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Abstract: The Itacaiúnas River basin, an important watershed for the mining sector in Brazil, has had
51% of its native forest area deforested in the last forty years. It is in the arc of deforestation of the
Amazon. It has protected areas essential to local biodiversity maintenance, in addition to owning
ore reserves. Here, we present the first study to assess the mean annual, seasonal, and spatialized
hydrological processes, providing results on a detailed scale in the basin, including mining sites. We
used five future projections of mean monthly temperature and daily precipitation as input to the
MGB hydrological model to simulate how hydrological processes, such as evapotranspiration, water
availability, and high flows, may change in the next 30 years. The future decrease in precipitation
(−8%) and increase in temperature (10%) may strengthen the monsoon seasonal cycle and lengthen
the dry month for evapotranspiration. Furthermore, some parts of the basin expect an increase in
the high flows (8.1%) and a decrease in water availability (−93.6%). These results provide subsidies
to develop adaptation strategies to ensure the viability of mining operations and safeguard the
surrounding environment and communities.

Keywords: climate change; hydrological processes; MGB hydrologic model; Itacaiúnas River

1. Introduction

Identifying and characterizing the impacts and vulnerabilities of climate change in
particular locations and industries are important for allowing stakeholders and regulators
to take proactive approaches to moderate risk [1,2]. For activities where the alternative of
moving is not an option, it is even more important. The mining sector, tied to geology, is a
significant contributor to the development of many countries worldwide, but is particularly
vulnerable to climate change. Therefore, climate changes risks should be considered in the
long-term adaptation strategy of the industry.

In Brazil, the mining industry represents about 5% of the GPD, reaching 10% if indirect
influence is also considered [3]. In 2020, iron, copper, manganese, and nickel ore constituted
13.6% of exports (Observatory of Economic Complexity-OEC). On the other hand, the
mining sector is an extractive industry, and it is responsible for environmental (e.g., water
resources use and land-use changes) and social impacts (e.g., conflict with indigenous
people). In order to maximize the positive and minimize negative externalities, the mining
industry is continually updating its practices regarding sustainability [4–8].

Climate change can alter air temperature and precipitation in different ways [9–13].
Depending on the region, it may lead to serious problems related to increasing extreme
flows [14], fire occurrences [15], tree mortality [16], evapotranspiration [17]; and decrease
in water availability [18–21] and other ecosystems services [22–25].

For the Amazon region, future climate projections agree with the increase in air
temperature [26]. Meanwhile, precipitation is projected to decrease in some regions of the
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Amazon (approximately −30% in the Xingu, Tapajós, Negro, and downstream Amazon
basins) and increase in others (35% in the upstream Amazon basin) [27,28]. These changes
may also increase forest fires, impacting land cover and local biodiversity [29]. Although
future scenarios have been considered, some studies indicate that climate change may
have already impacted the frequency and intensity of extreme hydrological events, causing
socioeconomic impacts [30–36]. A recent review surveyed 35 papers related to climate
change effects on agriculture, environmental conservation, water availability, flood risk,
groundwater, and hydroelectrical power generation in the Tocantins-Araguaia and Amazon
River basins, which encompass the Brazilian Amazon biome [37].

Understanding its responsibility beyond mining sites and expanding its influence on
the entire watershed, the mining industry is following the principles of the International
Council on Mining and Metals—ICMM—that suggests a catchment-based approach for
its projects and the improvement of the relationship between the different stakeholders
in the basin. This is similar to what has occurred in the Itacaiúnas River basin (IRB), a
sub-basin of the Tocantins River located in the Amazon biome in the state of Pará. In
this state, for instance, is the most prominent iron mine in the world, and the land area
(hectares) is devoted to mining activities is as follows: 6,563,874 (exploration activities),
206,823 (concessions), 22,269 (licensing), and 184,148 (artisanal mining) [38].

The IRB is a unique basin located in the arc-of deforestation of the Amazon, where
51% of its native forest area was deforested in the last forty years, and 12,000 km2 of its area
corresponds to national protected areas called Mosaic of Carajás, which is mostly covered
by primary forest and presents important mineral reserves for exploration and is monitored
and protected by a partnership between the Chico Mendes Biodiversity Conservation
Institute (ICMBIO) and Vale S.A. [39]. In contrast to the Amazon region, there is a lack of
research estimating the impacts of climate change on the local hydrology (e.g., high and
low flows and evapotranspiration) for the IRB and its mining sites.

Therefore, this study aimed to understand how climate change would affect hydro-
logical processes and water resource availability (actual evapotranspiration and discharge
patterns) in the IRB, including a local assessment of possible impacts on mining activities.
We used the MGB hydrological model to simulate changes in hydrological processes by
comparing the results from the future climate projections (data from 2021 to 2050, available
from 5 General Circulation models-GCMs) and with the reference period climate.

