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Abstract: Improperly managed wastewater effluent poses environmental and public health risks.
BOD evaluation is complicated by wastewater treatment. Using key parameters to estimate BOD
in wastewater can improve wastewater management and environmental monitoring. This study
proposes a BOD determination method based on the Artificial Neural Networks (ANN) model to
combine Chemical Oxygen Demand (COD), Suspended Solids (SS), Total Nitrogen (T-N), Ammonia
Nitrogen (NH4-N), and Total Phosphorous (T-P) concentrations in wastewater. Twelve different
transfer functions are investigated, including the common Hyperbolic Tangent Sigmoid (HTS),
Log-sigmoid (LS), and Linear (Li) functions. This research evaluated 576,000 ANN models while
considering the variable random number generator due to the ten alternative ANN configuration
parameters. This study proposes a new approach to assessing water resources and wastewater
facility performance. It also demonstrates ANN’s environmental and educational applications. Based
on their RMSE index over the testing datasets and their configuration parameters, twenty ANN
architectures are ranked. A BOD prediction equation written in Excel makes testing and applying in
real-world applications easier. The developed and proposed ANN-LM 5-8-1 model depicting almost
ideal performance metrics proved to be a reliable and helpful tool for scientists, researchers, engineers,
and practitioners in water system monitoring and the design phase of wastewater treatment plants.

Keywords: artificial intelligence; artificial neural networks; biochemical oxygen demand (BOD);
machine learning; wastewater

1. Introduction

The U.K. Royal Commission on River Pollution suggested the biological measurement
Biochemical Oxygen Demand (BOD) in 1908 to demonstrate the organic pollution of
rivers [1]. BOD is defined as the quantity of oxygen taken up by the respiratory activity
of microorganisms growing on organic substances present in the sample (e.g., sludge or
water) while incubated at a specific temperature (typically 20 ◦C) for a fixed period (usually
5 days, BOD5) [1] (Table 1). It is a measurement of the organic contaminants in water that
can be broken down by biological processes [1]. The main downside of this measurement
is the time (5 days) required to complete it [2].

Automated control solutions for wastewater treatment facilities and environmental
monitoring applications need a reliable and accurate measurement of BOD in influent
and effluent samples. Standard dilution is the classic technique for determining BOD [1].
This approach has been used to identify contaminants in most water bodies and assess
BOD levels with reasonable precision. BOD monitoring necessitates the use of specialized
equipment and procedures, which considerably increases the difficulty and expense of
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the detection process. The difference in detection times for BOD (5 days) [3] and the
other critical parameters COD (Chemical Oxygen Demand), SS (Suspended Solids), T-N
(Total Nitrogen), NH4-N (Ammonium Nitrogen) and T-P (Total Phosphorous) makes it
challenging to match all the detection methods to simultaneously measure BOD, COD,
SS, T-N, NH4-N and T-P contents to evaluate the performance of wastewater treatment
processes (Table 1). BOD, T-N and T-P, among others, are crucial parameters for estimating
Water Quality Indices and assessing water bodies [4–6]. Moreover, the off-site detection and
long detection times of the approaches mentioned above cannot meet the requirements of
on-site, real-time monitoring of contaminants in automated water treatment operations [7].
According to Jouanneau et al. [1] the determination of BOD5 is helpful in three ways: (a) it
illustrates if the wastewater discharge and waste treatment technique comply with current
objective values and legislation; (b) the COD/BOD5 ratio demonstrates the biodegradable
fraction of effluent; and (c) the ratio of BOD5 to COD in wastewater treatment facilities
represents the biodegradable portion of an effluent.

The high non-linear correlation between BOD and the five other parameters (COD, SS,
T-N, NH4-N and T-P) included in the analysis of this study reveals that it is hard to use
classical computing techniques such as regression analysis to delineate related issues and
extract significant results. Concerning water and wastewater treatment and assessment of
water quality, many research studies and scientific publications have been conducted out
applying Artificial Intelligence Techniques [8–10]. In the last two decades, soft computing
techniques such as Machine Learning (ML) proved reliable and robust methods to model
such topics with a strongly non-linear nature [11–15].

Because of the widespread usage of BOD techniques, alternatives ranging from static
bioassays to online biosensors have been developed [1] (Tables 1 and 2). ML is a system
that employs a series of programmed algorithms to anticipate the future patterns of any
raw data by automatically analyzing the data’s discreet relationships [16]. To identify the
rules underlying the known data as precisely as feasible, it is often necessary to produce the
dataset after treating it appropriately [17]. Then, a suitable ML method is selected based on
the input data’s features and output data’s requirements. The chosen algorithm will then be
trained using the meticulously gathered data and assessed to change its hyperparameters,
producing the desired model. The suggested machine learning model is then qualified to
predict new data [17].

Table 1. Groups of main methods for determining BOD, required time and measurement range for
each method.

