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Abstract: The distribution of chlorophyll-a (Chl-a) in the Yangtze River Mouth area was analyzed
using a new Chl-a inversion model (PMS-C) based on the relationship between in situ Chl-a and GF-4
PMS band combinations. Combining GF-4 PMS with HY-C CZI, this paper revealed that: (1) Chl-a
concentration in Yangtze River Mouth was in the range of 2–6 µg/L, being higher in the west than in
the east. The high Chl-a area was mainly distributed near the mouth of the Yangtze River and the Chl-
a value was in the range of 3.7 µg/L to 5.9 µg/L. Chl-a concentration is higher in spring and summer
than in autumn and winter, with a Chl-a concentration difference of 1–2 µg/L. Chl-a downstream of
islands and bridges increased by 0.5–1.7 µg/L compared with upstream. (2) Short-term (within 3 h)
changes of Chl-a concentration were effectively detected. In summer and autumn, Chl-a obtained
at 13:30 in the noon was generally lower than Chl-a obtained at around 10:30 in the morning and it
decreased by nearly 0.1–4 µg/L within three hours on the same day. In winter, the concentration of
Chl-a decreased in the range of 0–1.9 µg/L. Generally, within three hours, Chl-a in the downstream
of the island decreased significantly from 5 µg/L to about 3.8 µg/L, and Chl-a downstream of piers
decreased from 3.7 µg/L to about 3 µg/L. (3) Environmental factors including seawater temperature,
illumination, and nutrients, as well as dynamic factors such as wind and tidal current can induce
Chl-a change in the Yangtze River Mouth. Short-term change of Chl-a concentration is closely related
to the specific hydrodynamic conditions, nutrients, and lighting conditions.

Keywords: construction and islands; chlorophyll-a; HY-1C; Gaofen; Yangtze River

1. Introduction

Estuaries are places where the river meets the ocean. They are important natu-
ral areas where the continents and oceans exchange energy and various materials [1].
The phenomena of industrialization and urbanization are a great hazard to water quality.
Agricultural activities and excessive fertilization of domestic waste can lead to eutroph-
ication of water [2,3]. In addition, researchers point out that climate change has become
increasingly severe and unstable, which will ultimately affect water and nutrient cycles,
especially in vulnerable areas such as estuaries. A series of studies in recent years show
that due to human activities and climate change, the estuary’s water quality is gradually
deteriorating [4]. Therefore, monitoring suspended sediment distribution, Chl-a concentra-
tion, and other water environment factors, identifying their temporal and spatial dynamics,
and describing their influencing factors and their interaction mechanisms are of great
significance to estuarine water quality management [5].

As the largest river mouth in China, the Yangtze River Mouth carries about 108 t of
sediment in to the sea. Pollutants in these sediments contain various nutrients of phy-
toplankton such as N, P, and Si [6]. The special hydrological conditions of the Yangtze
River Mouth make it a water area that is very sensitive to water dynamics and climate
change as well as human activities and pollution [7]; these factors can ultimately induce
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the change of water environment parameters such as Chl-a. Water in the Yangtze River
Mouth and its adjacent area belongs to typical type II water [8], which is dominated by
many optical factors including suspended particulate matter (SPM), colored dissolved
organic matter (CDOM), and phytoplankton and their decomposing detritus [9,10]. Chl-a,
a photosynthetic pigment commonly contained in various phytoplankton, is a good indica-
tor of the biomass of marine phytoplankton [11]. Chl-a concentration in marine water is
one of the important water quality parameters for marine environment detection [12].

Satellite remote sensing is a more robust monitoring tool that can be used to map the
temporal and spatial changes of water quality factors such as Chl-a [13,14], compared with
field observation which is time-consuming and costly. Based on satellite remote sensing,
many studies have been performed, focusing on Chl-a monitoring in type II water such as
Yangtze River Mouth and Bohai Bay [15]. Type II water is affected by terrigenous material
and human activity; thus, it has a complicated water composition. In addition, blue and
green wavelengths of reflectance ratio also depend on the perfection of the atmospheric
correction models, but the absorption of aerosol in the blue band will make for a larger
category of water body of atmospheric correction effect [16]. These problems have drawn
the attention of many scholars [17]. Given the former problem, many scholars proposed
to use red and near-infrared bands to avoid the above defects of blue-green bands in the
inversion algorithm of type II water bodies [11,12,18–20]. In addition to the traditional two-
band ratio method, some scholars have proposed a three-band algorithm for the medium
muddy water [21]. This kind of algorithm introduces new bands to weaken the influence
of CDOM and suspended particles in the water body on remote sensing reflection [22].

