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Abstract: This work presents poly(terephthalic-co-glycerol-g-fumaric acid) (TGF) as a novel water-
soluble polymeric nano-additive for the modification of a polyethersulfone ultrafiltration membrane.
The TGF was harnessed as a pore former, aiming to improve the membrane surface porosity and
hydrophilicity. Modified membranes were characterized to observe the influence of varying the TGF
content on their hydrophilicity, porosity, morphological structure, and composition, as well as their
entire performance. The results disclosed that porosity and hydrophilicity of the modified membrane
prepared using 4 wt.% TGF content recorded an enhancement by 24% and 38%, respectively. Herein,
the lower contact angle was mainly a reflection of the improved porosity, but not of the hydrophilic
nature of water-soluble TGF. Furthermore, upon increasing the TGF content in the polymeric matrix,
a more porous structure with longer finger-like micropores was formed. Moreover, a sponge-like
layer clearly appeared near the bottom surface. Nevertheless, at optimum TGF content (4%), a
clear enhancement in the water flux and BSA retention was witnessed by values of 298 LMH
and 97%, respectively. These results demonstrate that the obtained permeation and separation
behavior of the PES/TGF membrane could stand as a promising choice for water and wastewater
treatment applications.

Keywords: nano graft copolymer (TGF); polyethersulfone; wastewater; bovine serum albumin;
ultrafiltration

1. Introduction

The lack of freshwater resources, along with the growing demand due to human and
industrial activities, necessitates an urgent reaction. In most circumstances, these resources
are contaminated and cannot be accessed directly, requiring further treatment. With the
wide spectrum of available treatment techniques, membrane processes offer an exceptional
solution to eliminate a variety of contaminants at a minimal feasible cost [1]. One of the
prominent membrane processes that combine high permeability, high retention to disparate
species, and low energy consumption is ultrafiltration (UF). With unique separation pos-
sibilities, UF has easily demonstrated its efficiency in many industrial applications for
pathogen separation, sterilization, pharmaceutical production, food and juice concentra-
tion, and wastewater treatment [2]. Like other membrane processes, UF suffers from a
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rapid flux depletion under industrial operations, due to versatile fouling mechanisms. In
addition to the feed type, operational conditions, and feed chemistry, UF membrane surface
characteristics are critical to diminish the fouling consequences.

Membrane surface modifications have been suggested as exceptional routes to par-
tially resolve performance decline. All these methodologies are intended to enhance the
performance of the target membrane by enhancing its hydrophilicity and surface mor-
phology characteristics. Blending with hydrophilic additives is a common way to achieve
this goal [3,4]. Limitless organic and inorganic additives and surface modification tech-
niques have been reported in the literature since the introduction of the first fabricated
membrane [5–8]. Among these additives, hydrophilic nanoscale materials have witnessed
a surging interest. These materials can exhibit extraordinary features at their nanoscale
level. However, the economic and environmental costs of using these nanomaterials for
membrane modification are still under argument. The leaching of these nanomaterials out
of the membrane structure is the biggest concern. This could not only waste these materials
and cause environmental issues but also damage the membrane structure. Ultimately, this
would deteriorate the overall membrane performance.

On other hand, the incorporation of water-soluble materials as pore-forming agents
in the casting polymeric solution is another common approach to enhance the surface
characteristics of the membrane. Additives to polymeric solutions, such as poly(vinyl
pyrrolidone) (PVP), methylcellulose, glycerin, LiCl, ZnCl2, and polyethene glycol (PEG),
have been investigated as pore-forming agents for enhancing membrane properties [9].
It is well known that adding pore-forming additives to the casting solution produces
membranes with higher pore density, narrower pore size distribution, and higher poros-
ity, along with boosting other structural properties that differ from those of the pristine
membrane [10]. Polyvinylpyrrolidone (PVP) and poly (ethylene glycol) (PEG) are com-
monly employed as polymer blends due to their distinct effects on membrane surface
properties and, thus, on the permeation and separation characteristics [11]. Zhao et al.
(2011) [12] used the poly(ethylene glycol) methyl ether-b-poly (styrene) copolymers (mPEG-
b-PS) to improve the hydrophilicity of PES hollow fiber. In another study conducted by
Shi et al. (2013) [13], a novel hydrophilic poly(glycidyl methacrylate) (graft glycopoly-
mer) was blended as an additive in the polysulfone (PSF) polymeric solution, aiming to
improve the hydrophilic characteristic of the PES surface. Recently, dual pore-forming
materials have been preferred to modify the structural morphology, physical features, and
membrane separation performance of the polymer solution. For example, the impacts
of PVP and hydroxypropyl-beta-cyclodextrin (HP-B-CD), as dual pore-forming additives
in the PSF solution, on the characteristics and membranes performance were evaluated
by Alayande et al. [14]. A significant enhancement was found in the membrane porous
structure, hydrophilicity, and mechanical properties.