Method Required Time
(Median)

Measurement Range
(mg L−1) References

Chemical or Electrochemical
measurement

Standard reference method 5 days 0–6 ISO 5815-1:2003 [18];
Jouanneau et al. [1]

Modified reference method 5 days 0–6 McDonagh et al. [19]; McEvoy et al.
[20]; Xiong et al. [21]; Xu et al. [22]

Photometric method 5 days 0–6 Jouanneau et al. [1]

Manometric method 5 days 0–700 Jouanneau et al. [1]

BOD prediction

Biosensor based on
bioluminescent bacteria 72 min 0–200 Sakaguchi et al. [23,24]

Microbial fuel cells 315 min 0–200 Jouanneau et al. [1]; Kim et al. [25]

Biosensor with
entrapped bacteria 10 min 0–500 Karube [26]; Liu et al. [27]
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Table 2. Approaches for estimating BOD, input, output variables and correlation coefficient (R2) for
each approach.

Approach
Number of

Input
Variables

Input Variables Output
Variables R2 Type of Water References

ANN 4 TSS, TS, pH, T BOD, COD 0.63–0.81 wastewater Zare Abyaneh [28]

ANN 11

pH, TS, T-Alk,
T-Hard, Cl, PO4

3−,
K, Na, NH4-N,
NO3-N, COD

DO, BOD 0.77–0.85 river water Singh et al. [29]

ANFIS 9
pH, alkalinity,

T-Hard, TS, TDS, K,
PO4

3−, NO3
−, DO

BOD 0.69–0.85 river water Ahmed and Ali
Shah [30]

ANN 11

pH, T-Alk, T-Hard,
TS, COD, NH4-N,
NO3-N, Cl, PO4

3−,
K, Na

DO, BOD 0.74–0.90 river water Basant et al. [31]

ANN 8
T, turbidity, pH,
CND, TDS, TSS,

DO, COD
BOD 0.69 wastewater Asami et al. [32]

Notes: ANN: Artificial neural network, ANFIS: Adaptive Neuro-Fuzzy Inference System, TSS: total suspended
solids, TS: total solids, T-Alk: total alkalinity, T: temperature, T-Hard: total hardness, Cl: chloride, PO4

3−:
phosphate, K: potassium, Na: sodium, NH4-N: ammonia nitrogen, NO3-N: nitrate nitrogen, NO3

−: nitrate, DO:
dissolved oxygen, COD: chemical oxygen demand, CND: electrical conductivity, TDS: total dissolved solids.

The manuscript is organized into several sections. Section 2 presents the significance
of this research. Section 3 presents material and Methods used for the development of the
mathematical forecasting model for the BOD5. Section 4 provides the presented results on
the development of a closed-form equation for the estimation of BOD5 in wastewater and
the mapping of BOD5, revealing its strongly nonlinear nature. In Section 5 the limitations
of the proposed model are presented, followed by concluding remarks in Section 6.

2. Research Significance

The efficient operation and management of wastewater treatment plants (WWTPs) are
gaining more consideration as environmental concerns receive increasing attention. The
discharge of a WWTP’s effluent into a receiving water body may cause or spread a variety of
human health problems if it is improperly managed, hence posing significant environmental
and public health risks. Better management of a WWTP may be attained by developing a
robust mathematical method for estimating the BOD content in wastewater on a dataset of a
minimum number of key parameters. Nevertheless, evaluating BOD content in wastewater
is challenging owing to the intricacy of the treatment processes. The complex biological,
chemical, and physical systems involved in the wastewater treatment process display
nonlinear tendencies that are challenging to explain using linear mathematical models.

We rely on the advantages of the ANN model to explore the performance of the
ANN model in determining BOD values in wastewater. Consequently, this study is a
novel attempt at proposing a BOD determination method based on the ANN model to
combine the COD, SS, T-N, NH4-N and T-P concentrations in wastewater. This study may
provide a new idea for monitoring water resources and the performance of the wastewater
treatment plant.

3. Materials and Methods
3.1. Artificial Neural Networks

Artificial neural networks owe their name to the biological neural networks that
they mimic significantly in structure and the basic principles that govern them. They are
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mathematical simulants that, after suitable training, use capable and reliable databases
that contain the existing knowledge for a particular problem. They aim to discover and
expose the fundamental laws that govern the studied problem each time. They were first
introduced by McCulloch and Pitts [33]. However, they were applied extensively from the
decade 1990, mainly in medicine for the prediction of the disease of a patient according to a
series of physicochemical parameters like age and hematological indices. Although that
first application refers to medicine very quickly from the decade of the 1990′s, the method
of artificial neural networks was applied widely to the totality of sciences with a significant
place to mechanical problems where the up to then classical deterministic mathematical
methods were incapable of giving answers to multidimensional and complex problems
with incredibly intense nonlinear behavior [34–40].

A classical feedforward ANN contains layers of nodes or neurons which have weighted
connections with the nodes of the previous and preceding layers. Starting with the input
layers in which each node presented for input, information or signals are propagated the
subsequent layers until the information reaches the output layer. The output layer provided
the predicted variable(s) and is compared with the labels of corresponding samples in the
database. Figure 1 provides a typical example of the structure of ANN composed of one
hidden layer.
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The error of the predicted outputs and the labels is used to update the weights in the
network. The weight adjustment is so-called the backpropagation and conducted each time
a set of b samples (i.e., batch size) is “consumed”. This weight updating process is repeated
until all samples of the train set are ingested, and an epoch is complete. The maximum
number of epochs is set as the stop condition for the training process. In the end, a trained
ANN model contains a set of optimized weights which provides the least error on the
train set.

In work presented herein, the salient goal is developing a reliable and robust ANN
model and deriving its closed-form equation to predict the 5-day biochemical oxygen
demand (BOD5). Specifically, for the estimation of BOD5 in wastewater concerning COD,
SS, TN, NH4-N and TP, a plethora of different ANN architectures will be trained and
developed. To this end, a detailed and in-depth investigation of the crucial parameters
affecting the performance of ANN models, such as the number of neurons per hidden
layers, activation functions, data normalization techniques and cost functions, has been
conducted, and it is presented in the following sections.

3.2. Experimental Database

The primary target during a mathematical simulant’s training and development phase
to predict the value of a parameter depending on several other parameters is the degree to
which the proposed mathematical simulant is reliable and stable/robust. To this direction,
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the majority of researchers give particular attention and diligence to the computational
techniques and methods that shall employ for its development, while at the same time,
they do not exercise the same attention and diligence concerning the database that shall
be used for the training of the ANN. The authors of the present study consider that a
mathematical simulant’s reliability depends primarily on the reliability and effectiveness
of the database that shall be used. We do not mean a database with a large amount of data
with terms reliable and effective. Reliable and effective is considered a database with its
data considered to be ‘true’ and covering statistically all the range of values capable of
taking each of the parameters that infringe on each particular case studied problem.

The above has an even greater value when the database is comprised of experimental
and not analytical results. In the case where the database is comprised of experimental
data, its reliability is affected by a multitude of factors as follows: (a) the strict adherence to
the international standards intended for the preparation of the specimens/samples and
the conduct of the experimental tests-laboratory measurements; (b) the observance of the
number of specimens with the same characteristics that must be checked; (c) the reliability
of the experimental layout that was used; (d) the experience and specialization of the
personnel that conducted the previous tests; and (e) the environmental conditions in which
the aforementioned specimens were maintained as well the environmental conditions of
the surroundings where the previous tests were conducted.

The observance requirement of the above rules is considered particularly imperative
when the experimental database comprises experimental data produced from diverse
laboratories and research groups.

According to the above principles for the training and development of a multitude
of artificial neural networks and the selection among them of the best for the estimation
of BOD5 in wastewater, an experimental database was created, comprised of 387 datasets
that correspond to 387 laboratory measurements that were conducted at the entrance of the
sewage treatment plant located at Komotini region, Northern Greece. The samples were
collected on a monthly basis from 2014–2021. Standard analytical methods were used to
determine all parameters. All analytical methods were described in detail for water and
wastewater experiments [41]. For each wastewater sample six water quality variables were
laboratory measured. Precisely, for each sample were estimated the COD, SS, TN, NH4-N,
TP and BOD5 concentrations. The measured values of the first five variables were used as
input parameters, while the value of the sixth variable (BOD5) as the output parameter
during the training and development process of ANN models. The database is presented
in Table S1 of Supplementary Materials.

Table 3 presents for each parameter the minimum, average, and maximum value as
well as the standard deviation (STD) and the coefficient of variation (CV). In Table 4 and
Figure 2 the importance of the Pearson correlation factors between the six parameters
are presented.

Table 3. Statistical analysis of the input and output parameters used in this research for the training
and development of artificial neural networks.

Variable Symbol Units Category
Data Used in NN Models

Min Average Max STD CV

Chemical Oxygen Demand COD mg L−1 Input 211.00 410.73 551.00 71.37 0.17
Suspended Solids SS mg L−1 Input 142.00 228.34 302.00 27.64 0.12

Total Nitrogen TN mg L−1 Input 44.20 66.44 84.25 9.17 0.14
Ammonia Nitrogen NH4-N mg L−1 Input 39.30 52.52 70.10 7.67 0.15
Total Phosphorous TP mg L−1 Input 2.96 5.86 8.65 1.17 0.20

Biochemical Oxygen Demand BOD5 mg L−1 Output 128.00 238.27 348.00 45.35 0.19
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Table 4. Correlation matrix of the studied input and output variables.

Variable Symbol COD SS TN NH4-N TP BOD5

Chemical Oxygen Demand COD 1.00 0.29 0.78 0.72 0.54 0.78
Suspended Solids SS 0.29 1.00 0.35 0.30 0.18 0.43

Total Nitrogen TN 0.78 0.35 1.00 0.72 0.64 0.74
Ammonia Nitrogen NH4-N 0.72 0.30 0.72 1.00 0.27 0.58
Total Phosphorous TP 0.54 0.18 0.64 0.27 1.00 0.60

Biochemical Oxygen Demand BOD5 0.78 0.43 0.74 0.58 0.60 1.00

Water 2023, 15, x FOR PEER REVIEW 6 of 27 
 

 

Table 4. Correlation matrix of the studied input and output variables. 

Variable Symbol COD SS TN NH4-N TP BOD5 
Chemical Oxygen Demand COD 1.00 0.29 0.78 0.72 0.54 0.78 

Suspended Solids SS 0.29 1.00 0.35 0.30 0.18 0.43 
Total Nitrogen TN 0.78 0.35 1.00 0.72 0.64 0.74 

Ammonia Nitrogen NH4-N 0.72 0.30 0.72 1.00 0.27 0.58 
Total Phosphorous TP 0.54 0.18 0.64 0.27 1.00 0.60 

Biochemical Oxygen Demand BOD5 0.78 0.43 0.74 0.58 0.60 1.00 

 
Figure 2. Pearson correlation coefficients between the examined variables. 

These values are beneficial since they indicate if there is a strong dependence of one 
parameter on the other. Additionally, the values of the last row of the table are indicative 
at the first level if there is dependence between each of the five input parameters with the 
output variable. It is observed that in rank, the parameters with the most significant cor-
relation with the biochemical oxygen demand are the COD, the TN and the TP, with Pear-
son correlations factors 0.78, 0.74 and 0.60, respectively. In the following subsection, they 
will be presented thoroughly and in-depth the sensitivity analysis results of the output 
parameter of BOD5 in relation with each one of the five input parameters using the Cosine 
Amplitude Method (CAM) [42] and the experimental database. Researchers have widely 
adopted CAM method to determine the effect of each input on the output [43–46]. 

In Figure 3 the histograms are presented for each of the six variables, and graphs 
showing the correlation between each of the input parameters with the BOD5. 

  

Figure 2. Pearson correlation coefficients between the examined variables.

These values are beneficial since they indicate if there is a strong dependence of one
parameter on the other. Additionally, the values of the last row of the table are indicative
at the first level if there is dependence between each of the five input parameters with
the output variable. It is observed that in rank, the parameters with the most significant
correlation with the biochemical oxygen demand are the COD, the TN and the TP, with
Pearson correlations factors 0.78, 0.74 and 0.60, respectively. In the following subsection,
they will be presented thoroughly and in-depth the sensitivity analysis results of the output
parameter of BOD5 in relation with each one of the five input parameters using the Cosine
Amplitude Method (CAM) [42] and the experimental database. Researchers have widely
adopted CAM method to determine the effect of each input on the output [43–46].

In Figure 3 the histograms are presented for each of the six variables, and graphs
showing the correlation between each of the input parameters with the BOD5.

These graphs are particularly useful since they depict for each parameter the range of
values it takes and their distribution. They are beneficial since, for the ranges where we
have sufficient data, the reliability of the model to be proposed shall be exceptionally high.
These ranges correspond to the values of parameters for which the number of samples is
greater than 5% of the dataset and are defined by the blue horizontal line in each graph. For
the areas that are under the blue line, it is required to be done enrichment of the database
with more data.
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3.3. Sensitivity Analysis of the BOD5 on the Input Parameters Based on the Experimental Database

During the training and development of the computational models for the prediction of
the value of a parameter (output parameter) as a function of several other parameters (input
parameters) that enter each case problem, it is interesting to explore the sensitivity that is
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exhibited by the output parameter in terms of the input parameters. This is particularly
useful for it enables us to exclude a series of parameters that do not affect the estimated
parameter but, at the exact moment, guides to exhibit intense attention to the parameters
that significantly affect the output parameter value. The exclusion of several parameters
from the current studied problem has decreased the computing time and helped to discover
the problem’s nature and governing laws.

A first estimation of the dependence between the parameters and much more for the
input parameters with the output parameter is given by the value of the Pearson correlation
factor. Additionally, because of the subject’s great importance, they have proposed a
multitude of sensitivity analysis methods with a target the as much possible estimation
of the sensitivity and dependence of the output parameter from the input parameters.
Between them, there is the cosine amplitude method (CAM), which has been proposed by
Jong and Lee [42] and has been accepted by a multitude of researchers [35,47–51].

The cosine amplitude method (CAM) was used to construct a data array, X, as follows:

X = {x1, x2, x3, . . . , xi, . . . , xn} (1)

where variable xi in array, X is a length vector of m expressed by:

xi = {xi1, xi2, xi3, . . . , xim} (2)

The relationship between Rij (strength of the relation) and datasets of xi and xj
defined by:

Rij =
∑m

k=1 xikxjk√
∑m

k=1 x2
ik ∑m

k=1 x2
ik

(3)

The result of the sensitivity analysis, based on the datasets of the experimental database
used in the present work, is presented in Figure 4. It depicted that from the five input
parameters, the COD and TN had the strongest influence on the BOD5 (Figure 4). This
finding fully agrees with Pearson correlation factors presented in the preview’s subsection.
Furthermore, it is worth noting that all the input parameters can be characterized as crucial
since they have also strongly related to BOD5, achieving values greater than 0.98.
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3.4. Performance Indexes

The predictive accuracy of the developed neural network models was assessed using
the root mean square error (RMSE), the mean absolute percentage error (MAPE), and the
Correlation Coefficient (R2) [49,51–55].

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (4)
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MAPE =
1
n

n

∑
i=1

∣∣∣∣ xi − yi
xi

∣∣∣∣ (5)

R2 = 1−
(

∑n
i=1(xi − yi)

2

∑n
i=1(xi − x)2

)
(6)

where n denotes the total number of datasets, and xi and yi represent the predicted and
target values, respectively.

Recent research has highlighted the limitations of the root mean square error (RMSE),
the mean absolute percentage error (MAPE), and the Correlation Coefficient (R2) to assess
the predictive accuracy of models [30,53]. The comparison of the performance of mathe-
matical using the Pearson correlation factor is considered precarious given that except the
comparison of the values of R or R2 it is also required the comparison of the inclination
angle of the line. Such a case is when a mathematical simulant always predicts a constant
value regardless of the input parameters values. In this case, the value of R = 1.00 while the
inclination angle is equal to zero.

To this end, the a20-index, has been recently proposed [43,56–62] for assessing the
reliability of neural networks:

a20− index =
m20
M

(7)

where M denotes the number of dataset samples and m20 denotes the number of samples
with a ratio of the true value to the estimated-predicted value between 0.80 and 1.20. In an
ideal forecasting model, the value of a20-index is equal to 1.00. The proposed a20-index is a
simple statistical index having the advantage to include a physical engineering meaning, as
it reveals the number of experiments that satisfy the predicted values with a 20% deviation
from the ‘true’ values.

At this point it is worth stressing the very large significance of the database that shall
be used for the training and development of the soft computing-based forecasting models.
A comparison using different performance indices must be referring to an adequate number
of data and indeed to be reliable must be based on the same database.

4. Results and Discussion
4.1. Development of ANN Models

Several hyperparameters and neural network structure/architecture must be deter-
mined ahead of time in the context of the training and development ANN models. This
provides the benefit of developing an ANN model that is exceptionally optimized for the
problem under investigation. However, unless a certain level of expertise is available,
selecting appropriate values for these parameters and appropriate neuron layouts can be
intimidating. In other words, the “human in the loop” concept is thought to be critical for
tuning an efficient ANN model. Furthermore, special care about the overfitting problems
should be paid. The selection of the optimum model among the plethora of training and
developed soft computing models should be based not only on statistical indices but also
on the derivation of curves which should be smooth revealing the nature of the problem
under investigation.

However, in this study, the optimal ANN structure is not selected based on expertise
or intuition. However, it is derived from an optimization procedure that trains and tests
ANNs using a plethora of alternative hyper parameter combinations and ranks them
according to predefined performance indices as well as it mentioned above taking care
whether overfitting of the data taking place. Except for the fixed number of hidden layers,
the optimization procedure combines the following parameters: (a) data normalization;
(b) the number of neurons in the hidden layer; (c) cost function; and (d) activation function.

Table 5 shows the alternative options for these parameters, as well as some prede-
termined configuration options. Twelve different activation functions are investigated,
including the common Hyperbolic Tangent Sigmoid (HTS), Log-sigmoid (LS), and Linear
(Li) functions. If all other parameters are held constant, this results in 144 (12 × 12) alterna-



Water 2023, 15, 103 11 of 26

tive combinations to be trained and tested. Regarding the used cost functions, the MSE and
SSE functions are investigated, whereas four data normalization techniques are applied
on the input and output parameters, including no normalization at all. Considering the
varying random number generator, all of these alternative ANN configuration parameters
resulted in 576.000 different ANN models under evaluation (i.e., 50 × 10 × 42 × 4 × 10)
(10 alternatives). At this point, it should be pointed out that the Levenberg–Marquardt
algorithm (LM) has been applied during training process of ANN mathematical models.

Table 5. Hyperparameters for the training and development of ANN models applied in this study.

Parameter Value Matlab Function(s)

Training Algorithm Levenberg-Marquardt Algorithm trainlm

Normalization

Without any normalization
Minmax in the range [0.10–0.90], [0.00–1.00] and

[−1.00–1.00]
Zscore

Mapminmax
zscore

Number of Hidden Layers 1

Number of Neurons per
Hidden Layer 1 to 50 by step 1

Control random
number generation 10 different random generation

rand(seed, generator), where the
generator range from 1 to 10 by

step 1

Training Goal 0

Epochs 200

Cost Function Mean Square Error (MSE)
Sum Square Error (SSE)

mse
sse

Transfer Functions

Hyperbolic Tangent Sigmoid transfer function (HTS)
Log-sigmoid transfer function (LS)

Linear transfer function (Li)
Positive linear transfer function (PLi)

Symmetric saturating linear transfer function (SSL)
Soft max transfer function (SM)

Competitive transfer function (Co)
Triangular basis transfer function (TB)

Radial basis transfer function (RB)
Normalized radial basis transfer function (NRB)

Hard-limit transfer function (HL)
Symmetric hard-limit transfer function (SHL)

tansig
logsig

purelin
poslin
satlins

softmax
compet
tribas
radbas

radbasn
hardlim
hardlims

The training of the 576.000 alternative ANN architectures did not use the entire
dataset of 387 samples. The dataset was divided into three sub-datasets to evaluate the
generality of the developed ANN model: the first dataset included 66.7% of the entire
database (258 specimens) and was used for training the ANN architectures, the second
dataset included 16.8% of the entire database (65 specimens) and was used for testing
the ANN architectures, and the third dataset included the remaining 16.5% of the entire
sample (64 specimens). The three datasets are referred to as “training datasets”, “testing
datasets”, and “validation datasets”, in that order. To eliminate potential bias, the sample
was randomly divided into three datasets using a programmatic procedure.

Table 6 tabulates the top twenty ANN architectures based on their achieved values
of RMSE index and for the case of testing datasets and configuration parameters. The
first, which is preferred as the best and is regarded to as ANN LM 5-8-1 (the numbers
refer to the five (5) input parameters, the eight (8) neurons in the hidden layer and the one
(1) output parameter which is the BOD5), achieves the best overall performance metrics,
both in terms of RMSE (16.8563) and R (0.9443). The best ANN LM 5-8-1 model utilizes
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the MinMax function for data normalization, which converts input and output values
between [−1.00, 1.00]. It also applies as activation functions the Log-Sigmoid function (LS)
for the input layer and the Symmetric saturating linear function (SSL) for the output layer,
with the MSE function as its cost function. Figure 5 exhibits the neuron layout and overall
architecture of the best ANN LM 5-8-1 model. Table 7 displays detailed and in-depth
achieved performance indices for both training and testing datasets of the best ANN LM
5-8-1 model. Its performance on training datasets is expected to improve, particularly
in the a20-index, where it matches over 98% of the samples within a 20 percent margin.
The same index is 100.00% when compared to the testing datasets, which is an excellent
value. At this point should be noted that the better achieved indices for testing datasets
compared to training datasets clearly depict that not overfitting problems is taken place.
To the authors best knowledge, the achieved performance is the better than any other
performance reported in the related topic.

Table 6. Architectures and hyperparameters of the top twenty developed ANN LM models based
RMSE index and testing phase.

Ranking Normalization
Technique

Cost
Function

Transfer Function

Architecture

Datasets Performance Indices

Input
Layer

Output
Layer

Testing Training All

R RMSE R RMSE R RMSE

1 Minmax [−1.00, 1.00] MSE logsig satlins 5-8-1 0.9443 16.8563 0.9208 17.6044 0.9217 17.6065
2 Minmax [0.10, 0.90] MSE poslin satlins 5-29-1 0.9421 17.8418 0.9057 19.1355 0.9110 18.7234
3 Minmax [−1.00, 1.00] SSE tribas tansig 5-14-1 0.9407 17.7982 0.9319 16.3818 0.9287 16.8636
4 Minmax [0.10, 0.90] MSE tansig purelin 5-13-1 0.9406 17.5336 0.9238 17.2764 0.9214 17.6425
5 Minmax [0.10, 0.90] MSE softmax radbas 5-17-1 0.9400 17.7336 0.9156 18.1454 0.9164 18.2035
6 Minmax [−1.00, 1.00] MSE tansig purelin 5-11-1 0.9400 17.5935 0.9298 16.6148 0.9224 17.5536
7 Minmax [0.10, 0.90] MSE logsig satlins 5-8-1 0.9399 17.5855 0.9161 18.1001 0.9179 18.0053
8 Minmax [0.10, 0.90] SSE softmax logsig 5-29-1 0.9396 17.7540 0.9311 16.4914 0.9275 17.0689
9 Minmax [0.10, 0.90] SSE satlins purelin 5-15-1 0.9394 18.6357 0.9012 19.6172 0.9066 19.3523

10 Minmax [0.00, 1.00] MSE logsig satlins 5-5-1 0.9393 18.7060 0.9136 18.4874 0.9150 18.5984
11 Minmax [0.10, 0.90] SSE softmax satlins 5-26-1 0.9393 18.1376 0.9077 18.9646 0.9116 18.7815
12 Minmax [0.00, 1.00] MSE softmax purelin 5-41-1 0.9388 17.8211 0.9217 17.5291 0.9215 17.7143
13 Minmax [0.10, 0.90] MSE tansig purelin 5-8-1 0.9388 17.6942 0.9160 18.1425 0.9179 17.9936
14 Minmax [0.10, 0.90] MSE softmax radbas 5-23-1 0.9388 19.0606 0.9135 18.4091 0.9155 18.4651
15 Minmax [0.10, 0.90] MSE logsig logsig 5-12-1 0.9387 16.7798 0.9320 16.3995 0.9282 16.8627
16 Minmax [0.00, 1.00] MSE softmax purelin 5-22-1 0.9387 18.2816 0.9105 18.6790 0.9125 18.6410
17 Minmax [0.00, 1.00] MSE softmax poslin 5-22-1 0.9387 18.2816 0.9105 18.6790 0.9125 18.6410
18 Minmax [0.00, 1.00] MSE tansig satlins 5-6-1 0.9386 17.5546 0.9164 18.0637 0.9166 18.1632
19 Zscore MSE poslin purelin 5-9-1 0.9385 18.1809 0.9076 18.9472 0.9105 18.7648
20 Minmax [0.00, 1.00] SSE tansig purelin 5-7-1 0.9384 17.1610 0.9100 18.7052 0.9110 18.7294

Table 7. Summary of prediction capability of the optimum ANN LM 5-8-1 model.

Model Datasets
Performance Indices

a20-Index R RMSE MAPE VAF

ANN LM
5-8-1

Training 0.9806 0.9208 17.6044 0.0582 84.7803

Test 1 0.9443 16.8563 0.0571 89.1499

Furthermore, values for the training and testing datasets are presented in Figure 6 as
scatter plots of the ‘true’ vs. predicted by the best ANN LM 5-8-1 model. Except for the
diagonal line (ideal prediction), two more dotted lines are drawn in these diagrams, indi-
cating a ±20% error. Furthermore, Figure 6 is a more useful figure depicts the ratio of ‘true’
values to predicted values of BOD5 in wastewater both for training and testing datasets.