Many studies have focused on Chl-a detection based on satellite data. Dairolmo et al.
used a three-band algorithm to analyze the influence of phytoplankton and Chl-a light
emission quantum yield on the inversion results and found that the specific absorption
coefficient may be the most important factor affecting the accuracy of the inversion algo-
rithm [19]. Gitelson et al. [17,23] used a three-band algorithm established by Moderate-
Resolution Imaging Spectroradiometer (MERIS) and a two-band algorithm established by
Moderate-Oriented Deposit Insurance Scheme (MODIS) to retrieve the Chl-a concentration
of type II water, respectively, and found that the correlation coefficients with the Chl-a
concentration were 0.96 and 0.92, respectively. Chl-a in the Yellow Sea and East China
Sea [23] was retrieved using an empirical algorithm to invert Chl-a concentration and it
was detected that the uncertainty of Chl-a was up to 35%. The hyperspectral reflectance of
653 nm, 691 nm, and 748 nm, and the hyperspectral remote sensing data of HuanJing-1A
(HJ-1A) satellite 656 nm, 716 nm, and 753 nm were applied to perform the three-band
algorithm to retrieve the Chl-a concentration of Dian Shan Lake. This indicates that the
hyperspectral remote sensing data of the HJ-1A satellite can be used for Chl-a concentration
inversion and water status monitoring of type II water bodies. Furthermore, many scholars
have also carried out studies on remote sensing watercolor inversion. Thematic Mapper
(TM) data and quasi-synchronous data, as well as MODIS, were adopted to study the Chl-a
concentration of Taihu Lake and Bohai Sea; researchers found that normalized vegetation
index (NDVI) contributes to Chl-a inversion [24]. To reduce the influence of suspended par-
ticles in high-muddy isolated water on the fluorescence height algorithm, prior researchers
applied 560 nm, 670 nm, and 620 nm to establish the Synthetic Chlorophyll Index (SCI) In
Leaves Index to extract Chl-a [3]. Meanwhile, field measurement data were applied [25]
in the previous empirical algorithm model to obtain the watercolor factor of the Yellow
and East China Sea. Chl-a concentration in the Yangtze Mouth was analyzed based on
the ratio of blue-green bands constructed by MERIS [26]. Red, near-infrared (NIR), blue,
and green bands of GaoFen-1 satellite wide field of view (GF-1/WFV) data [27] were also
applied to analyze Chl-a in Yangtze Mouth. Since the inversion correlation of water with
high turbidity in the Yangtze Mouth is not particularly high (R2 > 0.9), we need to establish
a more perfect model to invert Chl-a concentration in the Yangtze Mouth.

The GF-4 geosynchronous optical satellite is currently the world’s highest-resolution
earth observation satellite in geostationary orbit [28,29]. Its continuous monitoring can
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make up for the shortcomings of traditional reconnaissance satellites such as low time
resolution and small coverage area [30]. At the same time, it will introduce some new
application areas, including ground-based traversal capabilities [31]. In addition, it has fast
response capabilities, shortening the transmission time of user applications to geospatial
information to a few minutes [32]. It is also capable of moving target monitoring, real-time
monitoring, and upgrading satellite reconnaissance function to monitoring function [30].
Therefore, developing a suitable Chl-a model for the Yangtze River Mouth based on GF-4
data is necessary.

In this paper, a new Chl-a model was developed based on PMS data from GF-4 satellite
and field data, and the concentration distribution of Chl-a in the Yangtze Mouth is analyzed.
Detailed changes in Chl-a concentration over a short period (3 h) are analyzed using the
advantage of continuous observations by geostationary orbiting satellites.

2. Data and Methods
2.1. Study Area

The Yangtze River Mouth is distributed in the coastal area of eastern China and is
backed by Shanghai and Jiangsu, China, and faces the East China Sea, forming a trumpet
shape area (Figure 1) [33]. The Yangtze River is more than 6300 km long and it is the longest
river in China. The South Branch is divided into North Channel and South Channel by
Changxing Island. In addition, Jiuduansha divides the South Channel into South Passage
and North Passage, forming the characteristics of three branches and four ports entering
the sea (Figure 1) [8]. Along with the enormous runoff in the Yangtze River Basin, the
sediment pouring into the sea annually from the Yangtze River Mouth can reach up to
486 million tons on average [34]. Due to the interannual and seasonal variations of runoff,
the sediment transport rate has apparent changes [35]. In July, the sediment transport rate is
about 32 times that of January and the sediment transport during the flood season accounts
for 87% of the total sediment transport [36]. The sediment from the Yangtze River Mouth is
mainly scattered in the southeast direction. Under the combined action of runoff and tidal
current, a large amount of sediment is deposited near the entrance of the South Branch.
The underwater delta outside the opening of the South Branch is the main deposition area.
In the vicinity of the interception point outside the Mouth, suspended sediment stays for a
long time, forming a maximum turbidity zone, and the suspended sediment concentration
drops sharply at 122.5◦ E [37]. Therefore, we position the longitude of the study area as
120.5–122.5◦ E.
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2.2. Satellite Data
2.2.1. GF-4 Data

