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Abstract: With the growing severity of water pollution issues, the prevention and control of water
pollution became highly complicated and challenging, and the investment in water pollution control
has been constantly increased. Scientific evaluation of efficiency is critical to recognize whether the
investments in water pollution control are effective. However, most studies could not exclude the
influences of external environmental and random factors when evaluating the efficiency of water
pollution control, resulting in biased results. To overcome this shortcoming, this study employed
a three-stage SBM-DEA (slacks-based measure-data envelopment analysis) model to determine
the efficiency of water pollution control efforts in a city of China from 2003 to 2017. The results
showed that water quality in the study area has been significantly improved due to those pollution
control efforts. The influences from external environmental and stochastic factors have led to an
underestimation of the efficiency of water pollution control in the first stage. After excluding these
effects in the second stage, the adjusted efficiency of water pollution control showed a fluctuating
upward trend in the third stage, reflecting the true effectiveness of efforts to prevent and control
water pollution in the study cities, with an average efficiency of 0.87. Finally, several suggestions for
enhancing the efficiency of water pollution control in Chengde were proposed.

Keywords: water pollution control efficiency; three-stage SBM-DEA model; external environment
factors; data envelopment analysis

1. Introduction

Water pollution has long been one of the major concerns threatening environmental
security [1,2]. Water pollution has also become a prominent issue worldwide that restricts
the socio-economic development of watersheds and regions and compromises public
health [3,4]. With the rapid development of urbanization, industrialization, and agricultural
modernization, prevention and control of water pollution has become highly complicated
and challenging [5]. As a result, investments in technologies and facilities in water pollution
control have been continuously increased [6]. It is of significance to assess if and how these
investments in water pollution control are effective.

The efficiency of pollution control is considered as a critical index that reflects the
effectiveness of pollution prevention and control efforts [7], and it was defined as the
relative effectiveness between the input and output elements in the prevention and control
of environmental pollution [8]. Studies on the efficiency of pollution control have already
received considerable academic attention, especially in the measurement of pollution
control efficiency [9]. In terms of methods, the main evaluation methods applied to measure
the efficiency of pollution control included stochastic frontier analysis (SFA) and data
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envelopment analysis (DEA). The SFA method is a representative of the parametric model,
which is one of the essential methods to deal with multi-input single-output models. For
example, Zheng et al. investigated the investment efficiency of environmental governance
in China through the SFA model and explored its spatial and temporal evolution [10].
Zhu et al. used the SFA method to measure the environmental efficiency of 66 cities in
eastern China and investigated the impact of collaborative agglomeration of the industry
on efficiency [11]. The SFA method is capable of minimizing the influence of random factors
over the results due to its stochastic frontier. Nevertheless, the SFA model requires the
pre-setting of production functions and various parameters before evaluation, and it is
hard to ensure that these settings are in accordance with real-world problems [12]. Besides,
the SFA model has difficulty in solving cases with multiple inputs and outputs. In contrast,
the DEA method can address these drawbacks well, as DEA is a non-parametric model that
evaluates the relative effectiveness of the production possibility set consisting of decision
units through mathematical programming, which eliminates the need to set production
functions and estimate parameters [13]. This model enables efficiency assessment with
multiple inputs and outputs and objective weighting based on available data, and is thus
the most commonly employed method for evaluating the efficiency of pollution control [14].

With the development of DEA methods, the application of different DEA models
in the evaluation of pollution control efficiency has continuously been advanced. For
instance, Simoes et al. used a radial DEA model to study the operational performance
of 29 solid waste utilities in Portuguese and found that environmental contexts such
as gross domestic product (GDP) per capita had a significant effect on the operational
performance [15]. Mandal et al. also used a radial DEA model in combination with a
directional distance function to evaluate the environmental management efficiency of
rural industrial pollution [16]. The radial DEA model ignores the slack variables and
unreasonably assumes proportional change in inputs and outputs, which may lead to
biased measurement results. Given this, Tone proposed a slacks-based measure DEA (SBM-
DEA) model, which has become one of the mainstream methods for evaluating efficiency in
various fields, including the efficiency of pollution control [17]. Cheng et al. conducted an
efficiency evaluation of 681 wastewater treatment facilities in China through the SBM-DEA
model, and found that only 27 wastewater treatment facilities in China reached the DEA
effective frontier [18]. Yang et al. measured the wastewater control efficiency of 39 industrial
sectors in China with a SBM-DEA model and obtained more accurate results for the total
factor efficiency through a multi-constrained nonlinear function [19]. Wu et al. combined
the SBM-DEA model and an improved Luenberger productivity decomposition method,
determining the wastewater control efficiency at the urban scale in China from both static
and dynamic aspects, respectively [20]. In addition, there were some novel DEA models
such as the network DEA model and uncertainty DEA model gradually applied to the
efficiency evaluation of water or air pollution control [21,22]. As a non-radial and additive
DEA method, the SBM model provides a more accurate measurement for pollution control
efficiency. Nevertheless, this model is incapable of removing the influences of external
environmental factors and random errors from the evaluation process, which may lead to
biased results.

It has been confirmed by many studies that there were multiple external environ-
mental factors showing a significant impact on the efficiency of pollution control. Those
factors mainly included urbanization level [23], population growth [24], economic devel-
opment level [25], industrial structure [26], environmental regulation [27], technological
progress [28], public participation [29], and others. To address the above deficiencies, Fried
et al. combined DEA and SFA methods to develop a three-stage DEA model that considers
the impact of environmental factors and random noise on the efficiency evaluation of
decision units [30]. The model uses a traditional DEA model to obtain the slack information
of indicators in the first stage. Based on this, the SFA model is adopted in the second stage
to identify the effects of environmental factors and random noise to adjust the indicators,
and in the third stage, adjusted efficiency is measured by these modified indicators. Some
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researchers have made attempts to study the pollution control efficiency by using the three-
stage DEA method. For instance, Gong et al. measured the environmental and economic
efficiency of air pollution control in 30 Chinese provinces by means of a three-stage DEA
model, and the results showed that the economic efficiency of air pollution control was
more reliable after removing the interference [23]. Peng et al. used the three-stage super-
SBM model to investigate the efficiency of urban environmental governance and explored
the regional difference through the calculation of the DagumGiniratio index [31]. Shi used
a three-stage DEA model to measure the efficiency of industrial water pollution control
in 28 provinces of China, and found that the interference from environmental variables
and stochastic factors can lead to an overestimate of efficiency [32]. However, studies on
the efficiency of water pollution control by using three-stage DEA method are still scarce,
especially at the regional scale. This is because previous studies mostly focused on a certain
type of water pollution control rather than all the water pollution control efforts in a region.