In this context, ecofriendly polymeric nanomaterials could provide an exceptional
option to replace the conventional nanomaterials used for membrane modification. These
types of novel nanomaterials are prepared by the graft copolymerization process [15].
Herein, our study reports for the first time the fabrication and application of a novel
water-soluble nano-polymer (TGF) as a pore-forming agent with hydrophilic nature. A
comprehensive characterization of the modified PES membranes was conducted to in-
vestigate the role of the TFG loading ratio on the permeation/retention characteristics of
PES/UF membranes. Bovine serum albumin (BSA) was employed as an organic protein
model for investigating the rejection behavior.

2. Experimental Method
2.1. Materials

PES polymer as a host membrane material with a density of 1370 kg/m3, BSA protein,
terephthalic acid, glycerol, fumaric acid, xylene, and dimethyl sulfoxide (DMSO), as a
solvent for the preparation of the membrane dope solution, were bought from Sigma
Aldrich, Germany.
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2.2. Preparation of Nano Poly(terephthalic-co-glycerol-g-fumaric acid) Solution

An amount of 332 g of terephthalic acid was dissolved in 50 cc of DMSO solvent in
a 0.2 L double-necked round-bottom beaker. The beaker was provided with a quick-fit
thermometer to maintain the temperature. By utilizing a hot plate magnetic stirrer, the
mixture was warmed carefully up to 40 ◦C, until a clear liquor was formed. Subsequently,
92 g of glycerol was added to the solution. The new mixture was heated to about 120 ◦C
and xylene (25 mL) was added meticulously to the reaction beaker by batches (drop by
drop). The water produced from the esterification process was withdrawn, and the beaker
was then heated. The main reason for adding p-xylene to the solution was to remove the
water formed as a byproduct of the esterification reaction process during the preparation
of the nano copolymer. Heating was applied for 80 min at 1450 ◦C, and the reaction beaker
was left to cool to 50 ◦C. Fumaric acid (58 g) was dissolved in 10 cc of DMSO solvent at
40 ◦C and then added to the mixture (readymade in the first stage). The reaction beaker
was heated carefully up to 100 ◦C, and then xylene drops were added by batches (two
drops each time) (with continuous heating for 45 min) at 115 ◦C, until no more water was
produced. The beaker was left to cool down to the ambient temperature, and then distilled
water was added. The formed suspension solution was allowed to precipitate, filtered,
washed with deionized water, and then left to dry (Figure 1).
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Figure 1. Reaction of terephthalic acid and glycerol for TGF graft polymer production.

2.3. TGF Characterization

Proton nuclear magnetic resonance (i.e., 1H-NMR) is the application of nuclear mag-
netic resonance spectroscopy with respect to hydrogen-1 nuclei inside the molecules of a
material to define its molecular structure. 1H-NMR spectral measurements were acquired
on a Bruker DPX 300 device at 300.13 MHz for hydrogen nuclei in CDCl3, and all chemical
shifts are presented in ppm.

2.4. Membrane Preparation

A porous, flat sheet, PES/TGF nano-polymer membrane was synthesized via adopting
the phase inversion method. As mentioned in Table 1, 20 wt.% PES was blended with
various concentrations of TGF nano-polymer and dissolved in DMSO. The casting polymer
solutions were continuously mixed at 50 ◦C for 48 h to obtain a homogeneous dope solution.
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Subsequently, the polymer casting solution was degassed, filtered, and cast onto a glass
plate utilizing an automatic casting knife. Later, the membrane was submerged in a
deionized water bath for coagulation. The formed membranes were rinsed thoroughly and
stored in deionized water for further analysis.

Table 1. Composition of the prepared casting solutions of PES/TGF membranes.