2. Study Area

The Itacaiúnas River (i.e., the IRB) (Figure 1) is a tributary of the Tocantins River
located in the Eastern Amazon in Pará state. The IRB has a drainage area of approximately
41,500 km2, of which 48% are deforested areas. Approximately one-quarter of the IRB cor-
responds to a mosaic of national conservation units and indigenous lands [40], commonly
called the “Mosaic of Carajás” (MoC). Together, the eleven municipalities of IRB have ap-
proximately 700,000 inhabitants and have a gross domestic product (GDP) of approximately
7 billion USD (6% of the GDP of states of the Amazon biome http://www.ibge.gov.br,
(accessed on 1 January 2021)). This area is home to the industrial extraction of iron ore,
manganese, copper, and nickel, including the world’s largest iron ore mine. The export of
the mining industry from the basin’s municipalities represents 74% of total exports of the
state of Pará, although the basin occupies only 3% of the state’s area.

The basin has a monsoon climate [41]. The mean annual precipitation is 1900 mm, and
95% of this total occurs during the wet season (November to May). The mean discharge
in the outflow of the IRB is approximately 900 m3/s [39]. In the last 40 years, the increase
in temperature has caused an increasing trend in potential evapotranspiration, while no
trend was observed for precipitation [42]. Additionally, intense deforestation in the region
induced an increase in the mean, maximum and minimum streamflow values [39,42].

http://www.ibge.gov.br


Water 2022, 14, 1416 3 of 21

Figure 1. Itacaiúnas River basin location; the Mosaic of Carajás location; land-use classes; mining
sites (Table 1) and main rivers.

Table 1. Description of the strategic points indicated in Figure 1.

ID Description

1 Mining site: Downstream Onça-Puma

2 Mining site: Downstream S11D

3 Mining site: Downstream Sossego

4 Mining site: Downstream Salobo

5 Mining influence: Confluence Gelado × Parauapebas rivers

6 Mining railroad: Vermelho river

3. Materials and Methods

The methodological framework was divided into three steps (Figure 2): (i) data acqui-
sition of the five GCMs; (ii) simulation of climate change scenarios with the hydrological
model; and (iii) assessment of climate change impacts on hydrological processes.

3.1. Data Acquisition of GCMs

This study focused on assessing the impacts of climate change on hydrological pro-
cesses (actual evapotranspiration and discharge) in two contrasting periods: the future
period (2021–2050) and the reference period (1971–2001). All data have 0.5◦ × 0.5◦ of spatial
resolution. For the reference period, daily precipitation data were retrieved from the Water
and Global Change Forcing Data (WFD) product and mean monthly air temperature data
were retrieved from the Climatic Research Unit (https://lr1.uea.ac.uk/cru/data, accessed
on 1 November 2020).

https://lr1.uea.ac.uk/cru/data
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Figure 2. Methodological framework for assessing climate change impacts on the hydrological
processes (AET: actual evapotranspiration; Q: discharge).

Five bias-corrected GCMs from the Coupled Model Intercomparison Project Phase
5—CMIP5 [43], bias corrected using WFD data [44] and available in the Earth System Grid
Federation website (https://esgf-index1.ceda.ac.uk/, accessed on 1 November 2020), were
used to provide future projections of mean monthly temperature and daily precipitation for
two RCP scenarios (RCP4.5 and RCP8.5): GFDL-ESM2 M, HADGEM2ES, IPSL-CM5A-LR,
MIROC-ESM-CHEM, and NorESM1 m (Table 2).

Table 2. GCMs and other information used in this study.

GCM
Spatial Resolution

(Available in Earth System
Grid Federation)

Institute Country

GFDL-ESM2 M 0.5◦ × 0.5◦ NOAA GFDL United States

HADGEM2ES 0.5◦ × 0.5◦ UK Met Office United Kingdom

IPSL-CM5A-LR 0.5◦ × 0.5◦ IPSL France

MIROC-ESM-CHEM 0.5◦ × 0.5◦ MIROC Japan

NorESM1-M 0.5◦ × 0.5◦ NorESM Norway

The bias correction methods are often applied to future climate data to correct sys-
tematic deviations from observed data. The authors in [44] remove the bias between GCM
and WFD using the trend-preserving statistical bias correction method based on quantile-
mapping functions. The method follows two steps: (i) adjusts the long-term monthly
mean of temperature (K) and precipitation (mm/day); (ii) adjusts the daily variability
of temperature and precipitation, which, crucially, is a better representation of extreme
events. The authors in [44] show that, in general, the GCM bias-corrected (long-term
monthly and daily data) is better than the GCM uncorrected for the entire globe from 1960
to 2000 (reference period), including South America. In Brazil, for instance, the anomalies

https://esgf-index1.ceda.ac.uk/
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(simulation-observation) of long-term monthly and daily temperature and precipitation
bias-corrected reach values next to zero, showing the success of bias-correction techniques
in representing the observed data.