The GF-4, which uses array gaze imaging, has the ability to detect visible and infrared
wavelengths; it entered service on 13 June 2016 [38]. The designed life of GF-4 is eight years,
pointing to the particular region and performing observation in China and surrounding
areas [19]. With 36,000 km orbital altitude and resolution of fifty meters, GF-4, together with
the previously launched GF-1 and GF-2 satellites operating in low orbit, forms a constella-
tion with the advantages of high temporal resolution and high spatial resolution [39]. GF-4
fills in the gap of China’s and even the world’s high-orbit high-resolution satellites [40].
The spectral response function can be obtained on the website of the China Resources
Satellite Application Center. The satellite data (PMS-L1A) are derived from the China
Center for Resources Satellite Data and Application (http://www.cresda.com, accessed on
15 March 2021). The information of GF-4 PMS sensor was shown in Table 1.

Table 1. Information for the GF-4 of sensors.

Information Panchromatic and Near-Infrared Sensor (nm) Intermediate Infrared Sensor (nm)

Spectral range

B1: 450–900

B6: 3500–4100
B2: 450–520
B3: 520–600
B4: 630–690
B5: 760–900

Ground sample distance 50 m 400 m

2.2.2. HY-1C/CZI Data

China launched the HaiYang-1C (HY-1C) satellite on the LM-2C carrier rocket [41];
it monitors the global ocean color and water temperatures, providing services for the
development and utilization of marine organism [41]. The Coastal Zone Imager (CZI)
carried by HY-1C has a spatial resolution of 50 m and a spectral range of 421–500 nm,
517–598 nm, 608–690 nm, and 761–891 nm [42]. It can be networked with other similar loads
to form a higher observation capacity [35]. CZI sensor parameters and image information
are shown in Table 2.

Table 2. The parameters of CZI sensor and information about the images.

Band Wavelength (nm) Spatial Resolution (m) The Application Object

B1-Blue 421–500

50

Chlorophyll, pollution, ice, underwater terrain

B2-Green 517–598 Chlorophyll, medium and low concentration of sediment
vegetation, ice, beach

B3-Red 608–690 Suspended sediment, vegetation, soil

B4-NIR 761–891 Vegetation, high concentration of sediment,
atmospheric correction

2.3. Collection of Water Samples and Laboratory Analysis

In situ measurement was performed from 307 stations in the Yangtze River Mouth
at about 10:30 a.m. on 18 August 2020. Water samples were collected and Chl-a value
was measured (Figure 1a), from which 174 measured data were applied to establish the
inversion formula, and the remaining 133 data were prepared for verification.

Chl-a data were obtained by filtering 100–500 mL of water through a glass fiber filter
and recording the volume of the filtered water sample. Steps were as follows: add enough
90% acetone solution to drown the filter paper, record the volume, plug the plug, and put
the filter paper at 4 ◦C for 4 h out of light. If cloudy, centrifugal extraction can be performed.
Part of the extract was poured into a 1 cm glass test tube, a cuvette cap was added, and the
absorbance at 665 nm and 750 nm was measured respectively based on the reagent blank.

http://www.cresda.com
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Next, add 1 drop of 2 mol/L hydrochloric acids into the two test tubes and mix for 1 min.
Measure the absorbance at 665 nm and 750 nm, respectively [19,43].

2.4. Data Pre-Processing
2.4.1. Geometric Correction

GF-4 satellite data (Table 2) pre-processing was performed following the steps in
previous study [19]. Atmospheric correction [44] was performed using FLAASH [45,46].

Orthographic correction methods mainly include two categories: one is a strict geo-
metric correction model, the other is an approximate geometric correction model. When
the imaging model and related parameters of remote sensing image are known, the image
can be corrected according to the strict imaging model [47], which belongs to the strict
geometric correction, and the collinear equation method is the most representative one [19].
However, when the sensor imaging model is unknown or the relevant auxiliary parameters
cannot be obtained, the assumed mathematical model can be used to simulate the imaging
model and realize image correction and this method belongs to approximate geometric
correction, mainly including geometric polynomial correction, rational function method,
local area correction, and other models [48].

The Rational Polynomial Coefficient (RPC) model expresses the image point coordinate
D (line, sample) as the ratio of the ground point geodetic coordinate D (Latitude, Longitude,
Height) and the independent variable [49]. In order to reduce the rounding error in the
calculation process and enhance the stability of the parameter solution, it is necessary to
regularize the ground coordinates and image coordinates between −1 and 1. In the RPC
model, the first-order polynomial represents the distortion error model caused by optical
projection, the second-order polynomial can approximate the distortion caused by earth
curvature, projection refraction, lens tilt, and other factors, and the third-order polynomial
can be applied to simulate other unknown distortions in the higher-order part [50]. The
RPC conformal correction module in ENVI was applied for correction, and the error is
controlled within 0.5 pixels in this paper.