Membrane Code PES% DMSO TGF%

Go 20 80 0
G1 20 80 1
G2 20 80 2
G3 20 80 3
G4 20 80 4
G5 20 80 5
G6 20 80 6

3. Membrane Characterization
3.1. Fourier-Transform Infrared (FTIR) Spectroscopy

Fourier-transform infrared spectroscopy (FTIR, 8400 S, Br., Ettlingen, Germany) was
utilized to detect the chemical compositions of the prepared membranes. The spectra were
estimated with a wavenumber range of 400–5000 cm−1.

3.2. Membrane Morphology

The morphology of the prepared membranes was scrutinized utilizing a scanning
electron microscope (SEM) a TESCAN VEGA3 SB instrument (EO Elektronen-Optik-Service
GmbH, Dortmund, Germany). The prepared sheets were first fractured by utilizing liquid
nitrogen and subsequently sputtered with a thin coat of platinum before imaging the
cross-sections.

3.3. Contact Angle Measurement

The membrane contact angle was evaluated employing the sessile drop method. The
optical contact angle instrument (CAM110, Tainan, Taiwan) was employed as described
elsewhere [16]. For each sample, at least five different locations of the contact angle test
were taken, and the average value was estimated.

3.4. Membrane Porosity and Pore Size

Membrane specimens were cut off into 2 cm2 size pieces and immersed in distilled
water for 15 h. Wet membranes were removed from water; then, excess droplets were
removed from the membrane surface utilizing a blotting paper and weighed. Using a
vacuum oven for 12 h, the membranes were dried, and the dry samples were weighed.
The membrane porosity was evaluated by Equation (1). For each membrane sample, five
estimates of contact angle were taken, and the calculations were averaged.

ε(%) =

(
Ww − Wd
A × l × ρ

)
, (1)

where Ww and Wd are the wet and dry weight values of the membrane, respectively, A is
the membrane sample area (cm2), l is the membrane thickness (cm), and ρ is the water
density (1 g/cm3).

The mean pore size (rm) was determined on the basis of membrane porosity and pure
water flux using Equation (2).

rm =

√
(2.9 − 1.75 ε)× (8η lQ)

ε · A · ∆P
, (2)
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where η is the water viscosity, Q is the collected volume of the pure water flux per unit
time (m3/s), ∆P is the operation pressure, ε is the membrane porosity, and l and A are the
membrane thickness and effective area, respectively [17].

3.5. Membrane Performance

With an efficient area of 16 cm2, a cross-flow filtration system was employed to check
the membrane performance at ambient temperature. Membrane permeation was analyzed
with a pure water flux (PWF) and a 1000 ppm BSA solution. The permeate flux (J) was
specified utilizing Equation (3) [18].

J =
V

A × t
, (3)

where V is the collected permeate volume (m3) with the time (t), and A is the effective
membrane area (m2) in the filtration cell.

The BSA solution rejection was evaluated using Equation (4) [19].

R% =

(
1 − cp

c f

)
× 100. (4)

4. Results and Discussion
4.1. Fourier-Transform Infrared Spectroscopy

FTIR spectra of the pure PES membrane and the modified membrane containing
various concentrations of TGF nano-polymer are shown in Figure 2. As can be seen, the
characteristic peaks of PES membranes, before and after adding the TGF nano-polymer,
were characterized by absorption peaks at 1152, 1147, 1250, and 1350 cm−1, assigned
to stretching bands of C–O, O=S=O, C–H, and O–H groups, respectively. Furthermore,
the presence of a strong, broad band at 3424 cm−1 for a stretching alcoholic bond (–OH)
was observed.
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It is worth mentioning that the comparison between the PES/TGF and the pure PES
membrane spectra showed the presence of no unprecedented absorption bands. In addition,
for the prepared PES/TGF membrane, a complete disappearance of the bands at 1670, 2590,
and 2820 was clear, attributed to the addition of the nano-polymer. This is clear evidence
that the TGF nano-polymer did not remain in the membrane matrix, or that it remained in
very small quantities. This means that all TGF in the casting solution was removed during
the phase inversion process in the water coagulation bath, and the amount of TGF was
accumulated at the glass plate after fabrication of the PES/TGF membrane, as depicted in
Figure 3. This explains the withdrawal of most of the TGF nano-polymer particles from the
membrane structure toward the water bath coagulation (see Figure 3).
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Figure 3. Glass plate of casting solution showing the amount of TGF nano-polymer remaining on the
glass surface after formation of the membranes for (a) G1, (b) G3, and (c) G6.

4.2. Poly(terephthalic-co-glycerol-g-fumaric acid) Characteristics

Figure 4 clarifies the 1H-NMR spectra of the TGF. The results demonstrate a singlet at
13.22 ppm, distinguishing the proton in a carboxylic acid group, multiplets at 7.5–8.5 ppm
belonging to all aromatic ring protons, signals with 6.27–6.5 ppm for four protons of
methylene in the polymer structure, and multiplets at 4.22–4.5 ppm for methyl protons.
However, the triplet signal at 3.43–3.65 ppm belonged to the proton of the aliphatic alcohol.
Accordingly, these spectra proved the formation of the targeted polymer.
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Figure 5 illustrates the overall size ranges of the prepared TGF particles, as well as
the various proportions of particle size distribution. The outcomes reveal that the polymer
nanoparticle molecular mean size was 88.07 nm. The figure also elucidates the distribution
of the various sizes ratios of nano-polymer nanoparticles.
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4.3. Effects of TGF Nano-Polymer on Membrane Morphology

SEM analysis is a substantial technical tool to inspect the morphology and structure of
membranes, via which qualitative data regarding their surface and cross-sectional structures
can be gained. Figure 6 illustrates the SEM photos of cross-sections from various flat sheet
PES membranes prepared with diverse TGF contents. It can be observed that the prepared
membranes had asymmetric structures composed of a porous sublayer (support layer)
and a dense top surface layer (skin layer, air side). The skin layer (i.e., the effective layer)
worked as a separation layer, while the membrane mechanical strength was provided by the
support layer. The sublayer appeared with finger-like cavities below the top surface layer,
along with wide voids close to the bottom surface layer. As can be noticed, the addition of
the TGF nano-polymer in the polymer solution indeed played a role in altering membrane
morphology. When the concentration of TGF nano-polymer increased, the number and the
size of the finger-like pores increased. Larger and more prominent voids were also detected.
It can be concluded from Figure 6 that the TGF worked as a pore former in the process of
membrane structure formation. It can also be noticed that, when the TGF nano-polymer
was added to the casting solution, the thickness of the dense layer receded slightly. The
finger-like pores progressively lengthened to the bottom of the membrane at the expense
of the dense layer. This variation is obvious in Figure 6G1, where it can be clearly seen
that the tiny finger-like pores of the pure membrane were altered to larger finger-like
cavities. Furthermore, larger pores were formed through the sublayer of the synthesized
membrane cross-structure. Through the membrane cross-structure, these channels evolved
from top to the bottom and joined each other via sponge-shaped partitions. It is noteworthy
that, when the content of TGF nano-polymer in the doping solution was higher than 5%,
an increase in the viscosity of the polymer solution and a transfer of the nano polymer
particles (through the membrane) toward the bottom layer were observed through the
casting operation. This in turn led to a comparatively denser and thicker active layer
formed near the bottom surface of the PES membrane, as clearly shown in Figure 6G6.
All of these events occurred because of the effectiveness of the TGF hydrophilic polymer,
which enhanced the thermodynamic instability of the casted polymeric membrane. These
outcomes are consistent with those found by Farjami et al. [20]. The porous bulk acts only
as a mechanical support layer, whereas the skin layer is accountable for the permeation
and solute retention [21–23].

The alteration in the size and the enhanced mean pore size (Figure 6) and pore density
(Figure 7) as a result of the presence of TGF in the membrane matrix could be interpreted as
two major observations: (a) the dissolution of TGF induced higher polymer concentration
and, ultimately, higher viscosity of the dope solution; (b) the polymer-doped solution
became less thermodynamically stable, which resulted in a delay in the demixing process
when the membrane dope solution was immersed into the coagulation bath. The hy-
drophilicity of TGF particles in the membrane solution influenced the solvent/nonsolvent
rate exchange through the phase inversion operation. It also impacted the precipitation
kinetics and the formation of the produced membrane structure. Similar observations were
demonstrated in previous studies [24,25].
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(G6) 20/6).

