phase.

R2 RMSE NSE Performance

ANN_Sep 0.35 0.77 0.32 Unsatisfactory fit
ANN_Oct 0.36 0.81 0.25 Unsatisfactory fit
ANN_Nov 0.37 0.81 0.25 Unsatisfactory fit
ANN_Dec 0.62 0.58 0.62 Good fit
ANN_Jan 0.75 0.46 0.75 Very good fit
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Table 7. Cont.

R2 RMSE NSE Performance

ANN_Feb 0.84 0.38 0.83 Very good fit
ANN_Mar 0.90 0.3 0.89 Very good fit
ANN_Apr 0.94 0.23 0.93 Very good fit
ANN_May 0.98 0.13 0.98 Very good fit
ANN_Jun 0.99 0.09 0.99 Very good fit
ANN_Jul 0.99 0.07 0.99 Very good fit

Figure 7 shows that starting from December, we have a linearity distribution in the corre-
lation between the Validation SPEI dataset and Simulation results using the ANN models.
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To determine the models that best predict the annual SPEI, boxplots were developed
for the errors (residuals) estimated as the difference between the calculated and simulated
values (Figure 8). The presented positive and negative estimation errors indicate underesti-
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mation and overestimation, respectively. Globally, from this Figure, the model errors are
normally distributed as the median line is closer to zero. However, ANN_Apr, ANN_May,
ANN_Jun, and ANN_Jul are the best models for predicting the annual SPEI as it has the
lowest error ranges. Thus, the ANN_Mar and ANN_Feb models performed well. Similarly,
the models ANN_Dec and ANN_Jan showed fairly acceptable results that can be qualified
as acceptable since 75% of the error was between −0.25 and 0.25 and evenly distributed
over 0.
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Additionally, Figure 9 illustrates the comparison of the observed, and predicted
August from September a), from December (b), and from April (c). From this Figure, it
was observed that it is not possible to predict SPEI from September (Figure 9a), as there
are significant discrepancies between observed and predicted SPEI provided by ANN_Sep
model. Meanwhile, from December, the ANN_Dec model is fairly accurate to predict SPEI.
Therefore, this model can be useful for predicting agricultural drought early.
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3.5. Hydrological Drought Prediction

To manage water drinking supply from the SMBA reservoir, the information on the
annual inflow is crucial since the basin controlled by the SMBA dam is characterized by
high inflow variability that is dependent on precipitation. Consequently, linking between
hydrological and agricultural droughts is valuable to prioritize mitigation measures against
drought at watershed and reservoir scales. To predict the annual inflow in the SMBA
reservoir, a logarithmic fitting between inflow data and the mean annual SPEI of the nine
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stations was carried out using the historical data. The correlation presented very good
results with an R2 of 0.88.

Figure 10a shows that the correlation predicts very well the annual inflow using the
annual SPEI, indicating that the response of the hydrological drought to the agricultural
drought is exponential. Besides, Figure 10b illustrates a comparison between calculated
and observed SMBA reservoir inflow values for the period from 1979 to 2021. It obviously
shows that there is an agreement between the observed and calculated water inflow rate.
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Drought hazards can lead to a substantial economic loss, especially for countries
whose economies rely on the agriculture sector [53,54]. Besides, this natural hazard is
a threat to water scarcity for drinking purposes in the semi-arid environment, where
most countries rely on reservoirs for water surface mobilization [55]. As for food security,
the agricultural drought impacts food security, especially in sub-Saharan countries [56].
Compared to traditional methods based on the evaluation of the instant drought using
SPI, SPEI, or NDVI, the early prediction of the annual SPEI is valuable to assess the
appropriate measures in time for mitigating the drought consequences and socioeconomic
impacts. To reach this overarching goal, ML models represent an innovative approach in
hydrological sciences [30,57,58]. In this study, the ANN model provided fairly acceptable
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performances for predicting hydrological and agricultural draughts with NSE, about 0.62
from December to 0.99 in July. These results allow the decision maker to predict early the
drought impacts (from December) and, therefore, to plan appropriate measures to reduce
the socioeconomic impacts. However, using SPEI to evaluate agricultural and hydrological
droughts, respectively, is not enough in the situation where agriculture relies on irrigation.
In this instance, embedding socioeconomic activities to evaluate drought risk is primordial
and, therefore, can be suggested for future works.

Despite being an accurate method to predict hydrological and agricultural annual
drought, this approach is unable to predict drought in river networks, which are water
source supplies of several ecoservices, such as the environmental flow, water withdrawal
for livestock production, and recreational purposes, the combination of the hydrological
model with the prediction of SPEI could be valuable to overcome such limitations, and
therefore it is suggested for future works.

4. Conclusions

Recently, climate change effects combined with socioeconomic activities have led
to water scarcity in several regions, particularly semi-arid environments. The drought
prediction at the basin scale, like precipitation, is nonlinear and highly dynamic, especially
in semi-arid regions. In this study, 11 ANN models with 4 hidden layers, Softmax as a
function activation, and a learning rate of 0.01, were applied and evaluated to predict the
annual SPEI starting from September to July. The main conclusions of the present study are
as follows:

1. Developed ANN models presented good prediction accuracy in forecasting drought
using SPEI, with an NSE ranging from 0.62 to 0.99, an R2 ranging from 0.62 to 0.99,
and an RMSE ranging from 0.07 to 0.58. Thus, the generalization ability through the
validation process demonstrated the stability of the applied models in predicting the
annual SPEI;

2. From December, the models are fairly accurate in predicting the annual SPEI at the
end of the hydrological year;

3. Hydrological drought is exponentially linked to agricultural drought.

Overall, the study results provide new insight into the early forecast of the agricultural
and hydrological drought risks. Implementing this approach in water resource planning
and management could be a fruitful tool to manage the drought impacts not only at the
watershed scale but also at the reservoir scale for drinking water supply purposes.
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