3.2. Simulation of Climate Change with the Hydrological Model
3.2.1. The MGB Large-Scale Hydrological Model

The MGB (“Modelo de Grandes Bacias” in Portuguese; an acronym meaning “Model
of Large Basins”) large-scale hydrological model [45,46] was used to simulate the changes in
the hydrological processes due to the future climate projections compared to the reference
period climate. The MGB is a semi-distributed rainfall-runoff model widely used mainly
in South American river basins [47], although it has also been used in research on other
continents, such as Africa [48].

The first step of MGB is to perform an algorithm to divide the entire watershed into
small unit catchments. Physical features for each unit catchment are obtained from a digital
elevation model (DEM) (river width and depth, river length, Manning coefficient, drainage
area, and an estimate of the flooded area). Additionally, the percentage of land use/cover
and soil type (hydrological response units-HRUs) for each unit catchment was calculated.
Furthermore, the unit catchments can be grouped to represent macro-regions that have the
same model parameter values.

The MGB has two modules that simulate hydrological processes. The vertical module
simulates the water-energy balance and water bucket in each HRU, resulting in surface,
subsurface, and groundwater streamflow values. These variables are routed to the rivers
using a linear reservoir scheme [45]. Then, the discharge in each unit catchment is routed
downstream in the horizontal module.

The Penman–Monteith equation [49] calculates evapotranspiration from the canopy
(evaporation) and soil (directly or plant transpiration). The potential evapotranspiration,
which considers the surface resistance equal to zero, is used to evaporate the precipitation
intercepted in the canopy. The maximum canopy capacity is a function of the leaf area
index. Soil evapotranspiration considers the variation in surface resistance as a function
of soil moisture [45]. Surface resistance decreases as the soil moisture decreases from
field capacity to wilting point. Finally, the actual evapotranspiration is the sum of the
canopy evaporation and soil evapotranspiration. Runoff is calculated based on the variable
contribution area concept of the ARNO model [50]. Groundwater and subsurface are
calculated using nonlinear and linear functions based on water availability in the soil [45].

3.2.2. The MGB Model Setup

Here, we used the same model setup presented in [39]. A 30 m DEM Alos World 3D [51]
was used to divide the IRB into 1246 unit-catchments. A main channel rectangular cross-section
was obtained from in situ information for each river reach: w = 3 × (0.91 × A0.476), where “w”
is the river reach width (m); “A” is the drainage area (m2); and d = 0.547 × w1.146, where “d”
is the full depth of the river reach (m). Manning’s coefficient was defined as 0.025 (m-1/3. s)
for all river reaches. Additionally, we used the Shuttle Radar Topography Mission (SRTM)
Bare Earth Data [52] and HAND model [53] to estimate the stage–area–volume curve for each
unit-catchment [46,54].

The soil type map was obtained from The Digital Soil Map of the World (http://www.
fao.org/geonetwork, accessed on 1 February 2022; at 1:5,000,000 scale). The land use/cover
for 2018 was obtained from Landsat imagery [40], and the classification of these images
generated five land use/cover types: forest, deforested land, urban, mine, savanna, and
water areas. Combining the soil type and land use/cover maps, we obtained the HRUs. We
considered the same land use/cover map for reference and future periods. Vegetation data
(vegetation height, leaf index area, albedo, and superficial resistance) were obtained in [39].
For each HRU of a unit catchment, the soil parameters were defined and used to calibrate
the MGB model. These parameters were set globally for all unit catchments. The results
of the calibration and validation are presented in [39], and the model performance results

http://www.fao.org/geonetwork
http://www.fao.org/geonetwork
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were considered satisfactory. The Nash–Sutcliffe efficiency, Nash–Sutcliffe logarithmic
discharges, and long-term relative error values were 0.66, 0.70, and 17%, respectively, for
the first period assessed (1987 to 1989, when the land cover was mainly native forest) and
0.39, 0.70, and 21%, respectively, for the second period (1998 to 2007, when pasture areas
replaced 30,000 km2 of the native forest).

The precipitation and air temperature from the WFD product were used to simulate
the reference period. To simulate the future period (both RCP4.5 and RCP8.5 scenarios),
we used the precipitation and air temperature from the five bias corrected GCMs. Other
climate data used as inputs of MGB (wind speed, solar radiation, relative humidity, and air
pressure, all data in the surface) were obtained from the Climate Research Unit (CRU) with
a 10’ spatial resolution and long-term averages, and we considered the same information
for the reference and future periods. All climate data were interpolated for each unit
catchment using inverse distance weighting.

3.2.3. Assessment of Climate Change Impacts on Hydrological Processes

To evaluate the impact of climate change on hydrological processes in the IRB, we ap-
plied the MGB model to the reference period and the two climate scenarios. We compared
the mean annual and monthly precipitation (P), temperature (Temp), actual evapotran-
spiration (AET), and discharge (Q) in the IRB for the reference period and the GCMs
(individually and the mean of the GCMs) for both RCP scenarios. A two-sample t-test
(at the 5% significance level) was used to evaluate the statistical significance of the future
changes in these variables. For the discharge, we also compared the monthly values of the
coefficient of variation and the exceedance probability curve of daily discharge to analyze
the occurrence of extreme flows.

We also carried out a spatial assessment of the mean annual values of these P, Temp,
and AET, and of the discharges with an exceedance probability of 90% (Q90, a low reference
discharge) and 5% (Q5, a high reference discharge), focusing on analyzing the changes in
the protected areas (Mosaic of Carajás) and at strategic points for mining activity in the
basin (Table 1 and Figure 1).

4. Results
4.1. Air Temperature and Precipitation

Table 3 presents the mean annual precipitation and temperature in the reference period
(WFD and CRU) and future period (each GCM individually and the mean of the 5 GCMs),
and the mean relative difference (MRD) between the mean of GCMs (mGCMs) and WFD.
All the GCMs agreed with an increase in mean air temperature and a decrease in mean
annual precipitation in the IRB in the future period (2021–2050) but with different intensities.
A higher variation (coefficient of variation of 5.5%) between the GCMs was observed for
the projection of the annual precipitation for RCP8.5. The mGCMs indicated an increase of
2.2 ◦C in the air temperature of the IRB (RCP4.5) and 2.7 ◦C (RCP8.5). The mean estimated
decrease in annual precipitation was 121 mm for RCP 4.5 and 156 mm for RCP 8.5.

Although all GCMs indicated annual average precipitation lower than that of the
reference period for both scenarios, the models indicated different levels of variability
in the annual precipitation (Figure 3). The IPSL indicated the highest average annual
precipitation caused by years with very high total annual precipitation, especially in the
RCP4.5 scenario. The GFDL indicated a higher frequency of years with annual average
precipitation less than the reference period.
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Table 3. Mean annual precipitation and temperature in the reference period (WFD) and future
period (each GCM and mGCMs), and the mean relative difference (MRD) between the GCMs’ mean
and WFD.

Time Period Data Source
Annual Precipitation (mm/Year) Mean Annual Temperature (◦C)

RCP4.5 RCP8.5 RCP4.5 RCP8.5

1971–2001 WFD 1937.8 25.9

2021–2050

GFDL 1756.9 1635.4 27.8 28.1

HADGEM2ES 1760.7 1745.4 28.5 28.8

IPSL 1822.7 1928.0 28.2 28.5

MIROC 1880.0 1758.7 28.2 29.2

NORESM1 m 1861.5 1840.9 27.8 28.1

Mean of GCMs 1816.4 1781.7 28.1 28.6

MRD between Mean GCMs and WFD −6% −8% 8% 10%

Figure 3. Boxplot of mean annual precipitation (mm/year) for each GCM and scenario (RCP4.5
and RCP8.5).

Figure 4 presents the monthly seasonality of precipitation in the IRB. All models
indicated a decrease in the monthly mean precipitation from June to November in both
scenarios. Considering the mGCMs, the future precipitation for these months will be 50%
lower than the reference period. These six-month periods currently account for 25% of the
annual precipitation but will decrease to 13% under RCP8.5. The number of months with
mean precipitation lower than 100 mm can increase from four (June to September) to six
(May to October). The rainiest trimester is January to March in the reference and future
periods, except for the predicted precipitation with the MIROC model (which indicates
that the rainiest trimester is from December to February). At least four GCMs indicated
increasing precipitation during these months in the future, and the mGCMs indicated an
increase of 9.6% in the precipitation of this trimester.
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Figure 4. Mean monthly precipitation (mm/month) in the IRB for the WFD, each GCM, and both
RCP scenarios.

Figure 5 presents the monthly seasonality of temperatures for present and future
periods. All GCMs agree with the increase in mean monthly temperature. Similar to the
present seasonality, the future period is characterized by two peaks of temperature (May
and October), and the highest temperatures occur during dry months.

Figure 5. Mean monthly temperature (◦C) in the IRB for the WFD, each GCM, and both RCP scenarios.

The spatialized assessment of mGCMs shows a decrease in the annual average precip-
itation for the future period compared to the reference period in all unit catchments of the
IRB (Figure 6). The highest differences were observed in the southwestern part of the basin,
where the average values of annual precipitation in the future period (RCP8.5) were up to
288 mm/year, decreasing in the north-east, where precipitation can reach 151 mm/year.
The mean annual temperature (mGCMs) increases in all unit-catchments (Figure 7). The
mean absolute differences between the temperature of mGCMs and reference periods
increase from west to east of the IRB. The mining sites are mainly affected by a decrease in
precipitation, which may cause a reduction in water availability. Furthermore, the increase
in temperature in the west added to land cover may increase forest fires.
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Figure 6. (A) Mean annual precipitation P (mm/year) for the reference period; and (B) mean absolute
differences (mm/year) of mean annual precipitation between the future (mGCMs) and reference
periods for the RCP8.5 scenario (we decided not to show the results of RCP4.5 because the results
showed similar spatial patterns).

In the MoC, the mGCMs indicated that the mean annual temperature increased by
6% (RCP4.5) and 8% (RCP8.5) in comparison with the reference period, while out of MoC,
these values were 9% (RCP4.5) and 11% (RCP8.5). Mean annual precipitation was the
opposite. The mGCMs indicated a decrease of 7% (RCP4.5) and 9% (RCP8.5) in the MoC,
and a decrease of 6% (RCP4.5) and 7% (RCP8.5) out of MoC.

t-test indicated significant changes in the mean annual precipitation of the GFDL and
HADGEME2S (both RCP4.5 and RCP8.5) and MIROC (RCP8.5) in comparison with the
WFD. The mean annual precipitation of all GCMs also indicated significant changes in the
future. All GCM models and the mGCMs indicated significant changes in mean monthly
precipitation, except in May, for both scenarios.
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Figure 7. (A) Mean annual temperature Temp (◦C) for the reference period, and (B) mean absolute
differences (◦C) of mean annual temperature between the future (mGCMs) and reference periods
for the RCP8.5 scenario (we decided not to show the results of RCP4.5 because the results showed
similar spatial patterns).

4.2. Evapotranspiration

The mean annual AET in the IRB in the reference period was 1218.4 mm/year,
while the annual average AETs of the IRB for the five GCMs were 1126.3 mm/year and
1112.4 mm/year for RCP4.5 and RCP8.5, respectively (Table 4). Comparing the GCMs, the
lowest AET was estimated from the GFDL and RCP8.5 scenario (influenced by a year with
low precipitation), and the highest AET was estimated from HADGEM2ES and RCP4.5
(Figure 8).



Water 2022, 14, 1416 11 of 21

Table 4. Mean annual actual evapotranspiration in the reference period (WFD) and future period (each
GCM and mGCMs), and the mean relative difference (MRD) between the GCMs’ mean and WFD.

Time Period Data Source
Annual AET (mm/Year)

RCP4.5 RCP8.5

1971–2001 WFD 1218.4

2021–2050

GFDL 1050.2 1025.4

HADGEM2ES 1204.9 1190.6

IPSL 1050.9 1068.9

MIROC 1140.2 1115.2

NORESM1 m 1185.6 1161.9

Mean of GCMs 1126.3 1112.4

MRD between Mean GCMs and WFD −8% −9%

Figure 8. Mean annual evapotranspiration AET (mm/year) for each GCM and both scenarios in
the IRB.

The AET did not exhibit seasonality for the reference period, which was probably
due to a combination of higher canopy interception during the rainy season and evapo-
transpiration sustained by soil water storage during the dry season, as suggested by [55].
However, a strong decrease in AET from August to December is predicted in the future
scenarios for all models, especially from September to November, using the data from IPSL
and GFDL (Figure 9). The reduction in AET indicates that the terrestrial water storage will
not sustain the higher potential evapotranspiration in the longest dry period predicted in
future scenarios. The values of AET estimated by HADGEM2ES and NORESM1 m were
similar to the AET estimated by WFD, mainly from January to May. They also predicted an
increase in the mean AET at the beginning of the dry period (June and July).

The mGCMs indicated a decrease in actual evapotranspiration for the future period
compared to the reference period in all unit catchments of the IRB (Figure 10). The spatial
variation indicated that the changes in precipitation, rather than temperature, were the main
factor responsible for the changes in actual evapotranspiration. The highest differences
were observed in the southwestern part of the basin, but the differences decreased in the
northeastern part of the river basin. At the mining sites, the relative changes between the
future and reference periods indicated decreases of up to 200 mm and 160 mm in the mean
annual actual evapotranspiration and streamflow under RCP8.5, respectively.
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Figure 9. Seasonality of mean monthly AET (mm/month) in the IRB. The values are estimated for
the reference and future periods for all GCM and the RCP4.5 and 8.5 scenarios.

Figure 10. (A) Annual average actual evapotranspiration AET (mm/year) for the reference period;
and (B) mean absolute differences (mm/year) of annual average AET between the future (mGCMs)
and reference periods for the RCP8.5 scenario (we decided not to show the results of RCP4.5 because
the results showed similar spatial patterns).
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The Mosaic of Carajás is the region with the highest AET in the reference period (mean
annual AET of 1500 mm/year versus 1100 mm/year outside of the mosaic). The mean
annual AET in MOC was 1377 (RCP4.5) and 1362 mm (RCP8.5), as calculated by the mean
of the GCMs. Outside of the Mosaic of Carajás, the mean annual AET in the future period
was 1022 and 1009 mm in the RCP4.5 and RCP8.5 scenarios, respectively.

All the GCMs indicated significant changes in the mean annual AET, except for the
AET estimated using input data from HADGEM2ES (only RCP4.5), including the mean
annual AET of all models. Like precipitation, all GCM models and the mGCMs indicated
significant changes in the mean monthly AET for both scenarios, except in May.

4.3. Discharges

For RCP4.5, while IPSL, MIROC, and GFDL models indicated an increase in the outlet
discharges in the future compared with that in the reference period, HADGEM2ES and
NORESM1 m indicated the opposite result (Figure 11 and Table 5). These models predicted
a lower reduction in precipitation during the dry season and a higher AET, and these values
were closer to those calculated for the reference period. For RCP8.5, only the discharges
estimated using the input of IPSL (1203 m3/s) were greater than those for the reference
period (946 m3/s).

Figure 11. Mean discharges (m3/s) for each GCM and both scenarios in the IRB.

Table 5. Itacaiúnas River basin flow in the reference period (WFD) and future period (each GCM and
mGCMs), and the mean relative difference (MRD) between the GCMs’ mean and WFD.

Time Period Data Source
Discharge (m3/s)

RCP4.5 RCP8.5

1971–2001 WFD 946

2021–2050

GFDL 973 828

HADGEM2ES 723 748

IPSL 1028 1203

MIROC 975 867

NORESM1 m 896 912

Mean of GCMs 919 911

MRD between Mean GCMs and WFD −3% −4%

Figure 12A,B present the seasonality of discharges in the IRB for the reference period
and the future period for each GCM and RCP scenario. Regarding the mean monthly
discharges estimated by the RCP4.5 scenario, at least 4 of the 5 GCMs indicated discharges
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lower than the reference period from June to December due to the long dry period. The
reduction in discharges calculated using the five GCMs in these months varied from 16 to
59% compared to the reference period. In general, the discharges obtained from all GCM
input data indicated an increase relative to the reference period from January to May, except
for the discharge obtained from HADGEM2ES. Regarding monthly discharges estimated
by RCP8.5, all models indicated a reduction in discharges from June to December, which
varied from 14 to 68%.

Figure 12. Seasonality of discharge (A,B) and exceedance probability of discharges (C,D) obtained
using the input data for each GCM and both scenarios in the IRB. The black line presents the
discharges obtained using the WFD input data.

Figure 12C,D present the flow duration curves using the input data for each GCM and
both scenarios. All the future discharges with a 90% exceedance probability (Q90, discharge
exceeded or equaled in 90% of the time, Figure 12C,D) estimated by GCMs were lower than
those of the reference period. The result implies less legal water availability for water users
in the IRB. Mean Q90 of the GCM models indicated a reduction of 85 m3/s (RCP4.5) or 95
m3/s (RCP8.5) in the future compared to the reference period. Future mean Q5 (discharge
with a 5% of exceedance probability) indicated an increase of 150 m3/s (RCP4.5) or 210
m3/s (RCP8.5) in the future in comparison with the reference period. Despite the difference
in discharges for the future and reference periods, the hypothesis test indicated significant
changes only in the dry months for the mGCMs.

Figure 13 presents the monthly coefficient of variation (CV) in discharge for the
reference and future periods. The results of the models indicated that the CV would
decrease during the months with lower precipitation due to the predicted reduction in dry
period precipitation. For RCP4.5, the GFDL and IPSL models presented higher CV values,
surpassing 250% (GFDL) and 200% (IPSL) in November. For RCP8.5, the behavior of CV
was similar to RCP4.5, but MIROC and NORESM1 m models presented higher CVs than
that of the reference period.