To sum up, although much effort has been made in the evaluation of pollution control
efficiency, up-to-date research still suffers from the following deficiencies. Firstly, most
studies mainly adopted the traditional DEA method to evaluate the efficiency of water
pollution control, ignoring the impact of external environmental and random factors in
the evaluation process, which probably leads to biased results. Secondly, previous studies
tended to choose a certain type of pollution as a decision unit, making it difficult to
sufficiently represent all efforts of water pollution control at a regional scale.

Therefore, this study considered the total inputs and outputs of water pollution control
efforts at a regional scale, and introduced a three-stage SBM-DEA model that can eliminate
the influence of external environmental and stochastic factors over the efficiency of water
pollution control. The application to Chengde city in China revealed the effectiveness of
local water pollution control activities from 2003 to 2017. In addition, through the analysis
of the influencing factors of water pollution control efficiency, recommendations to achieve
efficiency improvement in Chengde city are proposed.

2. Methodology
2.1. Three-Stage SBM-DEA Model

In this study, we employed a three-stage SBM-DEA approach to measure the efficiency
of water pollution control in Chengde city. By referring to the study of Zhang et al. [33], the
analytical framework based on the three-stage SBM-DEA model constructed for this study
is shown in Figure 1.Water 2022, 14, x FOR PEER REVIEW 4 of 18 
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2.1.1. Conventional SBM-DEA Model

In the first stage, the conventional slack-based measure (SBM) DEA model was
adopted in this study to measure the efficiency of water pollution control in Chengde
city. Data envelopment analysis (DEA) is a nonparametric statistical method for evaluating
relative efficiency proposed by American operations researchers Charnes et al. in 1978,
mainly for decision units with the same type of multiple inputs and outputs [34]. These
traditional radial DEA models assumed the same proportional variation of inputs and
outputs, which is not consistent with the actual production process. In order to avoid the
neglect of slack variables and the influence caused by the radial DEA model, Tone et al.
first proposed a non-radial SBM-DEA model in 2001 [17]. This model has become the
mainstream model for efficiency evaluation in various fields, and its specific expression is
shown in model (1)

minρ =
1− 1

m

i=1
m
∑ s−i /xi0

1+ 1
s

j=1
s
∑ s+j /yj0

s.t.x0 = Xλ + s−

y0 = Yλ− s+

λ > 0, s− > 0, s+ > 0

(1)

where ρ represents the efficiency value.m and s respectively denote the number of input
and output indicators of the decision unit. s− and s+ denote slack variables for input
and output indicators, respectively. x0 and y0 indicate the input and output vectors of
the decision unit, respectively. X and Y are the input and output matrices composed of
all decision units, respectively. Only when the slack variables s− = 0, s+ = 0, can the
decision unit be called efficient; otherwise, it is inefficient, implying that it has potential for
improvement.

2.1.2. SFA Model for Inputs Adjustment

As the efficiency evaluation of the decision unit in the first stage was influenced by the
combination of environmental factors, management factors, and random errors, the evalu-
ation results might be biased [30]. In order to further distinguish the degree of influence
of each factor, the SFA model was required in this stage to eliminate the environmental
factors and random error to improve the reliability of the DEA evaluation. Then, the input
redundancy of decision unit was only caused by the management inefficiency. Assuming
that there are n decision units, each with p inputs and m observable external environmental
influence factors, the SFA regression equation can be constructed as follows:

Sik = fi(zk; βi) + vik + µik(i = 1, 2, · · · , m; k = 1, 2, · · · , n) (2)

where Sik denotes the slack variable of input i for decision unit k. fi(zk; βi) is the effect
of environmental variables on the slack variable Sik of input i, with the general form of
fi(zk; βi) = zkβi. zk =

(
z1k, . . . , zpk

)
are the observable environmental variables of decision

unit k. βi is the coefficient to be estimated for the environmental variables. The joint term
vik + µik is the mixed error, where vik denotes the random error with a distribution of νik ∼
N
(
0, σ2

vi
)
. µik is the management inefficiency term with a distribution of µik ∼ N+

(
µi, σ2

µi

)
.

vik and µik are independent of each other and uncorrelated. Assuming γ = σ2
µi/

(
σ2

µi + σ2
νi

)
,

this term is the proportion of the variance of management inefficiency to the total variance.
When the value of γ tends to 1, it indicates that the management inefficiency factor is the
main influence. When the value of γ tends to 0, it indicates that the influence of random
error factor is more significant. At this point, µik can be eliminated and the stochastic
model can be changed into a deterministic model, which can be estimated by the ordinary
least squares (OLS) model. In order to separate the random error from the management
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inefficiency in the mixed error term, the maximum likelihood estimation is first performed
using the software Frontier 4.1 to obtain an estimate of βi, γ, σ2.

Then, an estimate of the management inefficiency is derived according to the method
proposed by Jondrowet et al. [35]

Ê[µik | vik + µik] =
γσ

1 + γ2

(
ϕ(γei)

φ(γei)
+ γei

)
(3)

where φ and ϕ are the distribution function and density function of the standard normal
distribution, respectively. ei is the error term, and the estimate of vik can be further obtained.

Ê[νik | νik + µik] = Sik − fi
(
zk; β̂i

)
− Ê[µik | νik + µik] (4)

According to the results of SFA model, the slack variables of the inputs are determined
based on the degree of influence of each environmental variable. Based on this, the
corresponding input adjustments are applied to the decision units that do not reach the
effective frontier

x∗ik = xik +
[
maxk

{
zk β̂n}− zk β̂n]+ [maxk{ν̂ik} − ν̂ik] (5)

where x∗ik and xik are the adjusted and original values of input i for decision unit k, re-
spectively, and β̂n denotes the estimated value of the environmental variable. The second
term on the right side of Equation (5) represents the increment of the input i of all decision
units in the case where the environmental variables act as the maximum, i.e., in the worst
environment. The third term on the right side of this equation is the increment of the
input placed in the case of the maximum random errors. Thus, each decision unit can be
guaranteed to face the same external conditions.