2.4.2. Normalized Difference Water Index (NDWI)

In this paper, an adaptive extraction method based on NDWI was used to extract
water completely and accurately from remote sensing images. The calculation formula for
the NDWI is:

NDWI =
GREEN−NIR
GREEN + NIR

, (1)

where GREEN and NIR are the value of the green band and the near-infrared band,
respectively. The purpose of this indicator is to minimize the reflectivity of near-infrared
light, while also making full use of the characteristics of plants and soil to enhance the
reflectivity of water. Water properties are positive, while values for plants and soil are
generally 0 or negative [51,52].

2.4.3. Model Evaluation

In this paper, regression analysis was performed to construct the model expression
between the combination of bands and the concentration of water quality parameters.
Therefore, R2, F test value, and the P-value of significance level were analyzed to evaluate
the accuracy and robustness of the regression model. Meanwhile, to evaluate the accuracy
of the model, the Root Mean Square Error (RMSE) was obtained using the predicted and
measured values of the model [2]. The RMSE calculation method is as follows:

RMSE =

√
∑(y − y′)2

n− 2
, (2)

where y is the measured water quality parameter concentration, y′ is the simulated water
quality parameter concentration, and n is the sample number.
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2.5. SSC Retrieval

According to the empirical formula [35], based on the HY-1C/CZI data, the suspended
sediment concentration (SSC) of the Yangtze River Mouth was retrieved using the red band
and the NIR band. The formula is as follows:

SSC = 64.54 − 7033.83 × RRED + 96027 × RNIR, (3)

where the unit of SSC is mg/L, and RRED and RNIR are the remote-sensing reflectance of
the third (red) band and the fourth (NIR) band after atmospheric correction.

2.6. Tidal Current, Topography, and Wind

The Finite-Volume Community Ocean Model (FVCOM) [53,54] was performed for numer-
ical simulation, and the tidal current was simulated every three hours on 30 November 2020.
Considering the complex topography in the Yangtze Mouth, topographic data from the 1
Minute Gridded Global Relief Data Collection (ETOPO1) were obtained and analyzed. The
resolution of ETOPO1 data is as high as 1 ‘×1’ and includes ice surface and bedrock, so it
can better reflect the seabed topography.

The current is simulated with a hydrodynamic model, the FVCOM [53,54]. It is a
popular ocean numerical model for estuaries and continental shelves. This model is an
ocean numerical model of unstructured grid, finite volume method, free surface, and three-
dimensional original equation jointly developed by UMASSD and WHOI [55,56]. FVCOM
model used a finite volume algorithm to absorb the flexibility and the geometry of the
finite element method and finite difference method of calculation efficiency. Apart from its
advantage of simple structure, it can also fit complex coastline perfectly while ensuring the
efficiency of calculation and guarantee the conservation of mass, momentum, temperature,
and salinity in the process of calculation of a complex area. The model adapts unstructured
grids to discretize the horizontal computing area and uses σ coordinates to fit the complex
seabed topography vertically. Smagorinsky turbulence closure model [57] was used for
horizontal mixed calculation of the mode, while Mellor–Yamada Order 2.5 turbulence
closure model was used for vertical mixed calculation. The mode is similar to Princeton
(POM). The external model is based on CFL condition and gravity wave velocity, and uses
a shorter time step. It is a positive pressure model based on the two-dimensional vertical
average equation. The internal model is based on CFL condition and internal wave velocity,
and uses a longer time step. It is a baroclinic die based on three-dimensional equations.
The three-dimensional global simulation results of the Hybrid Coordinate Ocean Model
(HYCOM) reanalysis field were used for the initial temperature and salinity field, and the
temperature, salinity, and flow field required by the open boundary of the model and the
atmospheric forcing field were obtained from cfSR-V2 reanalysis field.

The terrain data are based on the global DEM data released by GEBCO in 2020 with
a resolution of 15 s (http://mds.nmdis.org.cn, accessed on 11 May 2021). The wind field
data are derived from the ERA-Interim dataset (https://www.ecmwf.int, accessed on
11 May 2021), one of many datasets produced by the ECMWF through a series of projects.
The data include wind, temperature, rainfall, snow, and sea ice, which studies show have
better accuracy than other meteorological data [58].