The spatialized assessment of extreme flows shows a strong decrease in the Q90,
mainly in the western IRB. The reduction in Q90 could reach 100% in some rivers (unit-
catchments), affecting all the mining sites (Figure 14A). Oppositely, the future projections
indicate an increase in Q5, mainly in the eastern IRB, reaching 35%.
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Figure 13. Monthly coefficient of variation in discharges for the WFD and GCM models and
both scenarios.

Table 6 presents the MRDs for Q90 and Q5 discharges between the future and reference
periods and both scenarios at the mining sites (Figure 1). Downstream of two mining sites
(IDs 2 and 5), the Q90 is expected to be reduced by more than 90%. For the Q5 flow, the
GCMs indicated an increase of up to 8.1% in the future period. The two sites with the
highest estimates of increased maximum flows (Q5) already have flooding problems.

Table 6. Mean relative differences in Q90 and Q5 between the future and reference periods and
both scenarios.

ID
Mean Relative Differences Q90 (%) Mean Relative Differences Q5 (%)

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

1 −67.0 −75.4 0.8 1.3

2 −90.1 −96.7 0.2 2.3

3 −61.0 −69.4 3.2 3.4

4 −86.4 −93.6 2.6 5.3

5 −75.5 −85.1 4.7 8.1

6 −55.6 −63.8 3.8 6.6
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Figure 14. Mean relative differences in Q90 (A) and Q5 (B) between the future (RCP8.5) and reference
periods and both scenarios spatialized in the IRB (we decided not to show the results of RCP4.5
because the results showed similar spatial patterns).

5. Discussion
5.1. Hydrological Modeling and General Circulation Model Aspects

We used air temperature (long-term mean monthly) and precipitation (daily) data to
assess climate change. Precipitation is the primary input data in the regional hydrological
cycle and it is strongly related to other meteorological variables in the equatorial climate
zone (i.e., the Amazon region) [56].

As a simplification of this work, the relative humidity, sunshine duration, wind veloc-
ity, and atmospheric pressure were considered fixed for reference and future periods, which
may be a limitation of this study, as sunshine duration and relative humidity influence the
potential evapotranspiration estimates. In addition, the future climate estimated by the
Sixth Assessment Report (AR6-IPCC) can modify the magnitude of changes in evapotran-
spiration and discharges simulated. The Manning coefficient was also considered fixed by
river reach.

In the model simulations, the same land use and model setup were used for the
reference and future periods to isolate the effect of the precipitation and temperature
changes on streamflow. The change in forest land use for pasture since the 1970s generated
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a significant increase in the flow in the basin during the period, with a slight opposite effect
caused by climate variation [42]. The land use in the future simulations was considered
constant and equal to the land use in 2018, which is unlikely to occur in the real world [57].
In addition to direct anthropogenic land-use changes, climate change can affect land
cover. For example, the increase in temperature in the eastern region will make this
region no longer suitable as a habitat for various pollinating and seed-dispersing forest
species [58–60]. If deforestation continues in the basin, an increase in the streamflow is
expected, as shown by [39]. This increase can enhance the increase in flow during the flood
period but offset the changes in the monthly flow during the drought period.

Additionally, climate changes can promote changes in the type and characteristics of
the vegetation. For example, a longer dry season is predicted, resulting in a very low AET
for the end of the dry season, which can cause tree mortality and result in changes in the
leaf index area, albedo, and superficial resistance.

The ensemble GCMs indicated a decrease in the mean annual precipitation of 8%
(RCP8.5) or 6% (RCP4.5) and an increase in the mean air temperature of 10% (RCP8.5) or 8%
(RCP4.5) compared to the reference period. This behavior is expected for ensemble GCMs
in the eastern Amazon Basin [26,28,61]. Our results also indicate that the future could
be drier (lower mean annual precipitation), following the results of [61] and [27] for the
Amazon. However, the cited results may be related to dry biases of GCMs for the Amazon
region, since the cited studies did not use bias-corrected data [27]. Using bias-corrected
data, we found that all the five GCMs indicated a decrease in precipitation from June to
November, with a mean value 50% lower than that in the reference period.

Ref. [62] assessed precipitation and air temperature anomalies from the future (en-
semble of GCMs, 2070–2100) and present (CRU data, 1975–2005). The authors showed
differences between the CGMs and CRU data for the southern Amazon. The values varied
from +15% to −10% (wet season) and +10 to −60% (dry season) for the southern Amazon.
Considering the ensemble of GCMs, our results indicated a decrease of 50% (dry season)
and an increase of 9.6% (wet season) in future precipitation. The authors also indicated a
decrease in evapotranspiration in the dry season in the southern Amazon, but this decrease
was slighter than the reduction estimated in the current study. The water cycle (estimated
by precipitation minus evapotranspiration) estimated by [62] indicated an austral summer
in the future (2070–2100) that is wetter than that in the present period (1975–2005) in the
southern Amazon. Our results indicate the opposite, except for the streamflow estimated
using HADGEM2ES data.