2.1.3. Improved SBM-DEA Model for Efficiency Measurement

In this stage, this study replaced the original input xik with adjusted input x∗ik for
removal of environmental and stochastic factors in the second stage. The rest of the
calculation steps were maintained as in stage 1, continuing to adopt model (1) to determine
the efficiency of water pollution control in Chengde city. By using the information contained
in the slack variables, the efficiency results measured in this stage excluded the influence
of external environmental and stochastic factors, and were the actual performance of the
efficiency of water pollution control in Chengde city over the years.

2.2. Input and Output Indicators

Based on the principles of systematicity, comprehensiveness, and homogeneity of
indicators selected for efficiency evaluation and the availability of data related to water
pollution prevention and control in Chengde, the specific indicators selected for measuring
the efficiency of water pollution control in this study were as follows.

Input indicators. The input indicators were composed of capital input and labor
input. Capital input, a direct reflection of the amount of capital investment, was indicated
by the regional total investment in water pollution prevention and control. The total
investment should be able to fully cover all aspects of water pollution control efforts. The
total investment in water pollution prevention and control in Chengde city mainly consisted
of the investment in water conservancy projects and the partial investment in ecological
environmental protection. Labor input was represented by the number of employees
related to water pollution prevention and control in Chengde city. The labor input was
mainly composed of employees of water conservancy project management and, in part, of
employees of ecological environmental protection business. Based on the data availability
and references to Sun et al. [36], the specific calculation of capital and labor input indicators
was as follows:
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x1 = a1 + ηb1

x2 = a2 + ηb2
(6)

where x1 and x2 denote indicators of capital and labor input, respectively. a1 and a2 indicate
the amount of investment and the number of employees for the water conservancy project
management in Chengde city, respectively. b1 and b2 denote the total amount of investment
and the number of employees for ecological and environmental management business
in Chengde city, respectively. η is the proportion coefficient of water pollution control
business to environmental and ecological protection business in Chengde city. Based on
the advice of the staff of the Chengde Ecological Environment Bureau, the value is taken as:
η = 0.25.

Output indicator. The output indicator was indicated by the comprehensive water
quality index. The fundamental purpose of water pollution prevention and control is to
improve the water quality. That is to say, it was considerably appropriate and scientific
for this study to select the comprehensive water quality index as the output indicator.
Referring to Yuan et al. [37], this study adopted the scoring method to quantify the water
quality condition of surface water in Chengde city, and then obtained the comprehensive
water quality index, which was calculated by the following formula:

y = ∑ ci·mi/∑ mi (7)

where y represents the comprehensive water quality index. mi indicates the number of
monitoring sections of different water qualities. ci denotes the score of different water
qualities, class I to inferior V water quality score in the order of 5 to 0 points.

2.3. Environmental Impact Factors

Different empirical analyses have been conducted by researchers on the influencing
factors of pollution control efficiency. In most of these previous studies, the economic
development level and industrial structure were the explanatory variables explored the
most frequently for efficiency of pollution control [33,38–40]. In addition, as local policy
makers and regulators, the government’s influence and intervention are crucial to pollu-
tion control, which has received attention in many studies [23,32]. Therefore, based on
the existing research, this study was designed to investigate the possible effects of four
external environmental variables in the following three categories on efficiency of water
pollution control.

Economic development level. According to the environmental Kuznets curve, it is
known that the environment and the economic development level have an inverted U-
shaped relationship. That is, with the increase of gross domestic product (GDP) per capita,
people’s demand for improving environmental quality is more urgent, and pollution control
will be attached more importance. In addition, a high GDP per capita generally means
that there is sufficient fiscal revenue to invest in environmental protection, facilitating
the improvement of pollution control. Here, GDP per capita was chosen to represent the
environmental impact variable of economic development level.

Industrial structure. Generally speaking, the accelerated industrialization process
emits many pollutants, which will bring influence and pressure to the local pollution
control, while the development of tertiary industry is helpful to alleviate the pressure
of environmental pollution. Therefore, this study selected the proportion of secondary
industry (calculated from the share of industrial value added in GDP) and the proportion
of tertiary industry (calculated from the share of total tertiary output in GDP) to investigate
the influence of industrial structure on the efficiency of water pollution control.

Government influence. The government plays an essential leading role in environ-
mental management. For one, the government can curb the emission of pollutants from
enterprises and improve environmental quality by enacting regulations. For another, the
environmental regulations set by the government may impose additional economic costs.
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In this study, the fiscal decentralization degree (calculated from the share of local fiscal
expenditure in GDP) was chosen to represent the government influence.

3. Study Problem

Chengde city is located in the northeastern part of Hebei province in China, with a total
land area of 39,500 km2, accounting for one-fifth of the total land area of Hebei province.
There are four major river systems in Chengde, including Luanhe River, Chaohe River,
Liaohe River, and Dalinghe River, with an annual water production of about 3.76 billion m3.
The main reasons for selecting Chengde as the study area in this paper are as follows. Firstly,
with its special geographical location, Chengde is an important source of water supply
for major cities in the Beijing-Tianjin region of China. As a significant water source and
water conservation area, the water quality in Chengde directly affects the water security
of Beijing-Tianjin region. Secondly, Chengde city is of special strategic significance and
belongs to one of the pilot areas of ecological civilization construction in China. The pilot
construction experience of Chengde is very valuable for exploring the development path
of ecological civilization in northern China, and can play a typical demonstration role for
the ecological civilization construction in China. In addition, Chengde city has invested a
huge amount in the prevention and control of water pollution, while the effectiveness of
water pollution has not been scientifically identified. There were more than 250 ecological
engineering projects conducted in Chengde in the past decade, with a total investment of
nearly 30 billion yuan. Thus, it is urgent and essential to evaluate the efficiency of water
pollution prevention and control in Chengde over the years.

The study area is shown in Figure 2.
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The data of environmental impact variables and input and output indicators men-
tioned above were obtained from the Chengde Statistical Yearbook, Hebei Statistical Year-
book and relevant information provided by the Chengde Ecological Environment Bureau
in previous years. The descriptive statistical results of each variable are shown in Table 1.

Table 1. Results of descriptive statistics for each variable.