4.2. Closed-Form Equation for the Estimation of BOD5 in Wastewater

As presented in the previous section, the ANN LM 5-8-1 model is the best among
the many different trained and developed architectures. That is the best is documented
that this model has optimal values for the performance indices used for ranking other
ANN models. It is worth noting that this is a standard procedure for the multitude of
scientific publications.

At this point, the authors consider it necessary to state clearly that such a procedure is
not safe and reliable because it is impossible to test the reliability-validity of these values.
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Additionally, the results of such a research work are not immediately applicable to the
scientists of this discipline and much more to the engineers in practice.
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Intending to treat the above weaknesses, the authors consider it necessary to present
the architecture corresponding to the best ANN model and the final values of weights and
biases to make the design of the mathematical simulant possible. Giving the mathematical
equation that describes the best mathematical simulant would be more beneficial. Under
the prism of all the above in the present section, the derived equation for the prediction
of both normalized and absolute values of BOD5, using COD, SS, TN, NH4-N and TP are
expressed by the following equation for the optimum developed ANN LM 5-8-1 model:

BOD5norm = satlins([LW{2, 1}]× [logsig([IW{1, 1}]× [IP] + [B{1, 1}])] + [B{2, 1}]) (8)

BOD5real =
(BOD5norm − a)× (BOD5max − BOD5min)

b− a
+ BOD5min (9)

where a = −1.00 and b = 1.00 are the lower and upper limits of the minmax normalization
technique applied on the data, BOD5max = 348 and BOD5min = 128 are the maximum
and minimum values of BOD5 present in the database used for training and developing
ANN models. The satlins and logsig are the symmetric saturating linear transfer function
(SSL) and the Log-sigmoid transfer function (LS), respectively, as discussed. Their details
(equations and graphs) are presented in detail in Table A1 of the Appendix A.
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Equation (9) describes the developed ANN LM 5-8-1 model in a purely mathematical
form so that its reproduction becomes straightforward. In Equation (8), [IW{1,1}] is a 8×5
matrix that contains the weights of the hidden layer; [LW{2,1}] is a 1×8 vector with the
weights of the output layer; [IP] is a 5 × 1 vector with the five (5) input variables; [B{1,1}] is
a 8×1 vector that contains the bias values of the hidden layer; and [B{2,1}] is a 1×1 vector
with the bias of the output layer. The [IP] vector contains the five (5) normalized values of
the input variables (COD, SS, TN, NH4-N and TP). It is expressed as:
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[IP] =



a + (b− a)
(

COD−min(COD)
max(COD)−min(COD)

)
a + (b− a)

(
SS−min(SS)

max(SS)−min(SS)

)
a + (b− a)

(
TN−min(TN)

max(TN)−min(TN)

)
a + (b− a)

(
NH4−N−min(NH4−N)

max(NH4−N)−min(NH4−N)

)
a + (b− a)

(
TP−min(TP)

max(TP)−min(TP)

)


(10)

where the min(COD) = 211, max(COD) = 551; min(SS) = 142, max(SS) = 302;
min(TN) = 44.20, max(TN) = 84.25; min(NH4 −N) = 39.30, max(NH4 −N) = 70.10 and
min(TP) = 2.96, max(TP) = 8.65 are the input parameters minimum and maximum values
(shown in Table 3). The values of final weights and biases that determine the matrices
[IW{1, 1}], [LW{2, 1}], [B{1, 1}] and [B{2, 1}] are presented in Table 8.

Table 8. Finalized weights and bias of the optimum ANN-LM 5-8-1 model.

IW{1,1} [LW{2,1}]T [B{1,1}] [B{2,1}]

(8 × 3) (1 × 8) (8 × 1) (1 × 1)

3.8747 −3.3026 0.8841 9.8281 −1.9581 2.9497 9.6809 −0.4917

−3.8650 3.1701 0.9485 −1.1494 1.9099 −2.6746 2.1566

1.2295 −2.3973 −1.2553 2.7258 −2.3405 −2.3231 1.0974

−4.6036 3.7836 0.8690 −4.0565 7.1579 −1.1579 −1.3150

−3.0096 3.4372 0.3911 −0.1472 2.3667 2.2639 2.2077

−1.0593 −4.5452 1.0995 −4.5926 −1.9055 −0.6063 6.0657

−4.7120 3.0951 −2.9974 −9.7771 2.9426 2.6242 −10.6922

1.6124 −9.0346 0.1278 3.6006 8.0047 0.3364 7.7832

Note: [IW{1, 1}] is the matrix of weight values between the input layer and the first hidden Layer; [LW{2, 1}]
is the matrix of weight values between the 1st hidden layer and the output layer; [B{1, 1}] is the matrix of bias
values for hidden layer, and [B{2, 1}] is the matrix of bias values for the output layer.

In this form of matrix multiplication, the prediction equation Equation (9) can be
easily programmed in an Excel spreadsheet, and therefore it can be more easily evaluated
and used in practice. It is worth noting that such an implementation can be used by
various interested parties (i.e., researchers, students, engineers) without placing heavy
requirements on effort and time.