Quantifying the uncertainties of temperature and precipitation projections on dis-
charge and evapotranspiration is essential to developing robust adaptation strategies.
Because P is the key driver influencing hydrological projections, uncertainties in P are more
critical than uncertainties in Temp [63]. The results showed MRD between precipitation
from the future (RCP8.5) and reference period of about −8% from June to November, but
this value varies from −75% (IPSL) to −30%(NORESM1m). Despite that, the GCMs from
CMPI5 performed well in the IRB region. However, the models underestimate total rainfall
in the dry season compared with observed and reanalysis data, except for HADGEM2-
ES [64]. The hydrological projections results experienced a similar pattern as expected. AET
and Q decrease mainly in dry months (Figures 9 and 12), supported by previous studies in
the Tocantins-Araguaia River basin [65].

5.2. Practical Implications

Different studies in the Amazon suggest that vegetation transpiration during the dry
season is sustained at the expense of soil water storage [66–68]. Additionally, the ecological
services provided by rainforests depend on the supply of water from the dry months [61].
With the decrease in precipitation predicted by the GCMs, the modeled AET strongly
decreased in these months. The modeled streamflow presents the strongest CV at the dry
season’s end and the rainy season’s beginning due to the lack of soil water availability.
As previously observed for the IRB, a reduction in soil water storage causes a reduction
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in streamflow at the beginning of the wet season (even with average precipitation) [55].
Prolonged droughts previously observed in the Amazon (e.g., 2005 and 2010) have been
shown to impact tree mortality (Rowland et al., 2015) and fire occurrence (Chen et al.,
2013). A similar effect can be expected in the basin if the predicted scenarios of increased
temperature and more extended dry periods are confirmed.

The strong decrease in the reference flow of the dry period Q90 indicates that the flow
currently required for a user can be guaranteed for a smaller percentage of the time, and
permission for water use should be revised in the future. The increases in the average and
maximum flows emphasize the importance of considering the impact of climate change in
the design of water storage structures or water drainage to serve the projects and cities in
the basin, especially those with a longer useful life.

Climate change affects mining sites in different ways. The increase in air temperature
and decrease in precipitation may cause an increase in forest fires, water scarcity, and
floods, affecting the viability of mining operations [19]. Transportation routes and mining
infrastructure (e.g., infrastructure designed not considering climate changes) will be more
susceptible to failure due to the increase in the frequency and severity of floods. These and
other risks and opportunities should also be better evaluated, such as a possible reduction
in ore moisture and a deterioration in the thermal comfort of outdoor workers.

Understanding the impact of climate change on hydrological processes is essential to
managing water resources in watersheds. The Sustainable Development Goals (SDGs) of
the United Nations (UN) and several authors [18,26,28,69–73] highlighted this concern. For
the mining sector, the International Council on Mining and Metals Report, already quoted,
highlights the importance of considering climate change scenarios to manage water use
by different users, including mining. This assessment is even more critical in the Amazon
Biome, where there are few studies on the topic. Considering the entire basin or influence
area in analyzing the climate change risks is important, since obtaining and maintaining a
social license to operate will become more difficult in communities in which climate change
exacerbates existing vulnerabilities and social conflicts.

6. Conclusions

This paper investigates the impact of future precipitation and temperature projec-
tions on discharges and evapotranspiration in the Itacaiúnas River basin using the MGB
hydrological model.

The main finds of this study are related to the precipitation, evapotranspiration, and
discharges projections. The results indicated that the strengthening of the monsoon seasonal
cycle and the lengthening of the dry month period for precipitation and evapotranspiration
are expected in the future climate conditions for the IRB. In general, there was an increase in
the high flows (from 0 to 20% exceedance probability) and a decrease in the other reference
discharges (mainly low flows, with 90% exceedance probability). At mining sites, mainly
located in protected areas, climate change may cause an increase in temperature, water
scarcity, floods, and a decrease in precipitation.

Finally, the present study can help policymakers identify the need for mitigation
policies to address climate change and its effects on the watershed, such as the risk of water
shortages and floods for water users due to discharges projections; the impacts on the
fauna and flora in riverine habitats due to river flow alterations; the risk of forest fires and
impacts to biodiversity due to drier and hotter future climate conditions. Additionally,
these results should be used to develop adaptation strategies to ensure the viability of
mining operations and safeguard the surrounding environment and communities.
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