Variable Type Indicator Mean Standard Errors Minimum Maximum

Input Capital input/million yuan 2068.51 2164.44 166.08 6768.98
Labor input/person 1647.10 389.22 1205.50 2247.75

Output Comprehensive water quality index 2.41 0.71 1.04 3.48

Environmental
variable

GDP per capita/yuan 25,623.07 12,117.37 6191.00 41,299.00
Secondary industry share/% 44.27 4.49 33.88 52.84

Tertiary sector share/% 33.75 3.19 30.18 42.33
Fiscal decentralization degree/% 17.26 3.37 13.20 23.04

4. Results and Discussion
4.1. Changes in Water Quality

As the output indicator reflecting the surface water quality condition of Chengde
city, the comprehensive water quality index can be obtained from the calculation of water
quality scoring and the number of sections of water quality monitoring. Based on the
obtained data, the comprehensive water quality index of Chengde city from 2003 to 2017
could be determined by Equation (7). As shown in Figure 3, the comprehensive water
quality index of Chengde city showed a fluctuating upward trend during the study period,
indicating that the water environment quality of Chengde city was improving over time.
Specifically, the percentage of monitoring sections with water quality of III categories or
better in Chengde improved from 0% in 2003 to 79% in 2014. In each five-year planning
period, there was a significant enhancement in the water quality index. Especially in the
last few years (from 2014 to 2017), the water environment quality in Chengde has stabilized
at a high level with the water quality index greater than 3. This is because the prevention
and control of water pollution in Chengde has achieved breakthrough success, i.e., the
monitoring sections with water quality of V categories or worse was cleared in 2014.
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As a matter of fact, since the Tenth Five-Year Plan, Chengde city has been vigorously
promoting the comprehensive management of water environment in order to improve
water quality. In the early period of water pollution prevention and control, Chengde
mainly controlled the point source pollution by constructing wastewater treatment plants
and improving sewage pipelines. The water quality improvement of the monitoring section
downstream of the sewage treatment plant demonstrated the effectiveness of such efforts.
Further, in 2012, Chengde city implemented a series of planning including the “Program
for the Prevention and Control of Water Pollution in Chengde City” and “Planning for the
Prevention and Control of Water Pollution in Luan River Basin”, which target non-point
sources of pollution such as soil erosion and livestock breeding. In terms of the agriculture,
Chengde city implemented zero-growth action of pesticides and fertilizers, and promoted
a new model of irrigation and fertilization. Through the control of point source and non-
point source pollution, and the combination of engineering measures and various programs
and policies, the surface water quality in Chengde has been further improved. In general,
judging from the results of the comprehensive water quality index, it is worthwhile to
confirm the efforts of water pollution prevention and control in Chengde city, which played
an exemplary role in the experience and modeling of water pollution control to some extent.

4.2. Water Pollution Control Efficiency without Input Indicators Adjustment

In this stage, based on the acquired data and through the software DEA-solver 13.0, the
SBM model was adopted to determine the efficiency of water pollution control in Chengde
city between 2003 and 2017, with the results shown in Figure 4. In addition, this paper also
measured the slack variables of input and output indicators for the purpose of explaining
the inefficiency sources, with the results shown in Figure 5.
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As illustrated in Figure 4, without excluding external environmental variables and
stochastic factors, there were four years (including 2005, 2014, 2016, and 2017) in Chengde
city that reached the technically effective frontier. That is, the input-output ratio achieved
the optimal state with its efficiency equal to 1. The efficiency of the remaining years was
non-DEA effective, and the lowest efficiency of water pollution control was in 2009, which
was only 0.42. In terms of changes, the water pollution control efficiency of Chengde city
exhibited a general fluctuating upward trend between 2003 and 2017. In 2005, the efficiency
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of water pollution control quickly rose to 1, reaching DEA effectiveness. Then, the efficiency
dropped to the lowest point in 2009 and began to fluctuate and grow over time, finally
stabilizing at the high efficiency level, which is similar to the change of water quality index.
However, this result did not eliminate the influence of environmental and random factors,
and failed to reveal the actual status of water pollution control efficiency in different years
in Chengde, so further adjustment and measurement were necessary.

As presented in Figure 5, the capital investment in water pollution control in Chengde
was excessive in most years, indicating that the redundancy of capital inputs is an important
reason for the inefficiency of water pollution control. Especially in 2009 and 2013, the excess
of capital input was the largest, with more than half of the inputs not performing effectively,
which could account for the sharp efficiency decline in these two years. Compared to
the former year, the increase in capital investment was 420% and 230% in 2009 and 2013,
respectively. The excessive increase in capital investment may have led to an irrational
use of funds. In terms of the labor input, only in 2003 and 2006 there was redundant labor
input, suggesting the redundancy of labor input is not the critical reason for the inefficiency
of water pollution control. In other words, Chengde’s manpower inputs in water pollution
control are effective. However, in order to ensure that the efficiency of water pollution
control can steadily achieve DEA effectiveness, it is essential for Chengde City to emphasize
the enhancement of the competence of employees in water pollution control while focusing
on the management of the number of employees.

Water 2022, 14, x FOR PEER REVIEW 11 of 18 
 

 

essential for Chengde City to emphasize the enhancement of the competence of em-
ployees in water pollution control while focusing on the management of the number of 
employees. 

 
Figure 5. Projection and excess value of capital (a) and labor (b) inputs of water pollution control. 

As shown in Figure 6, there were six years of shortfalls in output for water pollution 
control in Chengde, including 2004, and from 2007 to 2011. This suggested that the water 
quality improvement efforts in these years did not achieve fully satisfactory results. The 
inefficiency in 2009 was also due to the inability to improve water quality significantly. 
This is because the actions to build and upgrade wastewater treatment plants showed 
limited improvement in water quality, which might prove that the key issue of water 
pollution control in 2012 was not the source of pollution anymore. In summary, the ex-
cess of input indicators and the shortfall of output indicators together resulted in the ef-
ficiency of water pollution control not reaching the effective production frontier. It is ex-
tremely crucial for Chengde to allocate funds reasonably in water pollution prevention 
and control, as well as to further improve and optimize the management of technologies 
in water pollution prevention and control, which is conducive to the improvement of 
water pollution control efficiency. 

 
Figure 6. Shortfall and actual value of output of water pollution control from 2003 to 2017. 

Figure 5. Projection and excess value of capital (a) and labor (b) inputs of water pollution control.

