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Abstract: Eutrophication is one of the major threats to shallow lake ecosystems, because it causes
large-scale degradation of submerged plants. N:P ratio is an important indicator to estimate nutrient
supply to water bodies and guide the restoration of submerged plants. The massive input of N and P
changes the structure of aquatic communities and ecological processes. However, the mechanism
underlying the influence of changes in N and P content and the N:P ratio of a water body on the
growth of submerged plants is still unclear. In this study, we simulated gradients of water N:P ratio
in lakes in the middle-lower reaches of the Yangtze River using outdoor mesocosm experiments.
Using established generalized linear models (GLM), the effects of total nitrogen (TN) content and N:P
ratio of water, phytoplankton and periphytic algae biomass, and relative growth rate (RGR) of plants
on the stoichiometric characteristics of two widely distributed submerged plants, Hydrilla verticillata
and Vallisneria natans, were explored. The results reveal that changes in water nutrient content
affected the C:N:P stoichiometry of submerged plants. In a middle-eutrophic state, the stoichiometric
characteristics of C, N, and P in the submerged plants were not influenced by phytoplankton and
periphytic algae. The P content of H. verticillata and V. natans was positively correlated with their
relative growth rate (RGR). As TN and N:P ratio of water increased, their N content increased and
C:N decreased. These results indicate that excessive N absorption by submerged plants and the
consequent internal physiological injury and growth inhibition may be the important reasons for the
degradation of submerged vegetation in the process of lake eutrophication.

Keywords: submerged plants; water N:P ratio; C:N:P stoichiometric characteristics; growth rate;
middle-lower Yangtze River reach

1. Introduction

Submerged plants are important primary producers in lakes and play a unique role in
maintaining clean water by competing with algae for light and nutrients [1]. Submerged
plants not only support macroinvertebrates and fishes in the lakes but also are important
food resources for waterbirds, providing vital ecosystem services [2–4]. However, with the
acceleration of industrialization processes, decline and disappearance of submerged plants
is occurring worldwide, causing widespread concern [5,6]. Global lake aquatic plants
assessment reported that 65% of study sites exhibited a significant reduction in the aquatic
vegetation cover [7]. Over the past 20 years, biomass and diversity of submerged plants in
China’s lakes are in decline due to deterioration of lake ecosystems [6,8,9]. Vallisneria natans
and Hydrilla verticillata are submerged plants that are widely distributed in lakes in the
middle and lower reaches of the Yangtze River. The growth forms and biomass allocation
strategies of these two submerged plants are different. V. natans is a rosette-type submerged
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plant with elongated leaves, well-developed roots, and short, upright stems and can
tolerate low light [10,11]. H. verticillata is an erect submerged plant whose biomass is
relatively evenly distributed among leaves, stems, and roots [10]. The biomass ratio of
the aboveground and underground parts of H. verticillata is greater than that of V. natans;
therefore, they may have different nutrient absorption and metabolism strategies.

The eutrophication degree in lakes in mid- and low-latitude regions is higher than
that in high-latitude regions [12]. In China, the ratio of the number of moderately eutrophic
lakes relative to the total number of lakes considered for this study had raised from 31.3% in
2009 to 42.7% in 2018 [13]. Most of the lakes at the middle and lower reaches of the Yangtze
River are mesotrophic or eutrophic, leading to a heavy decrease in light penetration [14].
The rapid increase in eutrophication has led to frequent occurrence of cyanobacterial blooms
in the watershed. Phytoplankton death and decomposition consumes dissolved oxygen in
water, exacerbates the extinction of submerged plants, leads to biodiversity decline and
simplification of the biological community structure, and destroys the health of aquatic
ecosystems [14–17].

Environmental stoichiometry can strongly affect an organism’s stoichiometry [18–21].
This may alter competitiveness of species [22], leading to a shift in species composition [23]
and affecting structure, function, and stability of lake ecosystems. Studies have reported
that N and P of water column are more important than those of sediment in determining
C:N:P stoichiometric signatures of submerged plants [24–26]. The growth process of
organisms is essentially a process of accumulating elements (mainly C, N, and P) and
adjusting their relative ratios [27]. Based on this, the growth rate hypothesis proposes
that C:N:P in organisms lacking P storage mainly depends on the rRNA content [27].
Fast-growing organisms require a large amount of rRNA to participate in the formation
of ribosomes to synthesize proteins. Therefore, fast-growing organisms tend to have
relatively low C:P and N:P ratios [28]. Some studies have confirmed that growth rate
and biostoichiometric characteristics of plants were closely related, and they follow the
relative growth rate hypothesis [29–32]. In lakes, the addition of N and P increases the
net growth rate and nutrient content of cells, so the stoichiometry of N:P ratio and C:P
ratio will be reduced [33]. However, reports on the growth rate hypothesis are inconsistent.
For example, under N restriction, the N:P ratio of Daphnia has no obvious relationship
with the growth rate [34]. This inconsistency may be due to the decrease in the amount
of anabolism closely related to growth that is used for physiological mechanisms, such as
stress response, when organisms are in an N- and P-restricted environment [35]. The large
input of N and P changes the structure of nutrient content of water and aquatic community,
as the coupling effect between N and P restricts ecological processes. Water N:P ratio has
become an important tool for researchers to evaluate the nutrient structure of water bodies
and its influence on phytoplankton and submerged plants biomass [36–38].

Studies show that during the eutrophication process, with the increasement of P and
N in the water, the submerged plants first show good growth and are resistant to the
increase in N loading at moderate P concentrations [39], but as the nitrogen load increases,
the biomass of submerged macrophytes decreases due to high concentrations of NH4

+

and NO3
−. This exerts toxic effects on aquatic plants [40], decreases the allocation of

C, N, and P to the stem [41], and changes the light condition caused by cyanobacteria
bloom [39,40,42]. However, when water P and N concentrations are sufficient but not
over-excessive, submerged plants still lose biomass [6–9]. It is necessary to consider the
influence of water N:P ratio.

To understand how P and N contents in water column influence growth and stoichio-
metric characteristics of submerged plants, we simulated P and N contents of the lakes
in the middle and lower reaches of the Yangtze River by random setting of a gradient of
90 N:P ratios. We assumed that when water N:P ratios increased, the excessive nitrogen
would inhibit the growth of submerged plants. As algae and submerged plants compete for
light, nutrients, and space, we performed outdoor mesocosm experiments to explore the
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effects of N and P contents and N:P ratio of water and phytoplankton and periphytic algae
biomass on the stoichiometric characteristics and growth of H. verticillata and V. natans.

2. Materials and Methods
2.1. Experimental Design

According to the literature summary of the total phosphorus (TP) and total nitrogen
(TN) contents and N:P ratio of shallow lakes in the middle and lower reaches of the Yangtze
River (Figure 1), the N:P ratio and TP and TN contents of middle-eutrophic lakes are mainly
concentrated in the ranges of 9–29 (Table S1), 0.06–0.14 mg/L, and 0.5–3 mg/L, respectively.
The median values of TN and TP were 1.38 mg/L and 0.082 mg/L, respectively. The
maximum and minimum values of TN were 3.86 mg/L and 0.212 mg/L, respectively; the
maximum and minimum values of TP were 0.18 mg/L and 0.024 mg/L, respectively.
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middle and lower reaches of the Yangtze River based on literature data (Table S1).

V. natans and H. verticillata were harvested from Poyang Lake and planted in plastic
cups separately with the washed river sand as the substrate. Further, they were placed in
two 50 L plastic buckets (upper diameter 40 cm, bottom 33 cm, height 41 cm) with purified
water after 7 days of adaptation. Overall, 15 cups of V. natans or H. verticillata with good
growth condition and similar weight were put into each 50 L plastic bucket. According
to the literature summary of TP and TN contents and N:P ratio in shallow lakes of the
middle and lower reaches of the Yangtze River (Figure 1, Table S1), we randomly set each
bucket water N:P ratio within the range of 9–29, with TP and TN contents in the ranges of
0.06–0.14 and 0.5–3 mg/L, respectively.

The experiment started on July 1, 2020, and ended on August 9, 2020, lasting for
40 days. The fresh weight of transplanted plants was recorded as the weight at time 0 for
relative growth rate calculation. A hand-held multi-parameter water quality meter (HQ40D,
Hach Inc., Loveland, CO, USA) was used to measure environmental indicators such as
water temperature (T), total dissolved solids (TDS), and oxidation–reduction potential
(ORP). During the experimental period, purified water was supplemented regularly, and
NH4NO3 and KH2PO4 solutions were supplemented according to the nutrient gradient
to maintain the initial nutrient level. At the end of the experiment, three V. natans and
H. verticillata plants were randomly selected from each bucket, and a total of 540 plants
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in 180 buckets were weighed (denoted as the weight at time t1) and recorded. Further,
the plants were dried and ground, and the C, N, and P contents were analyzed. On days
20 and 40 after the start of the experiment, TN and TP contents and periphytic algae and
phytoplankton biomass in the water of 180 experimental buckets were measured.

2.2. Laboratory Analysis

At days 0, 20, and 40, the TN, TP, DTN, and DTP contents in water were measured
using alkaline K2S2O8 digestion UV spectrophotometry and K2S2O8 digestion (NH4)2MoO4
spectrophotometry, respectively. NH4-N, NO3-N, NO2-N, and PO4-P contents in water
were analyzed using flow analyzer (CleverChem 200+, DeChem-Tech.GmbH, Hamburg,
Germany). Hot ethanol method was performed to measure the chlorophyll a of periphytic
algae and phytoplankton.

The samples of submerged plants were oven-dried at 80 ◦C for 48 h so that constant
weight was obtained; further, they were ground into fine powder using a planetary ball mill
(Mini Beadbeater-16, Biospec product, Bartlesville, OK, USA) before elemental analyses.
The C and N contents of plants were determined using an elemental analyzer (Flash EA
1112 series, CE Instruments, Waltham, MA, USA). P contents of plants were measured
using sulfuric acid/hydrogen peroxide digestion and ammonium molybdate ascorbic acid
methods [43].

2.3. Data Analysis

The relative growth rate (RGR) of plants can be calculated using Equation (1):

RGR = (lnW1 − lnW0)/t (1)

where RGR is the relative plant growth rate [mg·(g·d−1)]; W0 is the fresh weight of the
plant at the beginning of the experiment (mg); W1 is the fresh weight of the plant at the
end of the experiment (mg); and t is the experiment time (d).

R 4.1.1 was used to establish GLM models to analyze the relationship of plant C, N,
and P contents, C:N ratio, C:P ratio, N:P ratios, water body TN content and N:P ratio,
phytoplankton biomass, periphytic algae biomass, and RGR of plants. T-test was used to
compare C, N, and P contents of H. verticillata and V. natans. Reduced chi-squared test was
used to analyze whether a nonlinear fitting relationship existed between the indicators.
Reduced chi-squared test value was equal to chi-squared test value divided by degrees of
freedom. The closer the reduced chi-squared test to 1, the better the fitting effect.

3. Results
3.1. Nutrient Concentrations in Mesocosm System and Stoichiometric Traits of Submerged Plants

The contents of TN, TP, N:P ratio, phytoplankton Chl-a, and periphytic algae Chl-a in
mesocosm systems of H. verticillata and V. natans are given in Table 1. C and N contents
of H. verticillata were significantly higher than those of V. natans, whereas P content of H.
verticillata was significantly lower than that of V. natans (all p < 0.05). The Chl-a content of
phytoplankton in the H. verticillata group was significantly higher than that of the V. natans
group, and the TP content was significantly lower than that of the V. natans group (p < 0.05).
The C/N ratio, C/P ratio, and N/P ratio of H. verticillata were significantly higher than
those of V. natans (p < 0.05). Other environment data are shown in Table S2.
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Table 1. Mean values of environmental parameters and stoichiometric traits of submerged plants.

H. verticillata V. natans

Mean Standard Error Mean Standard Error

Water TN (mg/L) 1.79 0.12 1.60 0.09
Water TP (mg/L) 0.09 0.00 0.10 0.00

Water N:P 22.29 1.26 17.85 1.02
Phytoplankton Chl-a (mg/m3) 14.41 2.67 13.08 1.13

Periphytic algae Chl-a (mg/m2) 5.2 × 10−3 0.01 5 × 10−3 4.5 × 10−3

Plant C (mg/g) 0.14 4 × 10−3 0.13 2 × 10−3

Plant N (mg/g) 8.98 × 10−3 2.9 × 10−4 8.75 × 10−3 2.1 × 10−2

Plant P (mg/g) 2 × 10−4 1 × 10−4 9 × 10−4 3 × 10−5

Plant C:N 17.6 0.6 15.5 0.3
Plant C:P 856.7 65.2 153.4 3.9
Plant N:P 49.7 3.6 10.3 0.3

3.2. Factors Determining Stoichiometric Characteristics of H. verticillata

The C:N ratio of H. verticillata was negatively correlated with the TN content and N:P
ratio of water (Table 2, Figure 2). The N content of H. verticillata was positively correlated
with water TN content; the reduced chi-squared test value was close to 1, indicating that
the nonlinear fitting curve had a good fitting effect (Table 3, Figure 3). The P content
of H. verticillata was positively correlated with RGR and TN in the water body (Table 4,
Figure 4), indicating that with the increase of the TN content in the water body, the P content
of H. verticillata also increased. C content and the N:P and C:P ratios of H. verticillata had
no significant correlation with the following five factors: water body TN content, N:P ratio,
phytoplankton biomass, periphytic algae biomass, and RGR of plants (p > 0.05).

Table 2. Summary of the best model of the relationship between H. verticillata C:N and water N:P.

Predictor Coefficient Std. Error t Value p

Intercept 22.573 1.281 17.623 <0.001
TN (mg/L) −1.229 0.534 −2.303 0.024
Water N:P −0.143 0.049 −2.927 0.005

Phytoplankton (mg/m3) 0.129 0.130 0.991 0.325
Periphytic algae (mg/m2) −193.167 268.323 −0.720 0.474

RGR [mg·(g·d−1)] −61.470 54.298 −1.132 0.262

Bold numbers indicate significant differences (p < 0.05).

Table 3. Summary of the best model of the relationship between H. verticillata N and water N:P.

Predictor Coefficient Std. Error t Value p

Intercept 6.833 × 10−3 7.491 × 10−4 9.121 <0.001
TN (mg/L) 8.527 × 10−4 3.122 × 10−4 2.732 0.008
Water N:P 2.753 × 10−6 2.853 × 10−5 0.096 0.923

Phytoplankton (mg/m3) −5.350 × 10−5 7.628 × 10−5 −0.701 0.485
Periphytic algae (mg/m2) 8.544 × 10−2 1.569 × 10−1 0.544 0.588

RGR [mg·(g·d−1)] 2.199 × 10−2 3.175 × 10−2 0.693 0.491

Bold numbers indicate significant differences (p < 0.05).
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Table 4. Summary of the best model of the relationship between H. verticillata P and water N:P.

Predictor Coefficient Std. Error t Value p

Intercept 1.675 × 10−4 2.689 × 10−5 6.228 <0.001
TN (mg/L) 2.473 × 10−5 1.120 × 10−5 2.207 0.031
Water N:P −7.076 × 10−7 1.024 × 10−6 −0.691 0.492

Phytoplankton (mg/m3) −7.101 × 10−7 2.738 × 10−6 −0.259 0.796
Periphytic algae (mg/m2) 4.353 × 10−4 5.632 × 10−3 0.077 0.939

RGR [mg·(g·d−1)] 2.897 × 10−3 1.140 × 10−3 2.542 0.013

Bold numbers indicate significant differences (p < 0.05).
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3.3. