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Abstract: The outbreak of cyanobacterial blooms is a serious water environmental problem, and
the harm it brings to aquatic ecosystems and water supply systems cannot be underestimated. It
is very important to establish an accurate prediction model of cyanobacterial bloom concentration,
which is a challenging issue. Machine learning techniques can improve the prediction accuracy, but a
large amount of historical monitoring data is needed to train these models. For some waters with an
inconvenient geographical location or frequent sensor failures, there are not enough historical data to
train the model. To deal with this problem, a fused model based on a transfer learning method is
proposed in this paper. In this study, the data of water environment with a large amount of historical
monitoring data are taken as the source domain in order to learn the knowledge of cyanobacterial
bloom growth characteristics and train the prediction model. The data of the water environment with
a small amount of historical monitoring data are taken as the target domain in order to load the model
trained in the source domain. Then, the training set of the target domain is used to participate in the
inter-layer fine-tuning training of the model to obtain the transfer learning model. At last, the transfer
learning model is fused with a convolutional neural network to obtain the prediction model. Various
experiments are conducted for a 2 h prediction on the test set of the target domain. The results show
that the proposed model can significantly improve the prediction accuracy of cyanobacterial blooms
for the water environment with a low data volume.

Keywords: water environmental problem; cyanobacterial bloom prediction; transfer learning;
fusion model

1. Introduction

Excessive nitrogen and phosphorus elements in the water environment will cause
water eutrophication [1]. In this eutrophic water environment, cyanobacteria will over-
produce, which is called an outbreak of cyanobacterial blooms. The harm of this is huge:
the visible harm is that the water body becomes green and smelly, affecting the water
appearance and water quality; the invisible harm is that cyanobacterial blooms produce
harmful toxins [2,3], poisoning fish and shrimp and other aquatic plants in the aquatic
environment, as well as humans and animals [4,5], bringing huge losses to the farming
industry and normal production life.

In the past 30 years, harmful algal blooms (HABs) have occurred frequently in China’s
coastal waters, resulting in economic losses of more than CNY 5.9 billion due to massive
fish and shellfish kills and negative impacts on tourism [6]. Aguilera et al. [7] searched
the published literature on the occurrence of cyanobacterial blooms and cyanobacterial
toxins and found a total of 241 bloom events between 1994 and 2014 in Argentina. Gorham
et al. [8] found a significant positive correlation between drinking water sources impacted
by cyanobacterial blooms and hepatocellular carcinoma incidence rates. If the cyanobac-
terial bloom concentration can be accurately predicted in advance, the prevention and
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control measures can be deployed in advance, and the supply of alternate drinking water
sources can be carried out to minimize the harm that cyanobacterial blooms may produce.
Therefore, the prediction of cyanobacterial bloom concentration has been a research topic
of interest to scholars.

The challenge of accurate prediction for cyanobacterial bloom concentration is two-
fold. On the one hand, there are many factors affecting the growth of cyanobacteria, such
as the water temperature, pH, water conductivity, turbidity, etc. [9]. The key to solve this
problem is to determine the magnitude of the influence of external factors on the growth of
cyanobacteria, which can be obtained by the correlation among the sequence of external
factors. On the other hand, the growth changes in cyanobacteria are irregular and easily
affected by external factors [10]. Traditional prediction methods include nutrient models
based on cyanobacterial growth mechanisms [11,12] and ecodynamic models [13,14]. Nutri-
ent salt models consider the interaction between algal biomass changes and nutrients and
judge the water quality by the obtained cyanobacterial biomass changes. These traditional
models are not applicable to waters with a large spatial–geographic extent. Ecodynamic
models, such as WASP (Water Quality Analysis Simulation Program), EFDC (Environmen-
tal Fluid Dynamics Code), and CE-QUAL-W2 (two dimensional hydrodynamic and water
quality model) [15], consider the effects of physical, chemical, and biological processes on
the water ecosystem and simulate the dynamic changes in algae. These models can reflect
the growth characteristics and patterns of algae, which are of great significance for under-
standing and preventing cyanobacterial bloom outbreaks. However, these models have a
large number of parameters to be estimated, require actual data of the water ecosystem for
parameter optimization rate determination, and are more dependent on experience.

Recently, artificial intelligence models have been applied to the field of cyanobacterial
bloom concentration prediction. Artificial neural networks (ANN) have greater advantages
for analyzing complex data [16–18] and can provide effective solutions to nonlinear prob-
lems. For example, Recknage et al. [19] developed an artificial neural network prediction
model using historical data on algal biomass and external driving variables observed in
four different freshwater lake systems. Hill et al. [20] developed a detection and predic-
tion system for harmful algal blooms based on a convolutional neural network (CNN) to
monitor Mexican waters using remote sensing short-term data. Cho et al. [21] applied the
long short-term memory (LSTM) networks to predict the concentration of chlorophyll-a (a
recognized characterization of algal activity) using the daily water quality data as input,
which showed a better performance in 4-day and 1-day prediction tasks. These models
all demonstrate the excellent ability of deep learning methods for algal bloom prediction.
However, all of these models require a large amount of historical data to train in order
to obtain accurate models. Regardless, there exist some water areas where the amount
of monitoring data obtained is relatively small due to an inconvenient location, late start
of monitoring, or frequent sensor failures. Thus, it is difficult to train accurate prediction
models for these water areas with a low data volume.

Transfer learning is the approach that can address the problem introduced above.
The concept of transfer learning is to apply knowledge or patterns learned in one task to
different but related tasks so that these tasks can be solved more effectively and efficiently.
For example, Wu et al. [22] proposed a method combining industry chain information
transfer learning with a deep learning model to predict stock quotes, which improved
the prediction accuracy of a target stock market index. Grubinger et al. [23] proposed an
online transfer learning framework for predicting residential temperatures that significantly
improved the prediction accuracy using data from just a few weeks before new construction.
Hu et al. [24] applied transfer learning techniques to predict short-term wind speeds on
newly built farms using data training from data-rich farms. These above literatures prove
the effectiveness of the transfer learning, especially in the case of a small amount of data.

Based on the idea of transfer learning, Tian et al. [25] presented a transfer-learning-
based neural network model for chlorophyll-a dynamics prediction in an estuary reservoir
in eastern China for a long-term application, under a small-time interval condition. Dif-
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ferent from the literature [25], we propose a prediction method based on transfer learning
to solve the problem of a small amount of data in some water areas. When the amount
of data in the target domain is small, the model cannot be well trained by only using the
data in the target domain. However, the knowledge of the cyanobacteria bloom growth
in different water areas is similar. Thus, the motivation of this study is to fine-tune by
freezing some parameters of the model to realize the prediction of cyanobacterial bloom
concentration across different water regions. In addition, to reduce the effects of diversities
of different water areas, the prediction model for the target domain is different from the
source domain, which uses a CNN network for sequence feature extraction and a fine-tuned
model together.

The main contributions of this paper are as follows: (1) a fused transfer learning model
is proposed to achieve the prediction of cyanobacterial bloom concentration across different
water areas; (2) a bidirectional long short-term memory (BiLSTM) network is used to set
up the source domain model, which can extract sequence long-term dependence to learn
cyanobacteria bloom growth knowledge; (3) a two-branch model is presented for the target
domain, where one branch is based on a CNN network for sequence feature extraction
and the other branch is the fine-tuned model. In addition, various experiments on the real
monitoring water quality data are conducted. The experimental results show that the error
of the proposed model is lower than that of the model trained alone at the target domain,
which proves the effectiveness and efficiency of the proposed model.

This paper is organized as follows: Section 2 shows the details of the research data and
the proposed method; Section 3 gives out the experiments and results. Furthermore, some
discussions on the generalization ability and the performance on different prediction times
of the proposed method are given out in this section; Section 4 gives out the conclusion
and possible future research directions.

2. Materials and Methods

In this paper, an integrated method to solve the problem of the amount of historical
data in some waters being too small to build an accurate prediction model of cyanobacterial
bloom concentration is introduced. To test the performance of the proposed model, the
monitoring data obtained from Taihu Lake are used as experimental data. The research
area and the proposed model are introduced as follows.

2.1. Research Area and Data Sources

Taihu Lake (30◦5′–32◦8′ N, 119◦8′–121◦55′ E) is one of the five largest freshwater lakes
in China. The water area is 2156.16 square kilometers and the total length of the lake
shoreline is 393.2 km [26]. Since 1980, eutrophication has continued to affect the water
quality of Taihu Lake, owing to the large-scale increase in algal blooms due to increased
nutrient abundance from rivers and agriculture, higher weather temperatures, and the
influence of local wind conditions [27]. In particular, in 2007, a severe cyanobacterial
pollution outbreak in Taihu Lake made the city stop the drinking water supply for several
days [28]. This became the key event that prompted the Chinese authorities to address the
water pollution problem in Taihu Lake.

In recent years, a large number of studies have been conducted on Taihu Lake. For
example, Zhao et al. [29] studied the effects of cyanobacterial blooms on plankton diversity
and composition in Taihu Lake, analyzing data from cyanobacteria, phytoplankton, and
physicochemical samples collected in four seasons in 2017 and 2018. Zhang et al. [30]
used a sub-pixel approach (algae pixel-growing algorithm) with 13 years of Moderate
Resolution Imaging Spectroradiometer (MODIS) data to assess changes in bloom extension,
start date, duration, and frequency of occurrence before and after a large-scale bloom event.
These works introduced above provide a foundation for the study of the mechanism of
cyanobacteria bloom.

In this paper, we took Taihu Lake as the research area and used the deep learning-
based methods to predict algal bloom concentration. We considered the problem of the
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small amount of monitoring data in some waters and adopted transfer learning to learn
the knowledge of algal bloom growth from waters with abundant data to improve the
prediction accuracy of cyanobacterial blooms in water areas with less data.

In this paper, continuous monitoring data from the 7th, 8th, and 9th monitoring
platforms in Taihu Lake were used as experimental data. The geographical location of each
site is shown in Figure 1, which is marked as S7, S8, and S9 respectively. The sampling
interval of the monitoring data was half an hour, and the monitoring elements of each data
set included chlorophyll-a concentration (Chl-a, µg/L), water temperature (Temp, ◦C), pH,
conductivity (Conduct, µS/cm), turbidity (Turb, NTU), dissolved oxygen (DO, mg/L), and
cyanobacterial density (Cyanob, 104 cells/L). These monitoring elements are often used to
study the growth of algal blooms in the shallow eutrophic lakes [31].

S7

S8

S9

Taihu

Figure 1. Locations of the monitoring platforms.

In the experiments of this paper, S7 and S8 were used as the target domains, and S9
was used as the source domain. The selected data of S9 are from 11 June 2016, 2:00 to 30
September 2016, 24:00 with 5372 sets of data. To show the examples of the data in these
monitoring platforms, some of the data in S9 are listed in Table 1.

Table 1. Some of the data obtained from S9 station.

Data
Chl-a Temp

pH
Conduct Turb DO Cyanob

(µg/L) (◦C) (µS/cm) (NTU) (mg/L) (104 cells/L)

11 June 2016, 2:00 7.0 25.13 8.61 400 52.2 8.41 780.8
11 June 2016, 2:30 5.5 25.04 8.55 402 52.2 8.24 337.0
11 June 2016, 3:00 5.9 25.04 8.53 402 50.7 8.25 382.0

. . . . . . . . . . . . . . . . . . . . . . . .
30 September 2016, 22:30 8.8 23.42 8.24 227 98.0 8.13 799.6
30 September 2016, 23:00 8.3 23.40 8.22 275 88.1 8.10 747.3
30 September 2016, 23:30 8.8 23.39 8.22 275 92.4 8.09 705.8