As shown in Figure 6, there were six years of shortfalls in output for water pollution
control in Chengde, including 2004, and from 2007 to 2011. This suggested that the water
quality improvement efforts in these years did not achieve fully satisfactory results. The
inefficiency in 2009 was also due to the inability to improve water quality significantly.
This is because the actions to build and upgrade wastewater treatment plants showed limited
improvement in water quality, which might prove that the key issue of water pollution control
in 2012 was not the source of pollution anymore. In summary, the excess of input indicators
and the shortfall of output indicators together resulted in the efficiency of water pollution
control not reaching the effective production frontier. It is extremely crucial for Chengde to
allocate funds reasonably in water pollution prevention and control, as well as to further
improve and optimize the management of technologies in water pollution prevention and
control, which is conducive to the improvement of water pollution control efficiency.
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4.3. Analysis of SFA Regression Results

In the second stage of DEA analysis, by using the SFA model to decompose the impact
of environmental factors, random errors, and management inefficiencies on water pollution
control efficiency, the original input value over the years could be adjusted, and finally
we could obtain the actual level of water pollution control efficiency under the same
management environment. The slack of the capital input and labor input measured in the
first stage was taken as the explained variable in the regression function, and the per capita
GDP, the proportion of the secondary industry, the proportion of the tertiary industry,
and the fiscal decentralization degree were used as the explanatory variables. This study
explored the influence of four variables on the slack variables of two input indicators by
using the software Frontier4.1, and the regression results of SFA model in the second stage
could be obtained, as shown in Table 2. It can be seen from Table 2 that all the results were
significant at the 1% confidence level. Thus, the external environment factors all had a
significant impact on the slack variable of inputs in the water pollution prevention and
control in Chengde. Therefore, in order to effectively strip management factors and random
factors, it was important to adjust the input variables in the second stage.

Table 2. The regression results of SFA model in the second stage.

Variables Coefficient of Capital Input Coefficient of Labor Input

Constant terms −582,105.53 *** (−582,105.53) −759.32 *** (147.20)
GDP per capita 808,273.1 *** (808,273.1) 223.82 *** (95.11)

The secondary industry share 432,829.71 *** (432,829.71) 17.02 *** (8.73)
The tertiary industry share 1.76 *** (51.89) 0.01 *** (12.97)

Fiscal decentralization degree 6000.54 *** (6000.54) 325.76 *** (33.55)
σ2 8.63 × 109 *** (8.63 × 109) 32,519.73 *** (32,517.58)
γ 1.00 *** (1,619,404.5) 1.00 *** (134.23)

Log likelihood −181.92 −89.17
LR test 8.97 8.98

Note: data in parentheses indicate t-statistics. “*”, “**”, and “***” indicate significant levels at 10%, 5%, and 1%,
respectively.

When examining the impact of environmental variables on the input slack variable, if
the coefficient result is positive, it means that the increase in the value of the environmental
variable will lead to an increase in the input slack variable or a decrease in output, resulting
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in an increase in waste and adversely affecting the efficiency of water pollution control. If
the coefficient result is negative, it indicates that the rise of this environmental variable will
bring about a reduction in the input slack variable or an increase in output, resulting in
savings and a positive impact on the efficiency of water pollution prevention and control.
The following analyzes the effect of each specific significant environmental variable on the
input slack variable.

GDP per capita. Table 2 showed that the regression results of per capita GDP on the
slack variables of labor and capital inputs were all positive, and the regression coefficients
of these two input slack variables were both at the 1% significance level. This meant that
the increase in per capita GDP would trigger an increase in the slack variables of labor and
capital inputs, thereby decreasing the efficiency of capital and labor utilization in water
pollution prevention and control. This result was not consistent with the environmental
Kuznets curve and was contrary to the findings of Gong et al. [23]. This might be mainly
due to the threshold effect of the increase in per capita GDP on the efficiency of water
pollution control. When it is lower than the threshold value, the increase of per capita
GDP would not have a positive impact on the improvement of capital and labor utilization
efficiency, which would not promote the efficiency of water pollution control. In addition,
the increase in GDP per capita might lead to the irrational use of capital, resulting in input
redundancy, which makes the efficiency of water pollution control decrease.

Secondary industry. The calculation results indicated that the regression coefficients
of the proportion of the secondary industry on the slack variables of labor and capital
inputs were all positive values, and they were all significant at the 1% level. It could be seen
that the increase in the proportion of the secondary industry would cause an increase in
the slack variables of labor input and capital input, resulting in a decrease in the efficiency
of water pollution control, which is consistent with the findings of Zhang et al. [33]. The
greater the proportion of the secondary industry, the more the various pollutants produced
by industrial production, and the more significant the harm to the water environment.
To a certain extent, this might increase the additional marginal costs of water pollution
control, leading to a decrease in capital utilization and thus a reduction in the efficiency
of water pollution control, which is consistent with the actual situation. At the same
significance level, the regression coefficient of the proportion of the secondary industry
on the slack variable of capital investment was much larger than that of the labor input,
which well showed that the utilization efficiency of capital was affected by the proportion
of the secondary industry more significantly. The possible reason for this might be the low
innovation ability of the treatment technology for industrial water pollution in Chengde,
which leads to the poor efficiency of capital utilization.

Tertiary industry. The proportion of the tertiary industry had a significant positive
effect on the labor and capital inputs slack variables at a significance level of 1%, which
indicated that the increase in the proportion of the tertiary industry would bring an increase
in the slack variables of labor input and capital inputs. The regression coefficients of the
proportion of the tertiary industry on the two input slack variables were both small, where
the coefficient of labor input was only 0.01, which was much smaller than the coefficient of
capital input. Generally, the increase in the proportion of the tertiary industry facilitates the
reduction of pollution caused by agricultural and industrial production, and is conducive
to improving the efficiency of water pollution control. However, the current results were
contrary to this traditional cognition. The reason might be that Chengde, as a tourist
city, was dominated by the development of tertiary industries, and its tertiary industry
accounted for 42.3% in 2017, which is larger than the 41.7% of the secondary industry.
Compared with other typical cities, the scale of tertiary industries such as tourism and
catering were larger in Chengde, which has caused a larger pollution burden to the water
environment to a certain extent. In addition, the loosened regulation of the tertiary industry
might also cause accidental water pollution and led to a decrease in the efficiency of water
pollution control.
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Financial decentralization degree. The government influence indicator was repre-
sented by the degree of fiscal decentralization. The regression results illustrated that at
the 1% significance level, the regression coefficients of government influence on labor and
capital inputs slack variables were both positive. A high degree of fiscal decentralization
would promote the increase of the slack variables of these two input indicators, which was
not conducive to the improvement of the efficiency of water pollution prevention. This
might be caused by the deficiencies of the administrative management system. The higher
the degree of fiscal decentralization, the higher the freedom of the government to manage
financial resources, which may lead to the unreasonable allocation of fiscal funds in the
basic public services with strong positive externality such as environmental governance,
ultimately decreasing the capital use efficiency in water pollution control.