Monthly mean wind field data provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) with a resolution of 0.125◦ × 0.125◦ was selected for the
study area. ECMWF wind field data are representative of current high-precision weather
forecast products [59]. MODIS SST Product (MOD28) is an ocean 3-level standard data
product with a spatial resolution of 1 km [60]. The data source is NASA’s Ocean Water
Color Data website (http://Oceancolor.gsfc.nasa.gov, accessed on 20 May 2021). SSS data
were obtained using Hybrid Coordinate Ocean Model (HYCOM) monthly mean global
high-resolution ocean assimilation data with a longitude level resolution of 1/12◦ [61].
These data were developed by the US Naval Research Laboratory using HYCOM; they
use Multi-Variable Optimal Interpolation assimilation (MVOI), and assimilate available

http://mds.nmdis.org.cn
https://www.ecmwf.int
http://Oceancolor.gsfc.nasa.gov
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satellite altimeter observations, which are obtained along orbit through NAVOCEANO
Altimeter Data Fusion Center [62].

3. Results
3.1. A New Chl-a Inversion Model for GF-4
3.1.1. Sensitive Band of Chl-a

To effectively identify Chl-a features, the bands should be selected according to the
characteristics of the spectral curve features of Chl-a and the characteristic wavelengths of
their absorption and reflection peaks [13,63]. Therefore, the correlation analysis (Figure 2)
was performed using the remote sensing reflectance of 450–900 nm and the Chl-a con-
centration value obtained from 174 stations. The near-infrared (NIR) band (761–891 nm)
highly correlated with Chl-a concentration, with R2 of 0.8681. However, due to the high
concentration of SSC in high turbidity water of the Yangtze River Mouth, it is not suitable
for Chl-a concentration inversion by using the NIR band. Beyond the NIR band, the coeffi-
cient of determination of the blue band (450–520 nm), green band (520–600 nm), and red
band (608–690 nm) is 0.0970, 0.4067, and 0.6178, respectively, indicating that the correlation
between the reflectance of these single bands and Chl-a concentration is generally very low.
Therefore, the single band is not suitable to be considered as an independent variable to
establish the Chl-a inversion model and band combination should be considered [19].
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3.1.2. Model Establishment

Three different bands (B2, B3, B4) were randomly combined to analyze their corre-
lation with Chl-a, and statistical analysis was carried out on variables (combination of
band reflectance and measured Chl-a concentration) [64,65]. The R2 values of 60 band
combinations in this paper range from 0.0108 to 0.9087, and the highest correlation of the
single band combination is 0.8462. Eight combinations with R2 ≥ 0.8462 were selected, and
its regression equation and corresponding R2 value are shown in Table 3.

Table 3. Eight retrieved formulas of Chl-a of PMS.

Number Band Combination (x) Regression Equation (y = Chl-a) Coefficient of Determination (R2)

1 ln(B3)/ln(B4) y = 740.16x2 − 1537.9x + 801.2 0.8915
2 ln(B3/B4) y = 18.562x2 − 8.8034x + 3.4315 0.9044
3 B3/(B3 + B4) y = 306.27x2 − 341.85x + 97.779 0.9061
4 (B3 + B2)/(B2 + B4) y = 47.446x2 − 108.9x + 64.916 0.89
5 (B4 + B2)/(B3 + B2) y = 66.27x2 − 117.79x + 54.849 0.908
6 (B3 − B4)/(B2 + B3) F y = 66.27x2 − 14.751x + 3.3302 F 0.9087 F
7 (B3 − B4)/(B2 + B4) y = 47.446x2 − 14.007x + 3.4626 0.89
8 (B3 − B4)/(B3 + B4) y = 76.567x2 − 17.788x + 3.4236 0.9061

The combined band with the highest R2 is the sixth combination in Table 3 marked
by F, indicating it is the optimal inversion model. Therefore, a new Chl-a inversion model
(named PMS-C) for the coastal waters of the Yangtze Mouth was finally confirmed as
Formula (5):

ρ = 66.27 x2 − 14.751 x + 3.3302, (4)

x = (Rrs(B3) − Rrs(B4))/(Rrs(B2) + Rrs(B3)), (5)

where the reflectance of band 2 (blue) was marked as Rrs(B2), the reflectance of band 3
(green) was marked as Rrs(B3), and the reflectance of band 4 (red) was marked as Rrs(B4).

The coefficients of determination (Figure 3) were analyzed to test the applicability of
the newly built model and they made a particularly significant result with R2 = 0.9123,
RMSE = 0.1752 µg/L, indicating that the modeled result is highly consistent with the in
situ value. Therefore, the new model is suitable for GF-4 to retrieve Chl-a in coastal waters
near the Yangtze Mouth.

3.2. Chl-a Analysis in Yangtze River Mouth
3.2.1. Chl-a Distribution

The distribution of Chl-a in the study area from February 2020 to May 2021 (Figure 4)
was obtained using the newly built model PMS-C. The Chl-a concentration in Yangtze
River Mouth is between 2 µg/L and 6 µg/L (Figure 4), and it is relatively high along
the Yangtze River. In the mouth of the Yangtze River, where water depth is mainly less
than 10 m (shallow area), the Chl-a value is in the range of 3.7 µg/L to 5.9 µg/L. The
area with low Chl-a concentration is distributed outside the mouth of the Yangtze River,
where the water depth is deeper than 20 m, and the value mainly ranges from 2.1 µg/L to
3.8 µg/L. The Chl-a concentration changes with the tidal current, obviously. During flood
time (Figure 4b–i), the area with high Chl-a concentration was distributed in the northwest
mouth of Yangtze River (Figure 4b–i) as well as inside the Yangtze River. During ebb tide
(Figure 4a,j–l), the high Chl-a concentration area shifted to the southeast (green ellipse in
Figure 4a,j–l) as a whole, consistent with the direction of the current.
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Furthermore, the surface Chl-a in Yangtze Mouth shows a seasonal variation (Figure 4).
In spring and summer, the concentration of Chl-a was high, ranging from 3 to 6 µg/L
(Figure 4a–f). In autumn and winter (Figure 4g–l), the concentration of Chl-a was relatively
low, ranging from 2 to 4 µg/L, and the Chl-a concentration gap between spring and autumn
(Figure 4a–f) difference is about 1–2 µg/L. Chl-a concentration in the east is lower than
that in the west and gradually decreased from the inside to the outside of the Yangtze
River (Figure 4g–l). In the southwest of the Yangtze Mouth near Hangzhou Bay, Chl-a
concentration is higher in spring and summer, but lower in autumn and winter.

The direction of the bridge and island facing the water flow is defined as upstream
(u) and the direction facing away from the water flow is defined as downstream (d). The
downstream Chl-a concentration is generally higher than the upstream Chl-a concentration
(Figure 5) with the gap in the range of 0.5–1.7 µg/L, indicating the difference between
increased Chl-a value downstream and the original Chl-a value upstream. Take Chl-a on
21 February 2021, as an example (Figure 5c1–c3); Chl-a upstream of the island was 2.1 µg/L
and it increased to nearly 3.8 µg/L downstream; the Chl-a gap is 1.7 µg/L. A similar rule
also plays in Figure 5a1,a2, showing that when the tidal current flows through the island
and bridge, no matter whether during the flooding period or ebbing period (Figure 5), the
downstream Chl-a concentrations increased significantly.

In order to further compare the Chl-a in the study area retrieved using our GF-4 model,
the Chl-a from February 2020 to March 2021 obtained from Landsat 8-OLI Chl-a production
data was analyzed (Figure 6). Generally, the high Chl-a area distributes in the middle of
the Yangtze River Mouth and south of the Yangtze River Mouth near the Hangzhou Bay,
ranging from 3 to 6 µg/L. The low Chl-a area distributes in the area outside the mouth of
the Yangtze River, ranging from 0 to 2 µg/L. Furthermore, Chl-a concentration changes
with the tidal current. When the tidal current flows eastward (ebbing), there is a large
amount of Chl-a in the central part of the mouth area of the Yangtze River. Focusing on the
waters near the island (Figure 6), it can be found that the downstream Chl-a increased no
matter whether during flooding period or ebbing period, with Chl-a increased by 1–2 µg/L,
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and it also showed a higher concentration of Chl-a in spring and summer than in autumn
and winter. Generally, the distribution and variation rule of Chl-a presented by Landsat
8-OLI satellite data are consistent with GF-4, which further demonstrates the feasibility of
our GF-4 model.
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3.2.2. Chl-a’s Short-Term (within Three Hours) Changes in Yangtze River Mouth

The GF-4 satellite in geostationary orbit can detect short-term changes of Chl-a concen-
tration in detail. In this paper, we selected the data at different times in one day in summer
and autumn, respectively, to detect the Chl-a change details in a short time (within 3 h). In
summer and autumn (Figure 7), Chl-a concentration obtained at around 13:30 at noon is
generally lower than Chl-a concentration obtained at around 10:30 in the morning and it
decreased by around 0.1–4 µg/L within three hours on the same day.

Within 3 h of continuous ebb tide, the water flows away from the Yangtze Mouth
to the southeast, Chl-a concentration decreased by about 0.2–1.5 µg/L in the east of the
Yangtze Mouth (Figure 7a1,a2,f1,f2). Among them, the downstream of islands decreased
significantly (about 0.6–1.8 µg/L) (Figure 7a4,f4), and on the contrary, the concentration
of Chl-a increased slightly in the Yangtze Mouth, with the concentration increasing by
around 0.1 µg/L. During the period of continuous flooding tide, the water flows into the
Yangtze Mouth to the northwest (Figure 7c1,c2,i1,i2), Chl-a concentration in most areas of
the Yangtze Mouth shows Chl-a decreased from 10:30 to 13:30, and the Chl-a decreased
by 0.2–2 µg/L (Figure 7c4,i4), with only a few increased areas (Figure 7c5,i5). Meanwhile,
when the tidal current changes from flood tide to ebb tide (Figure 7b1,b2,g1,g2,h1,h2) or
from ebb tide to flood tide (Figure 7d1,d2,e1,e2) within three hours, Chl-a concentration at
noon also decreased obviously compared with that in the morning. Only a few areas in the
northeast and southeast of Yangtze River Mouth showed a slight increase.
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In winter (Figure 8), the distribution of Chl-a obtained in the morning and at noon
has no obvious variety regularity. Compared with Chl-a in the morning, Chl-a can
increase (Figure 8a4) or decrease (Figure 8b4,c4) at noon in the Yangtze River Mouth.
From 13:30 to 16:30 in the afternoon, the east part of the Yangtze Mouth (black ellipse in
Figure 8a5,b5,c5) showed an obvious increase, and the Chl-a concentration in other areas
showed no obvious change.
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3.3. SSC Retrieval Based on HY-1C

Generally, SSC is high with the value mainly in the range of 230–1700 mg/L and there
is a great difference within the mouth area of the Yangtze River (Figure 9). The high SSC
area is located in the middle of the Yangtze River Mouth and south of the Yangtze River
Mouth near the Hangzhou Bay, with the SSC ranging from 900 to 1700 mg/L. The low
SSC area is distributed in the area outside the mouth of the Yangtze River, with the SSC
ranging from 450 to 1300 mg/L. Furthermore, SSC changes with the tidal current. When
the tidal current flows eastward (ebbing), there is a large amount of suspended sediment in
the central part of the mouth area of the Yangtze River. Focusing on the waters near the
island (Figure 9a,d), it can be found that the downstream SSC increases, which is the same
trend as Chl-a concentration. SSC increased downstream of islands, no matter whether
during flooding period or ebbing period, with SSC increased by 300–600 mg/L.
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4. Discussion
4.1. Applicability of the PMS-C Model

GF-4, China’s first civilian high-resolution geostationary optical satellite which has
the highest resolution of any geostationary orbit satellite in the world, can be used for
coastal ocean environment observation [30]. The bands selected to build the Chl-a inverse
model are consistent with prior studies [7,66]. Yangtze Mouth and Hangzhou Bay’s Chl-a
concentration were analyzed using MODIS satellite’s different bands; among them, near-
infrared band and red band both achieved good simulation results [28]. Furthermore, the
band ratio of blue and red bands was adopted to establish the model of inverse Chl-a
concentration of Poyang Lake [13]. The band combination based on blue, green, and red
band shows good availability, with R2 being 0.9142. The modeled results’ new model is
suitable for the inversion of the type II water bodies in the Yangtze Mouth. The Chl-a
distribution obtained using the newly established model in coastal waters near the Yangtze
Mouth has a high consistency with in situ Chl-a as well as prior studies [2,4,7,13,67,68],
indicating that this new model is suitable for Chl-a retrieval in this area.
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4.2. The Factors Influencing Chl-a Concentration Distribution in the Study Area

The Chl-a variation in the Yangtze Mouth is induced by many environmental factors
including temperature, light, nutrition, salinity [67], and dynamic factors induced by
vertical movement of seawater [68]. These factors jointly affect distribution of Chl-a [18].

4.2.1. Factors Inducing Short-Term Changes of Chl-a

Diurnal variation and short-term changes of Chl-a concentration are closely related to the
specific hydrodynamic conditions of the sea area (such as tide, resuspension, etc.) [8–10,69].
Tide in the Yangtze Mouth belongs to irregular semi-diurnal tide, and tide outside the
mouth belongs to regular semi-diurnal tide [70]. The tidal current flows reciprocally inside
the mouth, and gradually deforms into rotational current outside the mouth. During
flood time, the high concentration area of Chl-a is distributed in the northwest mouth of
Yangtze River as well as inside the Yangtze River; phytoplankton enters the water area of
the station along with the water flow in the high-value area, and the Chl-a concentration
peak is formed (Figure 5). During ebb tide, the high Chl-a concentration area shifted to
the southeast as a whole. The shallow sea area outside the mouth of the Yangtze River
is scoured by the tidal action and topographic jet action, and the tidal effect is obvious,
which is a strong tidal area and rich in tidal energy resources. Tidal current impacts the
distribution, and as tidal waves move, the distribution of Chl-a concentration on the surface
of the sea changes (Figure 7) [28]. The asymmetrical duration of ebb and flow indicates that
the duration of ebb and flow is shorter, which is conducive to the landward movement of
fine sediment [66]. The asymmetry of the ebb and flow velocity indicates that the ebb and
flow velocity is predominant in the Yangtze Mouth; both the velocity and duration of the
ebb are larger than those of the flood (Figure 10), which is conducive to the movement of
coarse sediment carrying nutrient substances to the sea [5–7,69].
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In addition, due to the relatively shallow water depth (10 m) at the mouth and the
consistent intense mixing of the water, the resuspended benthic microalgae and nutrients
may make an important contribution to Chl-a concentration [71]. Suspended sediment
(Figure 9) in Yangtze Mouth mainly comes from the Yangtze River; sediment from Subei
Shoal and Qiantang River can also be brought into the Yangtze Mouth along with the
flood current [72]. As the carrier of nutrients [73], suspended sediment will influence
Chl-a by affecting phytoplankton and zooplankton [20] (Figures 5 and 9). The uneven
distribution patterns of water quality factors such as SSC (Figure 9) will ultimately influence
the surrounding ecosystem of the estuary [36] (Figures 5–7).

4.2.2. The Influence of Seasonal Related Factors on Chl-a

The variation of Chl-a concentration showed significant seasonal change. During
flood season in summer (June to August), the runoff of the Yangtze River is very large, and
the nearshore SSC is high, which carries many nutrients and is conducive to the growth
of phytoplankton, inducing Chl-a to increase or decrease. In the dry season of winter,
however, the runoff of the Yangtze River is small and the near-shore SSC becomes low;
Chl-a concentration also decreases [74] and stays low [75]. In winter, many combined
factors, including the disappearance of coastal upwelling, the enhancement of coastal
current in the Yellow Sea, the enhancement of Taiwan warm current in the offshore area,
and the southwardly diffused diluted water [37,76], can induce the decrease of surface SSC
and the lower Chl-a concentration.

Lighting conditions also play an important role in the Chl-a concentration [77]. Phy-
toplankton adapts to the turbidity state by adjusting the light utilization efficiency [78].
The growth peak of phytoplankton under low light was slightly lower than that under
high light in autumn (Figure 7) [77,79]. After the peak, the growth of phytoplankton was
restricted under strong light, and Chl-a concentration showed a downward trend [80,81].

Monsoon, sea surface temperature (SST) [69], and sea surface salinity (SSS) [81] can
also influence Chl-a concentration [67,77,81–86]. South and southeast monsoon dominates
in spring and summer (Figure 11a1–a4). The southern wind is favorable for the formation of
coastal upwelling [83], and the upwelling and cold vortex after strong winds are favorable
for the growth of phytoplankton [84,85]. Wind-induced vorticity not only increases Chl-a
distribution temporally but also spatially [19]. In addition, due to the increase of the
Yangtze River runoff, the nutrient content in the area also increased, and the surface SSC
increased, resulting in a high overall concentration of Chl-a (Figure 9). In autumn and
winter, the northern wind controls the sea area (Figure 11a3,a4). Although convective
mixing is strong and the depth of the mixing layer reaches the highest throughout the year,
which makes the surface nutrients sufficient (Figure 11c3,c4), the growth of phytoplankton
is severely restricted due to low temperature (Figure 11b3,b4) and insufficient sunshine.
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5. Conclusions

The details of Chl-a concentration distribution and details of change in the Yangtze
River Mouth were revealed based on a newly built Chl-a inversion model (PMS-C). Chl-a
concentration in Yangtze River Mouth was in the range of 2–6 µg/L, being higher in the
west than in the east. High Chl-a area was mainly distributed near the mouth of the Yangtze
River and the Chl-a value was in the range of 3.7 µg/L to 5.9 µg/L. Chl-a concentration is
higher in spring and summer than in autumn and winter, with a difference of 1–2 µg/L.

Short-term (within 3 h) changes of Chl-a concentration were effectively detected. In
summer and autumn, Chl-a obtained at 13:30 at noon was generally lower than Chl-a
obtained at around 10:30 in the morning and it decreased by nearly 0.1–4 µg/L within
three hours in the same day. In winter, the concentration of Chl-a decreased in the range of
0–1.9 µg/L. Chl-a downstream of islands and bridges increased by 0.5–1.7 µg/L compared
with upstream. Generally, downstream of islands and bridges, Chl-a reduced significantly
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to around 3.8 µg/L and 3 µg/L from the value of 5 µg/L and 3.7 µg/L in the morning,
respectively. The current interacts with islands and piers, and vortex streets are induced
downstream. The flow of vortex street makes the water exchange actively, increasing the
suspended matter and nutrients, which leads to the increase of Chl-a concentration.

Environmental factors including seawater temperature, illumination, and nutrients,
as well as dynamic factors such as wind and tidal current, can induce Chl-a change in the
Yangtze River Mouth. Short-term change of Chl-a concentration is closely related to the
specific hydrodynamic conditions, nutrients, and lighting conditions.
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