Remark 1. Some studies indicate that there is a strong positive correlation between phytoplankton
color index and chlorophyll-a estimates [32]. Thus, the chlorophyll-a concentration is often used as a
surrogate indicator for the growth of cyanobacterial harmful algal blooms [15,33]. Therefore, the
chlorophyll-a concentration is predicted to show the condition of the algal bloom concentration in
this paper.
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2.2. Proposed Method

There are very complex relationships among the influence factors of the algal blooms,
including the weather and the season changes. This is the main reason why the deep-
learning-based method is used in this study. The problem we study in this paper is a
classical problem of multivariate time series forecasting [34,35]. The prediction process of
the time series is as follows [36]: create a sliding window, and there are n data points in the
window, where n is called the window size; use the n data points in the window to predict
the (n + τ)-th data point of the time series, where τ is called the prediction time step; slide
the window along the time series to the next data point, and repeat the process above until
all of the data are used.

The main idea of the proposed method is to combine the transfer learning method
with deep learning method to build a fusion prediction model, which mainly includes bi-
directional long short-term memory (BiLSTM), convolutional neural network (CNN), and
transfer learning methods. The framework of the proposed method is shown in Figure 2,
which will be introduced in details as follows.

Input variables

BiLSTM

BiLSTM

Convolution layer

BiLSTM

Max pooling layer

Dense layer

Dropout

Output

Input variables

Convolution layer

Dense layer

BiLSTM

BiLSTM

BiLSTM

Concatenate

Dense layer

Output

Source 

domain

Target

domain

Freezing

Freezing

Fine-tuning

Max pooling layer

Dense layerFine-tuning

Figure 2. The framework of the proposed method.

2.2.1. Transfer Learning Method for Modeling

Traditional machine learning approaches require a one-to-one relationship between
the training set of data and individual models. Supervised learning with an excellent
performance requires a large number of data labels for training, but many collected data in
practical applications are unlabeled, and the manual labeling process is time-consuming
and costly. Transfer learning is used to solve the problem of insufficient training data,
which aims to apply the knowledge learned in one task to another different but similar
task to improve the efficiency of solving that task. Thus, transfer learning can efficiently
use existing data resources for modeling and reduce the amount of data required for new
task development.

Transfer learning is divided into two categories—homogeneous and heterogeneous
transfer learning [37]—and there are four main approaches for transfer learning, namely
instance-based, feature-based, parameter-based, and relation-based methods [38,39]. In
this study, the parameter-based transfer learning method was used for modeling. The main
reason is that the parameter-based transfer methods use the model parameters learned
in the source domain for the target domain, which is popular for its good compatibility
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with deep learning method. The details of the parameter-based transfer learning process is
shown in Figure 2, which will be introduced as follows.

Domain and task are the two basic concepts of transfer learning [40]. The domain is
denoted by:

D = (π, P(X)) (1)

where π is an n-dimensional feature space, and π = { f1, f2, f3, . . ., fn}, where fk is the
input feature; X = {x1, x2, x3, . . ., xn}επ is the training sample; and P(X) is the marginal
probability distribution of X.

Two domains with different feature spaces or unequal marginal probability distribu-
tions are considered as two different domains. In transfer learning, the domain where
knowledge is acquired by learning from a large amount of data is called the source domain
Ds, and the domain where the new task needs to be conducted by transfer learning is called
the target domain Dt. In this paper, the task is to build a model for predicting cyanobacterial
bloom concentrations of the target domain, which is defined as following:

M = (=, f (g)) (2)

where = is the sequence value of the cyanobacterial bloom concentration to be predicted,
and f (g) is the function used to predict the task in the target domain, and can also be
written as a conditional probability distribution P(Ys|Xs ), which can be learned from
{xi, yi}, xiεX, yiεY, and Y = {y1, y2, y3, . . ., yn}ε=.

The general workflow of transfer learning used in this paper is summarized as follows:
given a source domain Ds and a source task Ts, a target domain Dt, and a target task
Tt, the purpose of transfer learning is to use the knowledge in Ds and Ts to train the
target prediction function in the target domain Dt, namely the conditional distribution
probabilities.

2.2.2. Feature Extraction and Time Series Prediction

In this paper, the CNN layer was used to extract features, which has unique advan-
tages in feature extraction [41,42]. The local receptive field and weight sharing of the
CNN network make the model parameters considerably lower and easier to train. Each
convolutional layer contains multiple convolutional kernels, and the convolutional kernels
are calculated by:

lt = δ(gt ∗ kt + bt) (3)

where gt and lt are the input and output, respectively; bt is a bias vector; δ(·) denotes the
nonlinear activation function of the convolution operation; ∗ is the convolution operation;
and kt is the weight of the convolution kernel. After the CNN layer, a pooling layer
compresses the high-dimensional features extracted from the convolutional layer, which
simplifies the output of the convolutional layer and improves the computational efficiency.

When the features are extracted, a bidirectional LSTM network (BiLSTM) is used for
time series prediction [43], which is shown in Figure 3. In this BiLSTM network, the first
input sequence is a data sample and the second is an inverted copy of the input sequence,
which is passed forward and backward on the unfolded network. The main reason for
using this BiLSTM structure is that the error of the traditional LSTM will become larger and
larger over time [44]. The bidirectional structure increases the dependence of the data, and
the prediction results are jointly determined by a number of prior and subsequent inputs,
which means that the complete prior and future information of each point of the input
sequence is provided to the output layer [45]. Then, the prediction results can be obtained
with higher accuracy.
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Backward 

LSTM layer

Forward 

LSTM layer

y1 y2 y3 y4 y5Outputs

Inputs

Figure 3. The diagram of the BiLSTM structure.

As shown in Figure 3, the calculation method of the backward LSTM layer is similar to
the forward LSTM layer. The details of a single LSTM layer are introduced as follows [46,47]:

ft = σ
(

W f [ht−1 : xt] + b f

)
(4)

ot = σ(Wo[ht−1 : xt] + bo) (5)

ht = ot ⊗ tanh(ct) (6)

where ft is the output of the forget gate; W f is the weight of the forget gate; ht−1 is the
hidden state of the previous LSTM cell; xt indicates the input value; b f is a bias term for
the forget gate; [ht−1 : xt] indicates connecting the two elements; σ indicates a sigmoid
function; ot is the output of the output gate; Wo and bo are the weights and biases of the
output gate, respectively; ct is the update of a unit status; and ⊗ denotes the multiplication
of matrix elements. All of the weights and biases are parameters that the network needs to
learn. Then, the final output of BiLSTM network H can be presented by:

H = h f ⊕ hb (7)

where ⊕ represents the bounded plus operation of the forward LSTM layer result and the
backward LSTM layer result; h f and hb are the output value of the forward LSTM network
and the backward LSTM network, respectively.

2.2.3. Workflow of the Proposed Method

The training process of the model is as follows: sufficient source domain data are
preprocessed, and the spatial features of the inputs among the monitoring stations are
extracted by the CNN network, such as the relationship between cyanobacterial bloom
concentration and other monitored water quality data. Then, these features are used as the
input of BiLSTM in the next step to extract the long-term time dependence for prediction
by BiLSTM. Based on the pre-training of the BiLSTM, the source domain model is obtained,
which is called the original model.

In this study, a total of three layers of BiLSTM were used in the original model. When
the original model was obtained, the parameters in the first two BiLSTM layers were frozen.
Then, the parameters of the third BiLSTM layer and the dense layer were fine-tuned with
the training set of the target domain. Based on this process, we can achieve the purpose of
transferring and fusing the knowledge from the source domain to the target domain. The
model that is finally obtained is called the target domain fine-tuning model.

In order to obtain better results for the prediction of the target domain, we built
different sub-models to connect their results and added differences between sub-models
to obtain the effects of the integration learning, and to improve the generalization ability
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of the prediction model. In this study, we adopted a structure with two branches (see
Figure 2) in the target domain learning. One branch uses the CNN for feature extraction of
the target domain’s own features, while another branch is the fine-tuned model of the target
domain obtained above. Then, the outputs of the two branches were connected together by
a connection layer. The dropout layer was added to solve the overfitting problem caused
by too little data in the target domain. The parameters of the proposed model are listed in
Table 2.

Table 2. Parameter settings for each network layer of the proposed model.

Parameters Value

Convolution layer filters 32
Convolution layer kernel size 3

Pooling layer pool size 2
BiLSTM_layer1 units 16
BiLSTM_layer2 units 32
BiLSTM_layer3 units 64
Activation function RELU

Dropout 0.5

The workflow of the proposed method is summarized as follows:
Step 1: After pre-processing the data of source domain, important features and spatial

correlation of sample time series are extracted through the CNN network.
Step 2: The output of the CNN network is input into 3 BiLSTM layers to obtain

sequence features and long-term dependence for prediction.
Step 3: The model output is obtained through the full connection layer and the source

domain model is obtained.
Step 4: The first two BiLSTM layers are frozen in the source domain model and the

training data of the target domain for BiLSTM of the third layer are fine-tuned.
Step 5: The fully connected layer is used to obtain the fine-tuned model of the tar-

get domain.
Step 6: The test data of the target domain are input into both the fine-tuning model

branch of the target domain and the CNN branch to extract data features.
Step 7: The outputs of the two branches of Step 6 are linked through a concatenate

layer to obtain the final prediction result.
The information flow of the proposed model is shown in Figure 4.

Training data of the target domain Test data of the target domain

Target Output

CNN Branch

Target Model

Source data 

Input
Source Model Fine-tuned Model

Figure 4. The information flow of the proposed model.

3. Experiments and Discussion
3.1. Evaluation Criteria

To evaluate the performance of the proposed cyanobacterial bloom prediction model
based on the transfer learning, the following criteria are used: mean absolute error (MAE),
root mean square error (RMSE), mean square error (MSE), mean absolute percent error
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(MAPE), and coefficient of determination R2. These evaluation metrics are often used to
evaluate the performance of the deep-learning-based prediction methods [48,49], which
are introduced as follows.

(1) MAE

MAE =
1
n

n

∑
i=1
|ŷi − yi| (8)

where n is the size of the sample, yi is the i-th true measurement, and ŷi is the i-th predicted
value. MAE evaluates the difference between the true measurements and the predicted
values.

(2) MSE and RMSE

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (10)

MSE and RMSE also reflect the dispersion of the model. However, they are sensitive
to large errors compared to MAE because the large errors are further magnified.

(3) MAPE

MAPE =
1
n

n

∑
i=1

|ŷi − yi|
yi

× 100 (11)

MAPE is the ratio between the error and the actual value. It can be considered as a rel-
ative error function. Small inaccuracies during periods of low-concentration cyanobacterial
blooms may have a large impact on this function.

(4) R2

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(ȳi − yi)

2 (12)

R2 is used statistically to indicate the goodness-of-fit of a model.

Remark 2. Regarding the error metrics MAE, RMSE, and MAPE, the smaller their values are, the
smaller the error in the prediction results and the better the prediction performance of the model [24].
R2 is used to assess the degree of conformity between the predicted and actual values. The closer it is
to 1, the better the predicted and actual values match and the better the model is [50,51].

3.2. Comparison Experiment

In this experiment, the task is to predict four time steps backward (namely a 2 h
prediction when the sampling interval is half an hour) of the chlorophyll-a concentration
for the target domain S7. To demonstrate the performance of the proposed method, the
following comparison experiments are conducted: target domain CNN model (T-CNN)
prediction experiment, target domain BiLSTM model (T-BiLSTM) prediction experiment,
and the proposed domain fusion transfer learning model (Merge-TL) prediction experiment.
Each model is set with appropriate hyperparameters to produce the best performance. All
of the models are trained using error back propagation. The neural network training
process uses the Adam optimizer [52] and the MAE loss function. The batch size is set
as 128; the learning rate is set as 0.001; the upper limit of the training period is set as 100,
and the window size is 12. The selected data of S7 are from 1 September 2016, 0:00 to 30
September 2016, 24:00 with 1440 sets of data. The first 75% of the data sets in both the
source and target domains are used as the training set and the last 25% are used as the test
set. The results of each experiment are shown in Table 3.
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Table 3. The comparison experimental results of the 2 h prediction for S7.