By comparing the absolute values of the significant coefficients of different external
environmental variables for the same input index, the order of importance of each environ-
mental variable for moderation could be obtained. For capital investment, the secondary
industry had the highest priority, followed by per capita GDP, fiscal decentralization, and
the tertiary industry. For labor input, the priority of fiscal decentralization was the highest,
followed by GDP per capita, the proportion of the secondary industry, and the proportion
of the tertiary industry. Based on the above analysis, it is easy to know that environmental
variables have significant effects on different input slack variables and the estimated water
pollution prevention and control efficiency will be biased due to the effect of external
environmental factors. Therefore, it is necessary to adjust the initial input variables to
remove the effects of environmental and random factors, and then explore the actual level
of water pollution control efficiency.

4.4. Water Pollution Control Efficiency with Input Adjustment

In this stage, two input variables were corrected according to Equation (4), and the
adjustment results are shown in Figure 7. By using the software DEA-solver 13.0, the
adjusted input variables and the original output were measured again with the SBM-DEA
model. The actual efficiency of water pollution control in Chengde city for all years was
obtained, and the specific results are displayed in Figure 8.

As shown in Figure 7, the adjusted capital and labor inputs were basically greater than
the original values in each year, which verified the influence of external environmental
variables and random errors on the evaluation of water pollution control efficiency. For
the capital input, both the original and adjusted values showed an increasing trend of
fluctuation over time, which indicated that the water pollution control in Chengde was
getting more and more attention. By comparing the difference between the original and
adjusted values, it was found that the adjustment of capital input was relatively large from
2003 to 2006, indicating that the capital input in these years was significantly influenced by
the combination of external environmental variables and random errors. For the labor input,
both the original and adjusted values showed a trend of increasing and then decreasing.
This might demonstrate the transition of labor input in Chengde from a manned workforce
to a small but efficient workforce. The difference between the original and adjusted values
showed that the adjustment of labor input was relatively large from 2005 to 2011, which
was caused by the significant influence of environmental factors and random errors on the
slack variables of labor input.

As shown in Figure 8, by comparing the results of stage 1 with stage 3, it can be
observed that after removing the combined effect of external environment and stochastic
factors, the efficiency of water pollution control in some years in Chengde city showed
a large change. The adjusted efficiency of water pollution control in some years (from
2006 to 2013) was significantly higher than the initial efficiency value, indicating that the
efficiency in these years was clearly underestimated in the first stage, which implies that it
is of great necessity to exclude the effects of external environment and stochastic factors
performed in the second stage. There were three years (including 2004, 2015, and 2017)
where the adjusted efficiency of water pollution control was slightly lower than the original
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efficiency value, indicating that these efficiencies were slightly overestimated in stage 1.
In terms of the number of decision units whose efficiency reached DEA effectiveness, the
number of effective decision units in the third stage was three, less than the four in the
first stage. The year 2017, which was considered DEA effective in the first stage, did not
achieve DEA effectiveness after the adjusted measurement in the third stage. Similarly, the
efficiency of water pollution control measured in the third stage and the first stage both
exhibited an overall fluctuating upward trend during the study period, and reached a high
efficiency status in the recent years. Differently, the mean value of efficiency measured in
the third stage was 0.87, greater than 0.72 in the first stage, and the efficiency variation
among decision units decreased compared with the first stage, which suggested an actual
excellent level of water pollution prevention and control in Chengde.
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In summary, the efficiency of water pollution control appeared to increase overall
after the adjustment of input indicators. By eliminating the interference of the external
environment and random errors, it enabled most of the years with low efficiency in the first
stage to rise in water pollution prevention efficiency, and the variation of efficiency level
among the decision units decreased. It was evident that using the three-stage SBM-DEA
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model to measure water pollution prevention efficiency can make the evaluation results
more accurate and reliable.

4.5. Policy Suggestions to Improve the Efficiency of Water Pollution Control

According to the results above, the following policy recommendations can be given
to further improve the efficiency of water pollution control in Chengde city. Firstly, the
government should improve the efficiency of the use of funds for water pollution preven-
tion and control. It is essential to effectively regulate and supervise the water pollution
prevention funds, stipulate that the funds are earmarked for specific purposes, and clarify
the rights and obligations of relevant persons. Furthermore, the improvement of the tech-
nologies for water pollution prevention and control can help break the barrier that makes it
difficult to further improve the water quality, which is conducive to the enhancement of the
efficiency of utilization of funds in water pollution prevention and control. The research
and development of water pollution control technology and equipment suitable for local
use should be emphasized, and the related senior technical staff should be trained.

Secondly, it is necessary to optimize the industrial structure and accelerate the pace of
economic transformation and upgrading. The secondary industry accounted for the most
significant inverse impact on the efficiency of water pollution control, and the optimization
and upgrading of the industrial structure is quite urgent. The development of clean
production and green production enables the industrial structure to gradually transform
from a high pollution and consumption industry to an environmentally friendly one. In a
word, while ensuring the continuous growth of the gross economic output, the discharge
of water pollutants should be reduced as much as possible so as to improve the efficiency
of pollution control.

In addition, public participation in water environmental protection should be in-
creased. On one hand, through various forms of water environment education and practi-
cal activities, the increasing public awareness of environmental protection will force the
government to carry out water pollution prevention and control more efficiently. On the
other hand, the public should be encouraged to participate in environmental management
to develop the power of public supervision due to the fact that the multiple participation
contributes to the effective implementation of water pollution prevention and control.

5. Conclusions

Based on the output indicator of comprehensive water quality index, this paper
measured the efficiency of water pollution control in Chengde city from 2003 to 2017
using a three-stage SBM-DEA model and analyzed the slack variables and the external
environmental factors affecting the efficiency of water pollution control, and the main
conclusions were as follows:

• The comprehensive water quality index of Chengde city showed a fluctuating upward
trend and maintained at a high level in recent years, indicating that the water pollution
prevention and control efforts in Chengde city achieved great effectiveness. Without
removing external environmental variables and random factors, the efficiency of water
pollution control in Chengde city also showed a general fluctuating upward trend
between 2003 and 2017. The excessive input of capital and the shortfall of output of the
comprehensive water quality index were the main reasons why most of the decision
units failed to achieve DEA effectiveness.

• External environment and random error had significant effects on efficiency of water
pollution control. The coefficients of the four external environmental variables of
GDP per capita, the share of secondary industry, the share of tertiary industry, and
the degree of fiscal decentralization on the slack variables of capital and labor inputs
were positive, indicating that the increase in the values of these four environmental
variables had a negative impact on the efficiency of water pollution control. By
comparing the magnitude of the absolute values of the coefficients, it could be seen
that the environmental variables with the greatest impact on capital and labor inputs
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were the share of the secondary industry and the degree of fiscal decentralization,
respectively.