Figure 7 presents the top surface SEM photos of the PES membranes synthesized
with various TGF blend contents. After blending the TGF nano copolymer into the dope
solution, it can be clearly noted that pores were formed at the skin layer (Figure 7G1).
The increase in the concentration of TGF nano-polymer in the polymeric solution resulted
in an effective improvement in the density of the pore. It should be observed that small
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quantities of TGF were sufficient to start pore formation in the membrane skin layer. Since
the skin layer controls membrane selectivity, there is likely to be strict control over the
performance of the membrane by adding TGF in the dope solution, as clarified in the
subsequent paragraph. The increase in membrane porosity with the addition of TGF can
be explained by the aggregation of TGF in the casting membrane/water interface, through
the pervaporation phase and the pore-forming impact of TGF after immersing the casting
membrane into the coagulation bath. However, when the TGF concentration was higher
than 4.0 wt.%, membrane porosity stopped increasing and declined slightly. This may have
been a result of increased viscosity of the dope solutions, which impeded the nano-polymer
particle movement and limited the formation and development of membrane pores.
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It is worth noting that the presence of TGF nano-polymer in the membrane dope
solution did not have a substantial effect on the thick layer of the manufactured membrane.

4.4. Membrane Porosity and Wettability

Membrane features of surface wettability and hydrophilicity were examined via the
measurement of contact angle between the distilled water droplets and the membrane
surface, where a low contact angle refers to high hydrophilicity of the membrane. This
effective variable plays a vital role in the entire membrane performance [26]. The contact
angles of the pure PES and PES/TGF membranes were estimated, and the results are
given in Figure 8 (right). The pristine membrane contact angle was 69.44◦, showing the
typical value of a pristine PES membrane. This magnitude showed a clear decrease to 51.7◦

upon adding 1 wt.% of TGF nano-polymer. As the content of the TGF in the polymeric
solution increased, the contact angle decreased, clearly indicating an additional increase
in the membrane surface hydrophilicity. Moreover, upon embedding 4 wt.% TGF nano-
polymer, the water contact angle value was recorded at about 48◦, showing a considerable
enhancement in the hydrophilicity and wettability characteristics of the membrane. This
amelioration is related to the increment in pore size and pore size distribution, as well as
pore density. This led to an increase in the nanocomposite membrane hydrophilicity as
a result of improved porosity. A further increase in the amount of TGF to 5 and 6 wt.%
revealed a continuous slight increase in the values of contact angle to about 51◦ and 52◦,
respectively. This was induced by the decreased porosity obtained at higher casting solution
viscosity, as the contact angle value relies on the interplay of several characteristics, such as
surface porosity and pore size.

Figure 8 (left) illustrates the effect of TGF nano-polymer content in the polymer dope
solution on the porosity of the prepared membrane. Upon adding 1 wt.% TGF nano-
polymer into the PES polymer casting solution, the porosity of the membrane improved
from 63.8% to 70.4%. Increasing the TGF concentration up to 4 wt.% resulted in improving
the membrane porosity up to 73%. The improvement of membrane porosity following the
addition of hydrophilic additives was also elucidated by Manawi et al. [27], who revealed
that adding hydrophilic particles in the polymer dope solution produced an accelerated
solvent/nonsolvent exchange rate, which in turn led to the enhancement of a highly porous
membrane structure. Adding TGF nano-polymer led to growing thermodynamic instability
in coagulation bath, thus eliminating the dense top layer and enhancing the porosity of the
membrane surface. This also progressively changed the voids shape from the macrocavities
in the PES membranes to the finger-like voids with a narrower size distribution in the
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PES/TGF nano-polymer membranes. Until now, the formation of voids in polymer matrix
has been attained in different ways, including the selective decomposition of thermally
labile blocks from block copolymers, the selective decomposition of thermally unstable
components from polymer blends, or the addition of porogens during the polymerization
process. A higher porosity of the blend polymer membrane results in a lower impedance to
the water flow across the membrane [28]. Higher membrane porosity may be relevant to a
higher pore density. The further augment in TGF loading (>4 wt.%) reduced the porosity
of the synthesized membrane. This can be interpreted by the increase in the viscosity of the
polymer dope solutions, slowing down the precipitation process.
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4.5. Membrane Pore Size

The membrane pore size is illustrated in Figure 9. The pore size values of membranes
G0, G1, G2, G3, G4, G5, and G6 were 20.35, 24.52, 32.94, 38.48, 39.56, 40.59, and 33.95 nm,
respectively. Membrane pore size relies on the separation rate of the solution phase. In short,
the addition of the pore former reduced the solvents exchange rate during the separation
phase, resulting in the formation of large pores. Hence, the TGF nano-polymer was the
primary contributing factor for the formation of highly porous membranes.
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4.6. Membrane Performance
4.6.1. Pure Water Flux