Methods MAE RMSE MSE MAPE R2

T-CNN 0.5292 0.6628 0.4393 5.7125 0.7343
T-BiLSTM 0.5048 0.6373 0.4062 5.3544 0.7545
Merge-TL 0.4336 0.5589 0.3124 4.7179 0.8110

From the results in Table 3, it can be seen that the proposed model performs better
than the traditional model in all evaluation indexes, with the MAE decreasing by 18.07%
compared to T-CNN and 14.10% compared to T-BiLSTM; the RMSE decreasing by 15.67%
and 12.30% compared to T-CNN and T-BiLSTM, respectively; and the MAPE declining by
17.41% and 11.89%, respectively.

In this experiment, a total of 345 data points were predicted. To show the superior
performance of the proposed model more visually, we selected 100 data points with rela-
tively large changes in the chlorophyll-a concentration for visualization, and the results are
shown in Figure 5. The time period corresponding to these 100 data points is from 23:30
on 27 September to 1:00 on 30 September. From the curves of Figure 5, we can see that the
prediction value based on the proposed model is most close to the real value.
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Figure 5. Cont.



Water 2022, 14, 1300 11 of 16

10 20 30 40 50 60 70 80 90 1001
6

8

10

12

14

C
hl

-a
 (

g/
L)

time (/30min)

measurement
Merge-TL

(c)

Figure 5. Visualization of 100 data points for each model prediction result, where the time period
of the data points is from 23:30 on 27 September to 1:00 on 30 September. (a) Results of the T-
CNN prediction model. (b) Results of the T-BiLSTM prediction model. (c) Results of the Merge-TL
prediction model.

3.3. Ablation Experiments

To demonstrate the effectiveness of the proposed model, we also performed two abla-
tion experiments: one is the target domain original model (T-Origin) prediction experiment,
and the other is the direct transfer model (TL) prediction experiment. The T-Origin model
has the same structure as the source domain training model (see Figure 2), and the TL model
is the same as the proposed model, but without adding CNN branches for fusion. The
results of the ablation experiments are shown in Table 4. The performance of each model
for the ablation experiments is shown in Figure 6, where the total number of the prediction
data points is 345 and the corresponding time period is from 19:30 on 23 September to 23:30
on 30 September.
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Figure 6. Results of the ablation experiments, where the total number of the prediction data points is
345 and the corresponding time period is from 19:30 on 23 September to 23:30 on 30 September.

The MAE, RMSE, MSE, and MAPE for the Merge-TL models are all the smallest, with
each value decreasing by 9.93%, 10.09%, 19.15%, and 9.53%, respectively, compared to the
T-Origin model, and each value decreasing by 3.00%, 2.78%, 5.48%, and 1.45%, respectively,
compared to the TL model. The value of R2 for the Merge-TL model increased by 5.85% over
the T-Origin model and 1.38% over the TL model. The results of these ablation experiments
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show that the improvements of the proposed model are very important to improve the
accuracy of chlorophyll concentration prediction.

Table 4. The ablation experimental results of the 2 h prediction for S7.

Methods MAE RMSE MSE MAPE R2

T-Origin 0.4814 0.6216 0.3864 5.2147 0.7662
TL 0.4470 0.5749 0.3305 4.7871 0.8000

Merge-TL 0.4336 0.5589 0.3124 4.7179 0.8110

3.4. Discussion

The results of the comparison experiments in Section 3.2 show that the proposed
model has a better performance than that of the state-of-the-art. To further analyze the
performance of the proposed model, some expanded discussions about other key issues
on the cyanobacterial bloom prediction model are given out in this section, including the
generalization ability and the prediction time.

3.4.1. About the Generalization

The generalization performance of a model is a measurement of the performance of
the model on datasets outside of the training samples [53]. In this study, to validate the
generalization ability of the proposed model, we used another monitoring station, S8, as
the target domain. The data of the target domain S8 are selected from August 2016 with
1488 sets of data. The source domain is still S9 and its data are the same as those used
in Section 3.2. In this experiment, the first 75% of the data sets in both the source and
target domains are used as the training set and the last 25% are used as the test set. The
prediction results of each model are shown in Table 5. The results in Table 5 show that the
proposed model is superior to other models in four evaluation indexes, except the MAPE.
The prediction results of each model are shown in Figure 7, where the total number of the
prediction data points is 357 and the corresponding time period is from 13:30 on 24 August
to 23:30 on 31 August. It can be seen that the proposed model can track the changing trend
of chlorophyll-a concentration well.
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Figure 7. Results of the 2 h prediction for each model at the site S8, where the total number of the
prediction data points is 357 and the corresponding time period is from 13:30 on 24 August to 23:30
on 31 August.
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Table 5. Results of the 2 h prediction for the site S8.

Methods MAE RMSE MSE MAPE R2

T-CNN 1.2492 1.6564 2.7436 14.2893 0.7107
T-BiLSTM 1.1205 1.5214 2.3145 11.5404 0.7560
Merge-TL 1.0108 1.3572 1.8298 12.0023 0.8061

3.4.2. About the Prediction Time

The discussion of the prediction time concerns testing the robustness of the proposed
model. In this study, to further verify the performance of the model for a longer prediction
time, we used S7 as the target domain to conduct 3 h (six time steps) prediction experiments
on the T-CNN model, T-BiLSTM model and Merge-TL model, respectively. The results
are shown in Table 6 and Figure 8. When the prediction time is 3 h, there are a total of 343
data points to be predicted, and the corresponding time period is from 20:30 on September
23 to 23:30 on September 30. According to the five evaluation indexes in Table 6, the
proposed model has a better performance when the prediction periods are prolonged. The
visualizations of the 3 h prediction results of each model in Figure 8 show that the proposed
model can predict the change in the chlorophyll-a concentration well at relatively longer
prediction periods.

Table 6. Results of the 3 h prediction for site S7.

Methods MAE RMSE MSE MAPE R2

T-CNN 0.5761 0.7401 0.5477 6.2951 0.6676
T-BiLSTM 0.5279 0.7003 0.4904 5.6461 0.7024
Merge-TL 0.4679 0.5933 0.3520 5.1302 0.7863
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Figure 8. Results of the 3 h prediction for each model at site S7, where the total number of the
prediction data points is 343, and the corresponding time period is from 20:30 on 23 September to
23:30 on 30 September.

4. Conclusions

In this paper, deep learning and transfer learning techniques are applied to the pre-
diction of cyanobacterial bloom concentration time series in aquatic systems, and a fused
transfer learning model is proposed to transfer knowledge from waters with abundant
water quality monitoring data to waters with insufficient water quality monitoring data
to achieve the cross-water prediction of the cyanobacterial bloom concentration. Transfer
learning has some benefits in improving the model performance. The potential practical
value of this work is that we can save the amount of monitoring data collected and, for
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waters with inconvenient geographic locations, the number of sensors used, saving man-
power and material resources. However, there are some limitations of the proposed model,
which is a single-source domain transfer learning model that has a relatively short forecast
time period. These problems should be further studied.

The research data in this paper are all from various stations in Taihu Lake, so, in future
work, we will investigate whether the model can cover a wider area, which would be
very meaningful if feasible. In addition, we will consider building a fusion model of deep
learning and transfer learning to combine remote sensing images to predict cyanobacterial
bloom concentration sequences in order to achieve a better prediction accuracy.
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