• By comparing the input indicators of the first stage with the third stage, it could be
found that the adjusted inputs were almost always greater than the initial values,
which further verified the influence of external environmental variables and random
errors on the efficiency of water pollution control. By comparing the efficiency of
water pollution control in two different stages, it could be seen that the efficiency in
stage one was significantly underestimated. By eliminating the effects of external
environment and random errors, the efficiency in stage three could reflect the actual
efficiency level of water pollution control in Chengde city.

Author Contributions: Y.C. conceived and wrote the paper; C.L. and X.Z. reviewed and revised the
paper; X.L. analyzed the data; X.Z. performed the research; Q.T. reviewed and revised the paper. All
authors have read and agreed to the published version of the manuscript.

Funding: This study is supported by the National Natural Science Foundation of China (52125902),
the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08L213) and
GEF Mainstreaming Integrated Water and Environment Management (P145897-3-03).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data are available
from the authors with the permission of third party.

Acknowledgments: We appreciate all the financial support for this study. We would like to extend
special thanks to the editor and reviewers for insightful advice and comments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, T.; Tan, Q.; Zhang, S.; Zhang, T.Y.; Zhang, W.J. A participatory methodology for characterizing and prescribing water-

energy-food nexus based on improved casual loop diagrams. Resour. Conserv. Recycl. 2021, 164, 105124. [CrossRef]
2. Tan, Q.; Huang, G.; Cai, Y.; Yang, Z. A non-probabilistic programming approach enabling risk-aversion analysis for supporting

sustainable watershed development. J. Clean Prod. 2016, 112, 4771–4788. [CrossRef]
3. Hu, K.J.; Tan, Q.; Zhang, T.Y.; Wang, S.P. Assessing technology portfolios of clean energy-driven desalination-irrigation systems

with interval-valued intuitionistic fuzzy sets. Renew. Sust. Energ. Rev. 2020, 132, 109950. [CrossRef]
4. Sheng, J.C.A.; Webber, M. Incentive coordination for transboundary water pollution control: The case of the middle route of

China’s South-North water Transfer Project. J. Hydrol. 2021, 598, 125705. [CrossRef]
5. Pan, D.; Tang, J. The effects of heterogeneous environmental regulations on water pollution control: Quasi-natural experimental

evidence from China. Sci. Total Environ. 2021, 751, 141550. [CrossRef]
6. Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and

challenges. Chemosphere. 2022, 295, 133875. [CrossRef]
7. Zhu, X.; Li, H.; Chen, J.; Jiang, F. Pollution control efficiency of China’s iron and steel industry: Evidence from different

manufacturing processes. J. Clean Prod. 2019, 240, 118184. [CrossRef]
8. Zhang, H.Y.; Song, Y.Q.; Zhang, L. Pollution control in urban China: A multi-level analysis on household and industrial pollution.

Sci. Total Environ. 2020, 749, 141478. [CrossRef]
9. Liu, L.B.; Sun, Q. Empirical Research on Ecological Efficiency of Coal Resource-Dependent Cities in China. J. Environ. Eng. 2019,

145, 04019047. [CrossRef]
10. Zheng, Y.; Yang, R. Determining the efficiency of investments and evolving temporal-spatial trends in environmental governance

using the stochastic frontier analysis (SFA) model. Environ. Eng. Manag. J. 2018, 17, 2767–2779.
11. Zhu, Y.; Du, W.B.; Zhang, J.T. Does industrial collaborative agglomeration improve environmental efficiency? Insights from

China’s population structure. Environ. Sci. Pollut. Res. 2022, 29, 5072–5091. [CrossRef] [PubMed]
12. Wanke, P.; Tsionas, M.G.; Chen, Z.F.; Antunes, J.J.M. Dynamic network DEA and SFA models for accounting and financial

indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking. Int. Rev. Econ.
Financ. 2020, 69, 456–468. [CrossRef]

13. Guo, Y.; Tong, L.; Mei, L. The effect of industrial agglomeration on green development efficiency in Northeast China since the
revitalization. J. Clean Prod. 2020, 258, 120584. [CrossRef]

14. Ye, F.F.; Yang, L.H.; Wang, Y.M.; Chen, L. An environmental pollution management method based on extended belief rule base
and data envelopment analysis under interval uncertainty. Comput. Ind. Eng. 2020, 144, 106454. [CrossRef]

http://doi.org/10.1016/j.resconrec.2020.105124
http://doi.org/10.1016/j.jclepro.2015.06.117
http://doi.org/10.1016/j.rser.2020.109950
http://doi.org/10.1016/j.jhydrol.2020.125705
http://doi.org/10.1016/j.scitotenv.2020.141550
http://doi.org/10.1016/j.chemosphere.2022.133875
http://doi.org/10.1016/j.jclepro.2019.118184
http://doi.org/10.1016/j.scitotenv.2020.141478
http://doi.org/10.1061/(ASCE)EE.1943-7870.0001564
http://doi.org/10.1007/s11356-021-15618-3
http://www.ncbi.nlm.nih.gov/pubmed/34415521
http://doi.org/10.1016/j.iref.2020.06.002
http://doi.org/10.1016/j.jclepro.2020.120584
http://doi.org/10.1016/j.cie.2020.106454


Water 2022, 14, 1453 17 of 17

15. Simoes, P.; De Witte, K.; Marques, R.C. Regulatory structures and operational environment in the Portuguese waste sector. Waste
Manage. 2010, 30, 1130–1137. [CrossRef]

16. Mandal, S.K.; Madheswaran, S. Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy.
2010, 38, 1108–1118. [CrossRef]

17. Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [CrossRef]
18. Cheng, P.; Jin, Q.; Jiang, H.; Hua, M.; Ye, Z. Efficiency assessment of rural domestic sewage treatment facilities by a slacked-based

DEA model. J. Clean Prod. 2020, 267, 122111. [CrossRef]
19. Yang, W.X.; Li, L.G. Efficiency Evaluation and Policy Analysis of Industrial Wastewater Control in China. Energies 2017, 10, 1201.