Pure water flux (PWF) and solute retention have a close relationship with the ef-
fect of pore size on the membrane surface (top layer porosity) and the pore density [29].
Generally, the outcomes exhibited that the PWF of the modified membrane could be consid-
erably improved upon increasing the content of TGF nano-polymer in the casting solution
(Figure 10 (left)). Changes in membrane structure cause variations in the separation perfor-
mance. Figure 10 (left) illustrates the pure water fluxes of PES/TGF membranes with the
various nano-polymer TGF contents. Pure water fluxes of PES/TGF membranes increased
progressively with increasing TGF content (0–4 wt.%) in the dope casting solution, which
may have resulted from the increase in the surface hydrophilicity, surface pore density,
porosity, and macrovoids, as well as the formation of preferable vertically interconnected
finger-like pores compared to those in the PES membrane [30]. The PWF of the mixed
membranes was improved as a result of the increase in membrane hydrophilicity, which
in turn enhanced the attraction and the affinity of water molecules in relation to the mem-
brane morphology [31]. Results demonstrated that the PWF of the PES/TGF composite
membrane exhibited a considerable amelioration (200%) compared with the PES pris-
tine membrane. The water-soluble nano-polymer particulates accelerated the nonsolvent
(water)/solvent exchange rate during the preparation stage, resulting in the formation of
membranes with higher porosity and larger cavities. Accordingly, the membrane PWF
and the permeation performance values were boosted. Furthermore, the alterations in
the membrane cross-morphology in the presence of the nano-polymer particles, from the
tiny finger-shaped pores (for the neat PES membrane) to the larger finger-shaped pores
conjugated with macrovoids (for PES/TGF membranes), provided a smoother penetration
situation for water molecules, enhancing the PWF. As clearly observed, the PWF of the
PES/TGF membranes was improved after increasing the content of TGF in the casting
solution up to 4 wt.%, and the highest value was associated with the ratio of 20/4 wt.%
PES/TGF membrane. Unfortunately, when replacing the feed solution with BSA solution
in lieu of distilled water, this resulted in a drastic decrease in the membrane permeate flux.
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This can be attributed to the narrowing and blockage of the pores caused by BSA adsorption
on the membrane surface [32]. The main cause was the presence of TGF particles in higher
quantities, resulting in a rougher surface of the modified membrane, which was easily
contaminated by BSA [33]. Subsequently, the membrane permeate flux decreased with
higher loadings of TGF, which may have been due to the decreased contact angle and the
increased porosity of the membrane. As is obvious in Figure 10 (left), the alteration of BSA
solution flux for all membranes had a similar trend to that of the PWF. The membrane
modified with 4 wt.% TGF illustrated the optimal value of BSA solution flux.
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4.6.2. BSA Rejection

Retention of the modified membranes against BSA protein solution is shown in
Figure 10 (right). A BSA solution of 1000 ppm was chosen to evaluate the retention capacity
for all experiments. All the TGF-modified membranes manifested a rejection value of higher
than 91%. Impregnation of TGF at 4 wt.% disclosed the greatest BSA retention (above
96%) compared to 89.9% for the neat PES membrane, as can be seen in Figure 10 (right).
This observed increase in the BSA removal for the PES/TGF membranes can be attributed
to the effects of the addition of TGF to the membrane matrix, which imparted a greater
hydrophilic nature to the surface of the membrane. This could have led to lower affinity and
interactions between the membrane surface and BSA solution, thus improving membrane
rejection. A slight change in this trend was witnessed after the addition of 5 and 6 wt.%
TGF into the dope solution, which led to a slight reduction in the rejection values. This
could be attributed to the reduction in the hydrophilicity of the membrane.

4.6.3. Long-Term Membrane Stability

One of the most questionable concerns about the performance of any membrane is its
long-term stability under harsh operations. Membrane stability and its long-term operation
were tested using 1000 ppm BSA solution. As can be seen in Figure 11, the permeate
flux significantly decreased following the testing of the membranes using the BSA feed
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solution. The permeation fluxes of the membranes decreased gradually as the filtration time
passed, followed by a long period with a steady value. The reduction in flux rate did not
exceed 16.8% for the improved membranes; 14% was the lowest value for the G4 membrane
compared to 29.5% for the unmodified membrane (G0). This leads to the conclusion
that the modification of the membranes via TGF nano-polymer had a more favorable
antifouling performance. The long-term stability outcomes suggest that membrane matrices
may have undergone textural structural alterations and/or accumulation of BSA particle
residues, which resulted in pore clogging. However, this long-term experiment successfully
proved that the membranes are still eligible for separating BSA solution under these
processing conditions.
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Figure 11. Permeate fluxes of the membrane as a function of exposure time over 250 h of 1000 ppm
BSA feed solution.

4.7. Comparison Study

Table 2 shows the performance comparison of PES/TGF membranes prepared in the
current work, using a novel TGF as a pore former, with those prepared using different pore
formers presented in the literature. The values of the most considerable characteristics of
the membranes, e.g., mean pore size, contact angle, and porosity, are presented in Table 2.
It can be observed clearly that the novel PES/TGF membranes had a higher pure water
flux and rejection efficiency compared to the most commonly used membranes found in
the literature.
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Table 2. Comparison of the membrane performance in this study with that of diverse membranes
prepared in the literatures, regarding the pure water flux, retention percentage, and membrane
characteristics.

Membrane Pore Former

Membrane Characteristics Membrane Performance

Process ReferenceMean Pore
Size (nm) Porosity (%) Contact

Angle (◦)
PWP

(kg/m2·h)
Rejection

(%)

PES TGF 40.59 73.3 50.4 300 BSA 96 UF This study
PES Silica–PVP —– —- 52.6 165 BSA 100 UF [34]

PVDF-HFP Lithium chloride
(LiCl) 7.85 —- 79 51

Dextran
aqueous

solution 90
UF [35]

PES Pluronic F127 —- —- 58 125 BSA 98 UF [36]
PES PVP —- —- 51.9 45 BSA 88 UF [37]

PVDF Water 580 79 141 11.6 NaCl 99.9 UF (MD) [38]

PES Sodium dodecyl
sulfate (SDS) 6.8 — 54 230 —- UF [39]

PES
Reverse triblock

Pluronic
GO/5P31R1

—- 87 54 125 BSA 97 UF [40]

PES PEG 73.2 35.31 — 36.9 BSA 93.3 UF [41]
PVDF PEG —- —- —- 78.94 Dye 90.3 NF [42]

PES CC–Fe3O4
NPs/PVP 5.5 86.3 52.5 36 Dye 99 NF [43]

PSF SiO2 10.7 78 71.3 55

2000 ppm
NaCl

solutions
99.1

RO [44]

PVDF MOF-199/PEG 50 80.89 85 185.05 BSA 94 UF [45]

PES/PAN PVP/PEG —- 55 76 100 Humic acid
92 UF [46]

PES Acacia gum (AG) 8.3 79 63 70 Lead 85 UF [27]

5. Conclusions

In this work, polyethersulfone (PES) ultrafiltration membranes were improved using a
novel water-soluble nano-polymer for protein separation applications. TGF was employed
as a pore former, aiming to restructure the performance of the membrane. The classical
phase separation technique was utilized to prepare various membrane compositions. The
influence of various TGF contents (0–6 wt.%) on the structure, surface features, and per-
formance of the neat and PES/TGF composite membranes was evaluated. Noticeably,
the finger-form cavities through the structure of the neat PES membrane were changed
into macrovoids, while the size and the number of the finger-like pores increased upon
increasing the dosage of TGF. Additionally, the obtained outcomes revealed that increasing
the TGF content in the casting solution promoted the permeability of the synthesized
membranes, due to the improvement of porosity, hydrophilicity, and pore density. The
modified membrane permeability was considerably enhanced, whilst still having good re-
jection. When the loading ratio of the TGF nano-polymer was 4%, the PWF of the modified
membrane reached up to 298 kg·m−2·h−1, while rejection was close to 97% for the BSA
solution. According to the obtained results, utilizing TGF as a water-soluble copolymer for
the modification of PES membrane could produce a novel membrane that can withstand
harsh operating conditions and long-term industrial operation in wastewater treatment
applications.

The fouling phenomenon of the membrane represents the most significant dilemma
to be taken into account affecting the performance of the UF membrane for different
applications. The preparation of a novel and green water-soluble polymer acting as a pore
former can be considered as a valuable way of modifying the structural morphology of
membranes to overcome this phenomenon.
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