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Abstract: Evapotranspiration (ET) is a key component of the hydrological cycle, but traditional
monitoring approaches are always based on measurements, which cannot satisfy the requirements
of research on a regional scale. Hence, ET estimation by remote sensing is essential. MOD16 is a
remote-sensing model based on the P-M equation and has good applicability. However, it describes
soil moisture indirectly by RH, etc., which may cause uncertainties in ET estimating, so this study
attempts to utilize the NDWI as a supplement to soil moisture information and makes improvements
on the MOD16 model (with the resultant new model being named MOD16-sm). Specific work
includes two aspects: one is model verification through making comparisons between ET estimates
and measurements, and the other is a model application effect test analyzing the spatiotemporal
characteristics of ET and exploring how ET responds to climate and land-use changes. Model
verification indicated that the accuracy of the improved MOD16-sm model increased, with a higher
R2 of 0.71, a lower RMSE 0.9 mm, and a lower MAE 0.91 mm, and that the improved MOD16-sm
model was convincing. The application effect test of the MOD16-sm model showed that the average
relative change rate of annual ET was 1.7%, showing an upward trend, and areas with growth trends
of ET also had high vegetation coverage. As for the impacts of climate and land-use changes on
ET, ET was positively correlated with precipitation, whereas it had no relevant correlation with air
temperature in most areas, and the ET of all land-use types displayed significant increasing trends
resulting from climate change. The application effect test demonstrated that ET estimates by the
improved MOD16-sm model were reasonable.

Keywords: model improvement; evapotranspiration; remote sensing; spatial-temporal characteristics;
MOD16

1. Introduction

Evapotranspiration, ET, is a key component of the ecohydrological and energy cy-
cles [1]. ET has complex mechanisms and influencing factors, such as precipitation and soil
water content (representing the water supply), and solar radiation, temperature, etc. (repre-
senting the energy supply) [2–6]. Accurately estimating ET is beneficial to understanding
the linkage between climatic feedback and ecosystem functions [7].

Traditional ET monitoring methods are mainly based on measurements from instru-
ments, which cannot satisfy the requirements of the study of regional, large-scale ET, and
furthermore the installation of the instruments is always time-consuming, labor-intensive,
and sometimes subject to instrument failure [8]. Compared with traditional methods,
remote sensing has become an important way to monitor regional ET [8–11]. With the
development of satellite remote-sensing technology and related inversion algorithms, it is
possible to acquire continuous ET on a large scale [12]. In the past few decades, a number
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of remote-sensing-based ET modeling techniques have been developed for better manag-
ing water resources and understanding climate changes. Models have been developed
that focus on estimating regional ET, including the SEBS model [13], SEBAL model [14],
Priestley–Taylor model [15], and Penman–Monteith equation [16]. ET estimation models
available in the literature above can be broadly classified as (1) fully physically-based combi-
nation models that account for mass and energy conservation principles (these models have
a clear physical mechanism and good portability, but the model accuracy greatly depends
on the surface roughness and the parameterization of aerodynamic impedance); (2) semi
physically-based models that deal with either mass or energy conservation (whose model
characteristics are between fully physically-based combination models and black-box mod-
els) (3) black-box models based on artificial neural networks, empirical relationships, and
fuzzy and genetic algorithms (these models have fewer parameters, and are easy to operate,
but rely greatly on ground observations and need to be recalibrated in different climatic
regions, that is to say, have poor portability).

Meanwhile, ET products derived from the existing ET models have been produced.
The global terrestrial ET product (MOD16/ET), based on the Penman–Monteith equation,
is jointly issued by National Aeronautics and Space Administration (NASA) and the NTSG
of the University of Montana, 2011. The MOD16/ET has been verified by global flux obser-
vation data, with an estimated accuracy of 86% [17]. Because of its high spatiotemporal
resolution and free access, MOD16/ET has been widely used in studying the character-
istics of regional ET worldwide. Many scholars have compared MOD16 products with
measurements in different climate zones all over the world. Kim et al. validated MODIS-
derived ET estimates by observations from various sites and revealed that the MOD16
model performed the best in forest and poorly in arid and polar climates [18]. In China,
some scholars have validated MODIS-derived ET estimates by flux observations, and also
found high accuracy in farmland and forest ecosystems [19]. However, Ramoelo et al.
validated MODIS-derived ET estimates using the data of two eddy covariance (EC) flux
towers from sparse grassland ecosystem in South Africa from 2000 to 2010, and found that
MOD16 estimations achieved a poorer correlation with flux tower results [20]. Similarly,
Srivastava et al. found ET estimates by MOD16 model highly underestimated a periodic
shift that may be attributed to the cloud-cover and leaf-shadowing effects [21]. To sum up,
although MOD16 products can represent the overall trend of ET on a global scale, there
still exist large deviations from observations on a local scale. Several researchers thought
the reasons for the poor performance of ET products made with the MOD16 model were
related to the local parameterization of the model input data, and one of them proposed a
simple empirical model to estimate the surface resistance, which is closely related to the
soil moisture [22].

Therefore, the parameterization of the MOD16 model is critical. In the MOD16 model,
the parameterization of the soil moisture information is through surface resistance, which
expresses the soil moisture information in the temporal and spatial changes of land surface
temperature, and the influence of soil water stress on ET is implied. Hence, the parame-
terization of the soil moisture information is unreasonable [23]. The consideration of the
inadequacy and indirection of soil moisture in surface resistance may cause uncertainties in
MOD16 ET results. Studies show that MOD16 model is suitable for areas where available
energy limits ET, but it faces great challenges in regions where soil water stress is the main
limiting factor [24]. Therefore, it is necessary to improve the MOD16 model for estimating
ET under soil water stress circumstances, which means strengthening the expression of soil
moisture information through surface resistance parameterization.

In the MOD16 model, the soil surface resistance of the dry soil surface and the stomatal
conductance of dry vegetation canopy are the parameters closely connected with soil
moisture information, and they are expressed and described by the relative humidity (RH),
water vapor pressure deficit (VPD), leaf area index, and so on, which are regarded as the soil
water process of the model. Therefore, the influence of soil moisture is indirectly considered
in the MOD16 model. As the water source of ET, soil moisture plays an important role
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in the parameterization of canopy resistance and soil surface resistance, and large errors
may occur if the influence of soil moisture is ignored [25]. Gokmen et al. integrated the
water stress information into the SEBS model to retrieve ET and found that water stress
integrated SEBS model can provide more accurate ET estimations, with the RSME decreased
by 10% [26]. Sun et al. utilized the vegetation index and surface temperature characteristics
to represent the soil water information and added them into the MOD16 model to estimate
the regional ET, with the RSME of 8-day ET decreased from 10.58 mm to 7.82 mm and
the BIAS of 8-day ET also decreased from 6.72 mm to 4.02 mm [25]. According to the
above reviews, it is obvious that integrating soil moisture information, such as NDWI,
into the MOD16 model is helpful to reduce the uncertainty of ET estimations under water
stress circumstances.

Exploring the temporal and spatial characteristics of regional ET, as well as its response
to climate changes, have important scientific significance for regional water resource devel-
opment, management, scientific distribution, and efficient utilization [8,9,27–30]. Besides
climate, land-use changes resulting from the combined effects of human activities and
ecological environments can bring about great changes in a series of surface parameters
such as surface temperature, vegetation coverage, and soil moisture, which can affect the
spatiotemporal pattern of regional ET [31,32]. Therefore, effects from climate change and
land-use change on ET must be carefully studied to improve hydrologic management [33].
According to regional ET estimates on a long time-scale by remote sensing, many studies
have been carried out on the spatiotemporal variation in ET and the influence of climate
changes on ET [34]. Jhajharia et al. found that RH and wind speed were more sensitive
than air temperature in estimating ET in northeast India [35]; however, other scholars
thought RH and wind speed were inessential to ET estimates in Brazilian Cerrado [36].
Besides the impact of climate changes, the influence of land-use changes in the form of
vegetation type changes, leaf area index change, and surface albedo change are also con-
tribute to the ET capacity and the spatiotemporal variation in ET [37]. Studies have found
that built-up areas offer much lower actual ET than croplands, and deforestation would
reduce ET significantly [12]. In China, many scholars used ET data to study the temporal
and spatial variation characteristics of ET in different regions (such as the source region
of the Yellow River, Poyang Lake Basin, and Dongting Lake Basin), for the purpose of
better understanding how climate and land-use changes affect ET [38]. Henan province is
one of China’s important grain-producing areas, is located in central China, and experi-
enced a rapid industrialization process in the twentieth century. The overexploitation of
groundwater has caused the amount of available water resources to become increasingly
scarce [12]. As for a key expenditure item of the water cycle, a full understanding of the
temporal and spatial characteristics of ET in Henan province, central China, as well as the
driving mechanism of ET, has important and scientific significance for the development and
utilization of water resources and ecological restoration. At present, most studies on ET in
Henan province focus on the potential ET based on meteorological observations [39], such
as Zhang et al., who explored climatic characteristics and evaluated modeling of pan ET
over Henan province [40]. There are few studies on the temporal and spatial characteristics
of actual ET according to the remote-sensing model in Henan province, and research on the
influence of climate and land-use changes on regional ET is even more lacking. What is
worse, because of the inadequacy of corresponding studies, the responding mechanism
of ET to climate and land-use changes is also unclear. Hence, it is imperative, necessary,
and valuable to study the effects of climate change and land-use change on ET in Henan
province, for the purpose of improving the hydrologic management in central China.

Based on the above research review, the study firstly focuses on the improvement
of the MOD16 model by integrating the NDWI, which is a soil moisture index and can
reasonably reflect soil wetting and drying conditions, and undertakes a corresponding
verification based on ground-based measurements, which can fill with the gap that the
MOD16 model ignores in the soil moisture information and improve the accuracy of ET
estimations. The study secondly performs an application effect test in central China by
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analyzing temporal and spatial evolution and exploring the impacts of climate and land-
use changes on ET based on the improved MOD16 model, which can fill the gaps in the
spatiotemporal patterns of actual ET and the ET response mechanisms of Henan province,
which are inadequate. The innovations of the current study are (1) making improvements
to the MOD16 model using the NDWI, and (2) exploring the temporal and spatial evolution
of the actual ET in Henan province, central China, in recent years (from 2000 to 2020) and
trying to ascertain how actual ET responds to climate and land-use changes. The study
will provide important suggestions on improving the accuracy of ET estimates by remote
sensing and benefits for sustainably managing water resources.

2. Material
2.1. Study Area

Henan province, latitude 31◦23′–36◦22′ N and longitude 110◦21′–116◦39′ E, is located
in the central-eastern part of China and belongs to the middle and lower reaches of the
Yellow River. Figure 1 gives the location and DEM of the study area. The study area is
surrounded by mountains distributed along the provincial boundary in the north, west,
and south, in a semi-circular shape. Besides mountain areas, the middle and eastern regions
are the plain, and the southwest is the basin. The terrain is high in the west and low in
the east. The landform types in the territory are complex and diverse, including plains
and basins, mountains, and hills, which account for 55.7%, 26.6%, and 17.7% of the total
area, respectively. The highest and lowest elevations are 2413.8 m and 23.2 m, respectively.
Henan province straddles four major river basins, which are the Hai River, the Yellow River,
the Huai River, and the Yangtze River basins. The Yellow River traverses the middle of
the province. The annual average precipitation is about 500–900 mm and can reach more
than 1100 mm in the mountainous areas. In addition, the annual precipitation distribution
is extremely uneven, and 50% of the annual precipitation is concentrated in summer and
often involves heavy rains. Most of Henan province is located in the warm temperate zone,
and the south region crosses the subtropical zone. The annual average air temperature
is generally between 12 ◦C and 16 ◦C. The winter is cold and snowless, the spring is dry
and sandy, the summer is hot and rainy, and the autumn is sunny. The cultivated land
area of Henan province is 71.792 million hectares, accounting for about 55.7% of the study
area. As a major agricultural province, Henan province has encountered serious impacts
on the ecological environment due to climate change and the rapid increase in population
in recent years, and water resources is extremely tight [39]. The contradiction between
water supply and demand has become the main factor that restricts sustainable economic
developments. Therefore, for understanding the impact of climate change, water cycle,
and human activities on the ecosystem, it is of great importance to accurately elaborate the
temporal and spatial characteristic changes of ET and discuss the response relationship
with climate and land-use changes.
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2.2. Dataset

The data include remote-sensing data, land-use type data, meteorological data, and
surface flux data. MODIS images, which come from NASA (http://ladsweb.nascom.nasa.
gov/, 1 May 2021), are the main remote-sensing data, and we use two datasets, including
MOD03 and MOD021KM. Bands 1 to 7, 17 to 19, and 31 and 32 of MODIS images are
selected to retrieve the ground parameters, and the specific calculation performed include
completing the radiance conversion in the Integrated Land and Water Information System
(ILWIS) software, retrieving the water vapor content and brightness temperature, carrying
out atmospheric correction and acquiring the normalized vegetation index (NDVI), the
NDWI, land surface temperature, emissivity, and albedo. The land-use type data come
from the Resource Data Center of the Chinese Academy of Sciences and are mainly used for
analyzing the temporal and spatial evolution of ET in Henan province. The weather-driven
data are from the Weather Research and Forecasting Model (WRF model), and the output
meteorological data have a time resolution of 1 hour and a spatial resolution of 1 km, which
compares well with ground weather station observations [41].

The EC data used for the verification of ET estimations are supplied by the HiWATER
(Heihe Watershed Allied Telemetry Experimental Research) experiment, which is designed
to address problems including heterogeneity, uncertainty, scaling, and closing of the water
cycle at the watershed scale from an interdisciplinary perspective and is a watershed-scale
eco-hydrological experiment. The surface flux measurements are processed into a half-
hour time step and undergo strict data quality control using EdiRe software, which is
developed by the University of Edinburgh and is one of the popular software packages
for processing surface micrometeorological flux data [42]. The HiWATER experiment data
can be acquired by submitting applications to the National Tibetan Plateau/Third Pole
Environment Data Center data center in Beijing, China (https://data.tpdc.ac.cn/en/data,
6 March 2021). In addition, it is possible for readers to access another website with a
document that indicates the ftp and an http address of HiWATER experiment data (http:
//www.wds-china.org/info/945e7, 6 March 2021).

3. Methods
3.1. The Improvement of MOD16 Model

The MOD16 mode, a typical representative of the coupling of the P-M equation and
remote-sensing data, has a rigorous physical mechanism and meaning, and hence good
applicability. The basic algorithm is as follows [23,43]

ET =
AE∆ + ρCp(es − e)/ra

λ(∆ + γ(1 + rs/ra))
ETp (1)

where ET is the daily evapotanspiration; λ is latent heat of evaporation, J/kg; AE is
available energy partitioned among sensible heat, latent heat, and soil heat fluxes on land
surface, MJ/m2/d; ∆ is the slope of the curve relating saturated water vapor pressure (es)
to temperature; e is the variable vapor pressure, Pa; ρ is the air density, kg/m3, Cp is the
heat capacity of the air, MJ/kg/◦C; ra is aerodynamic resistance, s/m; rs is the surface
resistance, s/m; and γ is the psychrometric constant (0.066 kPa ◦C−1); ETp is the potential
ET. In Formula (1), available energy, AE is calculated as follows:

AE = H + LE + G (2)

where H, LE, and G are sensible heat flux, latent heat flux, and soil heat flux, respectively.
The units of the four items are W/m2.

The MOD16 model divides ground surface into wet soil surface, dry soil surface, wet
vegetation surface, and dry vegetation surface. According to Fisher et al., the dry and wet
surface can be differentiated by RH, and the vegetation and soil area can be distinguished by
vegetation coverage [44]. The daily ET is the sum of four parts that are surface evaporation

http://ladsweb.nascom.nasa.gov/
http://ladsweb.nascom.nasa.gov/
https://data.tpdc.ac.cn/en/data
http://www.wds-china.org/info/945e7
http://www.wds-china.org/info/945e7
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of wet soil, ETwet-S; surface evaporation of dry soil, ETdry-S; surface evaporation of wet
vegetation canopy, ETwet-C; and surface transpiration of dry vegetation, ETtran.

The MOD16 model uses the RH and VPD to describe the soil moisture process, and
indirectly considers the impact of soil moisture. Although the VPD and RH can represent
soil moisture state to a certain extent, there are some problems: (1) the variation trend of
VPD or RH is not consistent with the variation trend of soil moisture; (2) VPD or RH is
affected by atmospheric conditions greater than soil moisture when advection occurs. As
the source of ET, soil moisture plays an important role in calculating the canopy resistance
and soil resistance parameters, and hence deficient consideration of this factor is likely
to cause errors in estimating ET [27]. Hence, this study attempted to utilize the NDWI
to construct the soil moisture adjustment factor, which can be regarded as an additional
item of parameters closely related to soil moisture in the MOD16 model, and realized the
purpose of improving the model.

Since the surface evaporations of wet soil and wet vegetation canopy can be considered
as having sufficient water supply and are not limited by soil moisture, the improvement
of the study mainly focuses on the evaporation of the dry soil surface, ETdry-S, and the
transpiration of dry vegetation canopy, ETtran. The following only lists the formulas closely
related to the improvement. For specific details of the MOD16 model, readers can refer to
Mu et al. [23,43].

For dry soil surfaces, the MOD16 model assumes that RH and VPD can describe the
information of soil moisture content, and obtains the evaporation of the dry soil surface,
ETdry-S, through the evaporation complementarity theory,

ETdry−S =

(
∆Asoil + ρCp(1− fc)VPD/ra

)
(1− fwet)

∆ + γ(rss + ra)/ra
(RH)VPD/β (3)

In the formula, Asoil is the available energy of the soil surface, MJ/m2/d; fc is the
vegetation coverage; VPD is water vapor deficit; fwet is the proportion of wet area; rss is
the soil surface resistance, s/m; and β is the adjustment coefficient of VPD, which is an
empirical constant and its value is 0.2 kPa in the MOD16 model.

For dry vegetation canopy, the transpiration process can be described as follows: the
root system absorbs water from the soil, transports water to the leaves through the tube in
the plant, and water escapes to the atmosphere through stomata behavior. Therefore, the
transpiration rate is affected by both the canopy conductance, Gc (the inverse of the canopy
resistance, rc) and the aerodynamic conductance (the inverse of the aerodynamic resistance,
ra). Dry vegetation canopy transpiration, ETtran, can be expressed by the following formula:

ETtran =

(
∆Ac + ρCpVPD fc

ra

)
(1− fwet)

∆ + γ(1 + rc/ra)
(4)

In the formula, Ac is the available energy of the vegetation area, MJ/m2/d; the canopy
conductance, Gc, can be expressed by the following formula,

Gc =
1
rc

=
gs(gMOD + gcu)

gs + gMOD + gcu
LAI(1− fwet) (5)

where gs is the conductance of the leaf boundary layer, m/s; gMOD is the stomatal conduc-
tance determined by the MOD16 algorithm, m/s; gcu is the conductance of the stratum
corneum, m/s; and LAI is the leaf area index.

For dry soil surface evaporation, ETdry-S, and dry vegetation canopy transpiration,
ETtran, parameters closely connected with soil moisture information are soil surface resis-
tance, rss, and stomatal conductance, gMOD, respectively. Therefore, this paper proposes
the soil moisture adjustment factor, Fsm, as an additional item of the above two parameters
to express the influence of soil moisture on the occurrences of ET from the dry soil and
dry canopy surfaces. If the soil moisture is sufficient, the change in water content will
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not cause significant variations in ET, and the soil moisture adjustment factor, Fsm, has
little effect on the soil surface resistance and stomatal conductance. If water stress occurs,
the soil moisture adjustment factor, Fsm, should reflect the restrictive effect of soil water
content [3]. Based on the above theory, the sigmoid-type function is adopted to construct
the relationship between soil moisture and soil moisture adjustment factor, Fsm. With the
purpose of improving the ET estimations under water stress circumstances, the NDWI,
which reflects the soil dryness and wetness, is integrated into the MOD16 model. The
functional relationship based on the sigmoid-type function is as follows:

Fsm = a +
1

1 + exp(b− cNDWI)
(6)

where a, b, and c are the coefficients of a sigmoid-type function, which can be determined
by the smallest error function between ET observations and estimations. In Formula (6),
the NDWI is calculated as:

NDWI =
ρNIR − ρMIR
ρNIR + ρMIR

(7)

where ρNIR is the reflectivity at the near-infrared band, and ρMIR is the reflectivity at the
middle-infrared band.

Therefore, the improved soil surface resistance, rss-adjust, and the improved stomatal
conductance, gMOD−adjust, can be expressed as:

rss−adjust = Fsm × rss (8)

gMOD−adjust = Fsm × gMOD (9)

The flowchart coupling the soil moisture adjustment factor to improve the MOD16 model
is shown in Figure 2 and the improved MOD16 model is named the MOD16-sm model.

Water 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 2. The flow chart of the study (blue dashed frame: improvements of the MOD16 model). 

To test the model performance of the improvements, ET estimates retrieved by the 

MOD16 and MOD16-sm model were validated against measurements of ground-based 

EC stations. The study used the coefficient of determination (R2), the root mean square 

error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency coefficient 

(NSE) as model performance metrics. In this study, the EC observations utilized for 

model validation were from the HiWATER experiment [39], which was performed with 

the support of the National Natural Science Foundation of China and conducted in the 

middle reaches of the Heihe River in northeast China, 2012, and can provide sufficient 

surface fluxes and relevant parameters. Hence, we can ensure the accuracy of model 

verification. Figure 3 shows the core test area of the HiWATER experiment. Automatic 

weather stations and EC stations were installed in the test area. To ensure the rationality 

of the validation, we utilized EC stations with different underlying surfaces, which were 

EC1 (with vegetation), EC4 (with village), EC10 (with maize), and EC17 (with orchard), 

respectively. Table 1 gives descriptions of four EC stations and dates selected in June 

(removing missing data and cloudy dates) for verifying the model. 

  

Figure 3. The core test area of HiWATER experiment and distributions of observation stations. 

  

Figure 2. The flow chart of the study (blue dashed frame: improvements of the MOD16 model).

To test the model performance of the improvements, ET estimates retrieved by the
MOD16 and MOD16-sm model were validated against measurements of ground-based EC
stations. The study used the coefficient of determination (R2), the root mean square error
(RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency coefficient (NSE) as
model performance metrics. In this study, the EC observations utilized for model validation
were from the HiWATER experiment [39], which was performed with the support of the
National Natural Science Foundation of China and conducted in the middle reaches of
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the Heihe River in northeast China, 2012, and can provide sufficient surface fluxes and
relevant parameters. Hence, we can ensure the accuracy of model verification. Figure 3
shows the core test area of the HiWATER experiment. Automatic weather stations and
EC stations were installed in the test area. To ensure the rationality of the validation, we
utilized EC stations with different underlying surfaces, which were EC1 (with vegetation),
EC4 (with village), EC10 (with maize), and EC17 (with orchard), respectively. Table 1 gives
descriptions of four EC stations and dates selected in June (removing missing data and
cloudy dates) for verifying the model.

Water 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

 

Figure 2. The flow chart of the study (blue dashed frame: improvements of the MOD16 model). 

To test the model performance of the improvements, ET estimates retrieved by the 

MOD16 and MOD16-sm model were validated against measurements of ground-based 

EC stations. The study used the coefficient of determination (R2), the root mean square 

error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency coefficient 

(NSE) as model performance metrics. In this study, the EC observations utilized for 

model validation were from the HiWATER experiment [39], which was performed with 

the support of the National Natural Science Foundation of China and conducted in the 

middle reaches of the Heihe River in northeast China, 2012, and can provide sufficient 

surface fluxes and relevant parameters. Hence, we can ensure the accuracy of model 

verification. Figure 3 shows the core test area of the HiWATER experiment. Automatic 

weather stations and EC stations were installed in the test area. To ensure the rationality 

of the validation, we utilized EC stations with different underlying surfaces, which were 

EC1 (with vegetation), EC4 (with village), EC10 (with maize), and EC17 (with orchard), 

respectively. Table 1 gives descriptions of four EC stations and dates selected in June 

(removing missing data and cloudy dates) for verifying the model. 

  

Figure 3. The core test area of HiWATER experiment and distributions of observation stations. 

  

Figure 3. The core test area of HiWATER experiment and distributions of observation stations.

Table 1. Descriptions of EC stations and dates used for validation.

Stations Underlying Surfaces Dates for Validation in June

EC1 vegetation 07, 09, 10, 11, 18, 19, 20, 21, 29, 30
EC4 village 04, 07, 09, 10, 11, 15, 16, 18, 19, 20, 21, 24, 29, 30
EC10 maize 07, 09, 10, 11, 15, 16, 18, 19, 20, 21, 24, 29, 30
EC17 orchard 04, 07, 09, 10, 11, 15, 16, 18, 19, 20, 21, 24, 29, 30

3.2. Inter-Annual ET Trend Analysis

The inter-annual trend of ET in Henan province adopts the unary linear regression
analysis method. The slope of the ET trend line, ETslope, represents the inter-annual rate of ET
change. We need to obtain the ETslope of each pixel in the study area, and then analyze the
spatial evolution law of ET in the study area [45,46] The calculation of ETslope is as follows:

ETslope =
n×∑n

i=1(i× ETi)−∑n
i=1 ETi ×∑n

i=1 i

n×∑n
i=1 i2 − (∑n

i=1 i)2 (10)

where ETslope is the trend slope of the regression equation of each pixel in the study area
from 2000 to 2020; and n is the number of years that the ET spanned (n = 21). Through
Equation (10), this can indicate the significance of the inter-annual change trend of ET.
ETslope > 0 indicates an increasing trend of inter-annual ET and ETslope < 0 means a decreasing
trend of inter-annual ET.

3.3. Correlation Analysis between Climate Factors and ET

Relevant studies at home and abroad show that air temperature and precipitation are
the two most important climatic factors in response to regional water and heat changes [47],
and hence this paper takes air temperature and precipitation as the main controlling
climatic factors affecting the temporal and spatial changes of ET in Henan province to
make correlation analysis. Based on the pixel-scale ET (the resolution is 1 km) and spatially
interpolated climate factors (precipitation and air temperature, with the resolution 1 km),
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the correlation analysis of single climate factors is performed [48], and the calculation
formula of the correlation coefficient (CC) is as follows:

CCxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i (xi − x)2
√

∑n
i (yi − y)2

(11)

where CCxy represents the correlation coefficient between variables x and y; xi represents
the ET value of year I; yi represents the value of the climate factor in the year i; and x and y
represent average ET and climate factor values during n years.

4. Results

Results can be divided into two parts: one part is the validation of the MOD16-sm
model, and the other part is the application of the MOD16-sm model, which focuses on the
spatial and temporal characteristics of ET and its response to climate and land-use changes.

4.1. The Validation of the MOD16 and MOD16-sm Models

The comparison between daily ET estimates obtained by the MOD16 and MOD16-sm
model and measurements from EC stations are displayed in Figure 4. The black points
represent the correlation between estimates by the MOD16-sm model and measurements,
while the red points denote the correlation between estimates by the MOD16 model and
measurements. ET estimates calculated by the improved MOD16 model and the observed
ET values were distributed around the 1:1 line, with an R2 of 0.71, an RMSE of 0.9 mm, and
an MAE 0.91 mm, which was better than the correlation result between MOD16 estimates
and observations with an R2 of 0.68, an RMSE of 1.2 mm, and an MAE of 1.1 mm. As for
the NSE, the MOD16-sm model had a value of 0.59, and the MOD16 had a value of 0.36,
which means the reliability of the MOD16-sm was high and the overall results of MOD16
were also reliable but the simulation errors were large. Correlation analyses indicated that
the improved MOD16-sm model could better reflect the impact of soil water on ET. The
MOD16-sm model improves the overestimation of the MOD16 model. The results were
consist with previous studies that claimed SEBS would display a large improvement when
the soil moisture was integrated explicitly into the calculation [28].
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To make further analyses on the MOD16 and MOD16-sm model, comparisons of daily
average ET on a monthly scale are displayed in Table 2. Daily average ET values estimated
by the MOD16-sm model at the four stations were much closer to measured ET values.
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Although the difference was slight, the comparison of the long-term series showed that the
improved model was better.

Table 2. Daily average ET comparisons on monthly scale.

Stations
Average Daily ET in June (mm/d)

MOD16 Estimates MOD16-sm Estimates Measurements

EC1 5.09 4.96 4.59
EC4 2.57 2.51 2.31
EC10 6.49 6.21 5.98
EC17 6.06 5.61 5.06

4.2. Application Effect Test of the Improved MOD16-sm Model by Applying it in Central China,
Henan Province

By using the improved MOD16-sm model, the study retrieved the regional ET of
Henan province from 2000 to 2020. The application effect test included three aspects
including the temporal and spatial characteristics of ET, the effect from climate change on
ET, and the effect from land-use change on ET.

4.2.1. Temporal and Spatial Variation Characteristics of ET Based on the Improved
MOD16-sm Model

The inter-annual variation in ET (histogram in Figure 5) and the inter-annual relative
change rate of ET (dotted line in Figure 5) from 2000 to 2020 are displayed. The fluctua-
tion range of multi-year ET from 2000 to 2020 was 417.7~632.1 mm/a, and the multi-year
average ET was 536.3 mm/a (dashed black line in Figure 5). Years in which the annual
ET exceeded the multi-year average ET were 2003 (549.3 mm/a), 2009 (542.9 mm/a), 2012
(542.8 mm/a), 2013 (560 mm/a), 2015 (593.8 mm/a), 2016 (609 mm/a), 2017 (629.9 mm/a),
2018 (632.1 mm/a), 2019 (539.2 mm/a), and 2020 (622 mm/a), and the inter-annual dif-
ference between the highest (632.1 mm in 2018) and lowest (417.7 mm in 2001) ET values
was 214.4 mm, indicating that driving factors of ET were significantly different within
Henan province. In different study periods, the fluctuation range of the inter-annual rela-
tive change rate of ET was also complex, with the highest (16.8%) in 2003 and the lowest
(−14.7%) in 2019, and the average relative change rate of ET was 1.7%, showing a general
upward trend, which was consistent with timeseries variation analyses of annual ET (green
line in Figure 5) from 2000 to 2020 with a linear fitting R2 of 0.6 showing a positive growth.
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Figure 5. Inter-annual variations of ET in the study area from 2000 to 2020.

According to the above analyses, it is obvious that the inter-annual variation in overall
ET in the study area from 2000 to 2020 showed an increasing trend, and it probably resulted
from the climatic factors. Figure 6 shows the interannual variations of the two most



Water 2022, 14, 1491 11 of 20

important meteorological elements, air temperature and precipitation, from 2000 to 2020.
The interannual variation in air temperature (Figure 6a) in the study area displayed a
significant upward trend (the linear fit with R2 = 0.3), while the interannual variation in
precipitation (Figure 6b) exhibited an inconspicuous trend (the linear fit with R2 = 0.11)
which means the annual precipitation in the study area from 2000 to 2020 remained stable.
Air temperature and precipitation trends can supply more sufficient thermal-driven and
indistinctive water-driven ET compared with the past, and hence the overall ET in the
study area displayed apparent increasing trends.
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Figure 6. Annual air temperature (a) and precipitation (b) variations from 2000 to 2020.

The spatial distribution of multi-year average ET in Henan province from 2000 to 2020
is shown in Figure 7. The annual average ET had obvious spatial distribution characteristics,
with high values in the west and southeast and low values in the north. To a certain extent,
the spatial distribution of ET had close relation to the uneven distribution of vegetation
in Henan province. Areas with low ET values (about 0–400 mm/a) always appeared in
the north where the vegetation coverage was relatively low (as is shown in Figure 8). In
addition, the vegetation coverage of the provincial capital, Zhengzhou, was decreasing
year by year due to rapid economic development and more frequent human activities, and
hence, ET values in Zhengzhou were relatively low. Areas with high ET values (above
600–700 mm/a) were mostly concentrated in the west and southeast where there were
mountain and field areas, and the vegetation coverage in these areas can reach 0.8. The
spatial distribution of the ET trend in Henan province from 2000 to 2020 is shown in
Figure 9. According to the ET trend slope of regression equation (10), the trend of ET
was divided into three categories: significantly decreasing trend (−21 < ET trend ≤ 0), no
obvious change (0 < ET trend ≤ 4 and 4 < ET trend ≤ 8), and slightly increasing trend
(8 < ET trend). Among them, the areas with an increasing ET trend were mainly distributed
in the west and southeast which belonged to the mountain forest and farmland areas with
high vegetation coverage. However, the increasing trend was not obvious. The decreasing
trend areas showed a “scattered distribution,” and by combining them with the land-use
map, we can find that the main reason for the decrease was the population density and
urbanization effects. The ET trend in most areas had no obvious changes, and therefore the
inter-annual ET changes were relatively stable. In general, the average inter-annual change
rate of ET in Henan province over the past 21 years was 3.4 mm/a, and the overall trend
was increasing.
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4.2.2. Impacts of Climate Change on ET

According to Equation (11), the spatial distributions of correlation coefficients between
ET and climatic factors (air temperature and precipitation) on the pixel scale from 2000
to 2020 in Henan province are shown in Figure 10. Based on statistical analyses, it can be
seen that the correlation coefficient between ET and air temperature was −0.81~0.8, and
the average correlation coefficient all over the region was −0.03, which can be considered
as having no correlation; the correlation coefficient between ET and precipitation was
−0.77~0.92 and the average correlation coefficient all over the region was 0.13, showing
a positive correlation. The statistical analyses of the correlation between ET and climatic
factors (air temperature and precipitation) are displayed in Table 3. Combining Figure 10
and Table 3, we can see that the areas where ET was positively correlated with air temper-
ature and precipitation account for 47.99% and 70.17% of the total area, respectively; the
areas where ET was negatively correlated with air temperature and precipitation account
for 52.01% and 29.83%, respectively. Therefore, ET had a stronger positive correlation with
precipitation and ET in most areas was positively correlated with precipitation, and the
negatively correlated areas between ET and precipitation were mainly scattered in the
central and western parts of Henan province. However, ET had negative correlations with
air temperature in most areas and the positively correlated areas between ET and air tem-
perature were mainly distributed in the west, east, northeast, and southeast. As for regions
in which ET had positive or negative correlations with air temperature and meanwhile
had consistent correlations with precipitation, it had no significant regional characteristics,
further indicating that precipitation and air temperature were important climatic factors
that affected the temporal and spatial distribution of regional ET in Henan province.
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Figure 10. Spatial distributions of correlation coefficient between ET and air temperature (a), and
between ET and precipitation (b) in Henan province 2000–2020.

Table 3. Regional statistics of correlation coefficients between ET and air temperature and precipita-
tion, respectively.

CC between ET and
Air Temperature Proportion (%) CC between ET and

Precipitation Proportion (%)

−0.81–−0.5 2.60 −0.77–−0.5 0.44
−0.5–−0.3 9.59 −0.5–−0.3 4.03
−0.3–0 39.82 −0.3–0 25.36
0.0–0.3 40.82 0–0.3 44.86
0.3–0.5 6.61 0.3–0.5 17.93
0.5–0.8 0.56 0.5–0.92 7.38
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4.2.3. Impacts of Land-use Change on ET

After reclassification, the spatial distribution map of land-use types and area statistics
of each land-use type in 2000 and 2020 are displayed in Figures 11 and 12, respectively.
Figure 13 shows the changing trend of each land-use type during the past 21 years. The
croplands area, the grasslands area, and the barren area showed decreasing trends, while the
forest area, the water-body area and the urban area displayed gradually increasing trends.
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Due to the different physiological and ecological characteristics and precipitation
conditions of different land-use types, the land surfaces have different ET rates [49].
Figure 14a,b display the annual average ET of different land-uses types and the annual ET
variations of different land-use types from 2000 to 2020, respectively. As seen in Figure 14a,
there is a profound difference of ET among land-use types. In the past 21 years, the annual
average ET in different land-use types had the following order: forests (613.3 mm/a) >
croplands (517 mm/a) > urban/built-up (486.2 mm/a) > grassland (477.6 mm/a) > water
bodies (468.9 mm/a) > barren (454.1 mm/a). The annual average ET of forests was the
highest, followed by that of croplands. However, there was no significant difference among
the annual average ET values of grasslands, urban/built-up, water bodies, and barren
areas. As for the variation trend of different land-use types (Figure 14b), it is obvious that
the ET of all land-use types manifested significantly increasing trends, and the forests,
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grasslands, and barren areas had the most obvious growth trends, followed by croplands
and urban areas, while the water bodies had an unapparent growth trend. Previous studies
also found that there was significant difference among different land-use types and held
that ET spatial distribution was closely related to the land-use type [12].
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The annual average ET of different land cover types was inconsistent with the area
proportion of land-use types. Forests accounted for 16% of the total area of Henan province,
which was equivalent to 25~26% of the total croplands. However, the annual average ET of
forests was about 95.9 mm/a higher than the annual average ET of croplands. The reason
is that, on the one hand, due to the physiological characteristics of tree roots that absorb
water, forests have strong transpiration; on the other hand, low plants covered under the
canopy of trees also make a significant contribution to the overall ET of forest lands [50].
Although the construction land in the study area is increasing, the decreasing trend of
cultivated land area is not obvious, because Henan province is a major agricultural region
and the red line of cultivated land is strictly controlled. By analyzing it specifically, it can be
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seen that the cultivated land has only been reduced by 5.2% in the past 21 years. However,
the corresponding annual average ET of croplands still showed an upward trend, and
this may result from climatic factors that are more thermally (as shown in Figure 6a) and
stable-water driven (as shown in Figure 6b) compared with the past, which can result in the
occurrence of significant ET. Therefore, the ET of croplands displayed obvious increasing
trends. Due to the prominent effects of climate change, the multi-year average ET of other
land-use types (except water bodies) also exhibited increasing trends in recent years.

The application effect test above indicates an objective and rational spatial-temporal
evolution of ET in central China, and the effects from climate change and land-use changes
on ET are scientific and consistent with similar research, which demonstrates the improved
MOD16-sm model is feasible, reliable, and transplantable.

5. Discussion

The MOD16 model is based on the P-M equation and has a clear physical mechanism,
and hence the model has good applicability. However, in the MOD16 model, the soil
moisture information is expressed by surface resistance which is always composed of RH
or VPD, and hence the influence of soil water stress on ET is implied. Soil moisture plays
an important role in the canopy impedance, and inadequate consideration of soil moisture
is likely to cause large errors. This study uses an easily available parameter, NDWI, as a
supplement to soil moisture information to modify the surface impedance of the MOD16
model, aiming to improve the accuracy of the ET estimate. The verification of MOD16-
sm model in the middle reaches of the Heihe River in China showed that the improved
model was applicative in estimating the regional ET and the accuracy was improved. As a
supplement of soil moisture information, the NDWI has the advantage of being easy to
obtain. However, the NDWI is also an indirect expression of soil moisture information,
and it is not the most direct soil moisture data. Therefore, the improvement effect of the
MOD16-sm model is limited. In the future, it will be a promising approach to integrate the
soil moisture information acquired from high spatial resolution synthetic aperture radar
satellites and we anticipate coupling the soil moisture information directly with the MOD16
model calculation to improve the accuracy of ET estimation. Aside from integrating the
soil moisture information into the MOD16 model, combining physically-based ET models
with artificial intelligence algorithms will also improve the accuracy of ET estimates, as
well as enhancing the model’s capacity to be applied in different climate regions, thereby
realizing the efficient use of water resources and optimizing water resource distribution
and management [51].

In addition, during the verification of MOD16-sm, although the daily ET estimated
by the improved MOD16-sm model is significantly improved, the RMSE is still 0.9 mm.
The error mainly results from two aspects: one is the energy non-closure phenomenon,
and the other the inconsistency between the spatial resolution of MODIS image and the
representativeness space of EC measurements. The above error types also exist in the
validation of other ET models [51,52].

As for the application effect test, the ET in Henan province showed a significant tem-
poral and spatial regularity, and the high values of annual average ET for many years were
mainly distributed in mountainous areas that had relatively high altitudes and were located
in the west and southeast, indicating that the spatial distribution of ET also had a certain
relationship with the altitude [41]. Correlation analyses between ET and climatic factors
manifested themselves in the positive correlation between ET and precipitation, which
was obviously stronger than that of between ET and air temperature, which was related to
the temperate monsoon climate zone [49]. The correlation between air temperature and
ET was poor and the negative correlation was significant in some areas, and this may be
related to the phenomenon of the “evaporation paradox” in central China [42]. In view
of the land-use type, it has undergone more complex conversions, and human activities
had been more frequent in the past 21 years, which is consistent with the results of other
researchers on ET responses to climate and land-use change [12]. The annual ET of six
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land-use types all showed increasing trends, indicating that, in addition to land-use and
climate change, human activities were also the main driving factors contributing to the
spatiotemporal changes of ET [45].

The temporal and spatial dynamics of ET are driven by many factors [53]. However,
this paper only uses two climatic factors, air temperature and precipitation, to discuss the
influences on ET. Besides the above two factors, other factors (such as wind speed, sunshine
hours, altitude, or human activities) also make a contribution to the spatial and temporal
distribution patterns of ET, and hence further quantitative explorations and comprehensive
analyses are needed in future research.

6. Conclusions

The MOD16 model is a rigorous physical mechanism based on the P-M equation,
and MOD16-derived ET can represent the overall trend on a global scale; however, large
deviations against observations on a local scale always exist, which may result from the
insufficient consideration of soil moisture, because the MOD16 model uses the RH and
VPD to describe the soil moisture process. Therefore, the parameterization of soil moisture
in the MOD16 model is critical. The study attempts to utilize the NDWI as a supplement
to soil moisture information to make improvements to the MOD16 model. Specific work
was performed towards model validation and model application effect testing, including
making comparisons between ET estimates and measurements, analyzing the spatial-
temporal characteristics of ET, and exploring impacts on ET from climate change and
land-use change. Our conclusions are summarized as follows:

(1) The validation of MOD16 and MOD16-sm model showed that daily ET estimates
calculated by the improved MOD16-sm model and the observed daily ET values had
an R2 of 0.71, an RMSE of 0.9 mm, and an MAE 0.91 mm, which was better than the
correlation result between MOD16-derived ET estimates and measurements with an
R2 of 0.68, an RMSE of 1.2 mm, and an MAE of 1.1 mm. Further analyses on the long
time scale application of the MOD16 and MOD16-sm model also indicated that the
improved MOD16-sm model can acquire slightly higher precision;

(2) The application effect test of ET in Henan province from 2000 to 2020 demonstrated
that the improved MOD16-sm model is feasible, reliable, and transplantable, and the
specific results can be summarized as follows: the fluctuation range of the annual
ET showed significantly temporal distribution characteristics, with the inter-annual
fluctuation being 417.7~632.1 mm/a, and the average relative change rate of annual
ET being 1.7%, showing an overall increasing trend. As for the spatial distribution,
the annual average ET was high in the west and southeast and low in the north, and
the spatial distribution of the ET trend indicated that regions with a slight growth in
the ET trend were in western and southeastern areas with high vegetation coverage.
The impacts of climate change and land-use change on ET showed that the correlation
between ET and precipitation was significantly positive and the correlation with
air temperature was regarded as zero. Thus, the ET of all land-use types showed
significant increasing trends.

The findings of this study will make a very positive contribution to understanding ET
features in central China and elaborating how ET responds to climate change and LUCC,
which will provide water managers better insights into how to reduce uncertainties, plan
effectively, and realize sustainable development and usage of water resources.
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