4.3. Mapping of BOD5

With the proposed optimal ANN-LM 5-8-1 model, a thorough analytical investigation
was conducted of the parameters that affect the value of BOD5. Based on the results
of this analytical investigation they were derived a set of contour maps of the BOD5 in
relation of the input parameters (Figures 7–12). Based on these figures, it is shown in a
robust manner that the proposed ANN-LM 5-8-1 model ensures that the known and widely
encountered phenomenon of overfitting is not taking place. This is implied by the fact that
all the derived charts and the derived curves are exceptionally smooth and do not display
sudden variations having as a result to exhibit the laws that govern the variation of BOD5
concerning COD, SS, TN, NH4-N and TP.
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Figure 10. BOD5 contour maps for three different values of SS (in mg L−1) while NH4-N = 60 mg L−1

and COD = 400 mg L−1 are constant: (a) SS = 200; (b) SS = 250; and (c) SS = 300.

Figure 7 shows that for the lowest COD and TN values, the BOD also has the lowest
value, searching all over the map area when NH4-N and TP are 60 and 8 mg L−1, respec-
tively, and SS varies between 200 and 300 mg L−1. Figures 8 and 9, the variations of COD
and TN present smooth curvature, searching all over the map area. A more detailed look at
Figure 8 (left corner) shows that the lowest contents of COD and TN, the BOD presents the
highest value only in one part of the map. It is found that the COD and TN are sensitive to
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BOD parameter. Figures 10–12 presents that for lowest contents of TP and TN, the BOD
has moderate value when SS ranges from 250 and 300 mg L−1, and NH4-N and COD is 60
and 400 mg L−1, respectively. A more detailed look at Figure 12, presents that the lowest
concentrations of TP and TN, the BOD shows the highest value in the significant part of
the map.

Water 2023, 15, x FOR PEER REVIEW 20 of 27 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. BOD5 contour maps for three different values of NH4-N (in mg L−1) while SS = 250 mg L−1 
and COD = 400 mg L−1 are constant: (a) NH4-N = 50; (b) NH4-N = 60; and (c) NH4-N = 70. Figure 11. BOD5 contour maps for three different values of NH4-N (in mg L−1) while SS = 250 mg L−1

and COD = 400 mg L−1 are constant: (a) NH4-N = 50; (b) NH4-N = 60; and (c) NH4-N = 70.
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5. Limitations and Future Works

The proposed optimal ANN-LM 5-8-1 model, like any other mathematical simulant,
has validity for values of the input parameters between the minimum and maximum
values of the database that was used for the training of ANN models (Table 3). Additionally,
the reliability of the proposed model is exceptionally high for ranges of the values of the
parameters where according to the histograms that were presented in the previous section
(Figure 3), there exists sufficient data. For the regions where the data are not considered
enough, we must update the database with further data that cover these areas satisfactorily.
Based on those mentioned above, the authors’ aims include updating the database and data
from measurements from different sewage processing plants with the target of formulating
one even more reliable model for estimating BOD5 in wastewater.

6. Conclusions

The proposed ANN LM 5-8-1 approach can save costs and time for actual laboratory
measurements. In other words, it is a practical need to illustrate a machine learning ap-
proach to conduct BOD estimation and receive accurate findings. The variation of COD and
TN exhibit smooth curvature. COD and TN are found to be sensitive to the BOD parameter.
The proposed optimal ANN model is valid for input parameter values between the mini-
mum and maximum values of the database used for ANN model training. Furthermore,
the proposed model’s reliability is exceptionally high for parameter value ranges where
there is sufficient data. The developed and proposed ANN model proved to be a robust and
valuable tool for scientists, researchers, engineers and practitioners in monitoring water
systems and the design phase of wastewater treatment plants. Moreover, it is an illustrative
example of ANN methodology for environmental and educational applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15010103/s1, Table S1: Experimental database used for the
training, testing and development of ANN models.
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Notation

ANN(s) Artificial Neural Network(s)
BOD Biochemical Oxygen Demand
BPNN Back Propagation Neural Network
COD Chemical Oxygen Demand
CS Compressive Strength
HL Hard-limit transfer function
HTS Hyperbolic Tangent Sigmoid transfer function
Li Linear transfer function
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LS Log-Sigmoid transfer function
MAPE Mean Absolute Percentage Error
MSE Mean Square Error
ne Effective Porosity
Nip Number of input parameters
Nn Number of hidden layers
Nop Number of output parameters
Ntd Number of datasets
NRB Normalized Radial Basis transfer function
NH4-N Ammonia Nitrogen
PLi Positive Linear transfer function
R Pearson correlation coefficient
RB Radial Basis transfer function
Rn Schmidt hammer rebound number
SHL Symmetric hard-limit transfer function
SM Soft Max transfer function
SS Suspended Solids
SSE Sum Square Error
SSL Symmetric Saturating Linear transfer function
TB Triangular Basis transfer function
TN Total Nitrogen
TP Total Phosphorous
UCS Unconfined Compressive Strength
Vp Ultrasonic Pulse Velocity
WWTP(s) Wastewater Treatment Plant(s)

Appendix A

Table A1. Transfer functions.

SN Transfer Function/Equation/
Matlab Function Graph

1

The symmetric saturating linear transfer
function (SSL)
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