[CrossRef]
20. Wu, G.; Hong, J.K.; Tian, Z.H.; Zeng, Z.; Sun, C.W. Assessing the total factor performance of wastewater treatment in China: A

city-level analysis. Sci. Total Environ. 2021, 758, 143324. [CrossRef]
21. Wang, M.; Feng, C. Regional total-factor productivity and environmental governance efficiency of China’s industrial sectors: A

two-stage network-based super DEA approach. J. Clean Prod. 2020, 273, 123110. [CrossRef]
22. Ye, F.F.; Yang, L.; Wang, Y.M. An interval efficiency evaluation model for air pollution management based on indicators integration

and different perspectives. J. Clean Prod. 2020, 245, 118945. [CrossRef]
23. Gong, X.; Mi, J.N.; Wei, C.Y.; Yang, R.T. Measuring Environmental and Economic Performance of Air Pollution Control for

Province-Level Areas in China. Int. J. Environ. Res. Public Health. 2019, 16, 1378. [CrossRef] [PubMed]
24. Song, M.L.; Zhou, Y.X. Analysis of Carbon Emissions and Their Influence Factors Based on Data from Anhui of China. Comput.

Econ. 2015, 46, 359–374. [CrossRef]
25. Al-Mezeini, N.K.; Oukil, A.; Al-Ismaili, A.M. Investigating the efficiency of greenhouse production in Oman: A two-stage

approach based on Data Envelopment Analysis and double bootstrapping. J. Clean Prod. 2020, 247, 119160. [CrossRef]
26. Chen, Y.B.; Yin, G.W.; Liu, K. Regional differences in the industrial water use efficiency of China: The spatial spillover effect and

relevant factors. Resour. Conserv. Recycl. 2021, 167, 105239. [CrossRef]
27. Li, H.L.; Zhu, X.H.; Chen, J.Y.; Jiang, F.T. Environmental regulations, environmental governance efficiency and the green

transformation of China’s iron and steel enterprises. Ecol. Econ. 2019, 165, 165. [CrossRef]
28. Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency

of industrial water resources. J. Clean Prod. 2019, 211, 61–69. [CrossRef]
29. Bodin, O. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science 2017, 357,

659. [CrossRef]
30. Fried, H.O.; Lovell, C.; Yaisawarng, S.J. Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis.

J. Prod. Anal. 2002, 17, 157–174. [CrossRef]
31. Peng, G.; Zhang, X.D.; Liu, F.; Ruan, L.J.; Tian, K.Y. Spatial-temporal evolution and regional difference decomposition of urban

environmental governance efficiency in China. Environ. Dev. Sustain. 2021, 23, 8974–8990. [CrossRef]
32. Shi, F. A study on regional treatment efficiency of industrial water pollution in China—based on three-stage DEA mothed. East.

China Econ. Manag. 2014, 2808, 40–45.
33. Zhang, C.Q.; Chen, P.Y. Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP

countries. Energy 2022, 241, 122917. [CrossRef]
34. Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1979, 3, 339. [CrossRef]
35. Jondrow, J.; Lovell, C.; Materov, I.S.; Schmidt, P.J. On the estimation of technical inefficiency in the stochastic frontier production

function model. J. Econom. 1982, 19, 233–238. [CrossRef]
36. Sun, C.Z.; Yan, X.D.; Zhao, L.S. Coupling efficiency measurement and spatial correlation characteristic of water-energy-food

nexus in China. Resour. Conserv. Recycl. 2021, 164, 105151. [CrossRef]
37. Yuan, W.; Li, J.; Meng, L.; Qin, X.; Qi, X. Measuring the area green efficiency and the influencing factors in urban agglomeration. J.

Clean Prod. 2019, 241, 118092. [CrossRef]
38. Dong, F.; Zhang, S.N.; Li, Y.F.; Li, J.Y.; Xie, S.X.; Zhang, J.X. Examining environmental regulation efficiency of haze control and

driving mechanism: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 29171–29190. [CrossRef]
39. Zhang, T.; Tan, Q.; Yu, X.N.; Zhang, S. Synergy assessment and optimization for water-energy-food nexus: Modeling and

application. Renew. Sust. Energ. Rev. 2020, 134, 110059. [CrossRef]
40. Zhang, T.Y.; Tan, Q.; Wang, S.P.; Zhang, T.; Hu, K.J. Assessment and management of composite risk in irrigated agriculture under

water-food-energy nexus and uncertainty. Environ. Sci. Pollut. Res. 2021, 262, 107322. [CrossRef]

http://doi.org/10.1016/j.wasman.2009.12.015
http://doi.org/10.1016/j.enpol.2009.10.063
http://doi.org/10.1016/S0377-2217(99)00407-5
http://doi.org/10.1016/j.jclepro.2020.122111
http://doi.org/10.3390/en10081201
http://doi.org/10.1016/j.scitotenv.2020.143324
http://doi.org/10.1016/j.jclepro.2020.123110
http://doi.org/10.1016/j.jclepro.2019.118945
http://doi.org/10.3390/ijerph16081378
http://www.ncbi.nlm.nih.gov/pubmed/30999591
http://doi.org/10.1007/s10614-014-9456-5
http://doi.org/10.1016/j.jclepro.2019.119160
http://doi.org/10.1016/j.resconrec.2020.105239
http://doi.org/10.1016/j.ecolecon.2019.106397
http://doi.org/10.1016/j.jclepro.2018.11.172
http://doi.org/10.1126/science.aan1114
http://doi.org/10.1023/A:1013548723393
http://doi.org/10.1007/s10668-020-01007-2
http://doi.org/10.1016/j.energy.2021.122917
http://doi.org/10.1016/0377-2217(79)90229-7
http://doi.org/10.1016/0304-4076(82)90004-5
http://doi.org/10.1016/j.resconrec.2020.105151
http://doi.org/10.1016/j.jclepro.2019.118092
http://doi.org/10.1007/s11356-020-09100-9
http://doi.org/10.1016/j.rser.2020.110059
http://doi.org/10.1016/j.agwat.2021.107322

	Introduction 
	Methodology 
	Three-Stage SBM-DEA Model 
	Conventional SBM-DEA Model 
	SFA Model for Inputs Adjustment 
	Improved SBM-DEA Model for Efficiency Measurement 

	Input and Output Indicators 
	Environmental Impact Factors 

	Study Problem 
	Results and Discussion 
	Changes in Water Quality 
	Water Pollution Control Efficiency without Input Indicators Adjustment 
	Analysis of SFA Regression Results 
	Water Pollution Control Efficiency with Input Adjustment 
	Policy Suggestions to Improve the Efficiency of Water Pollution Control 

	Conclusions 
	References

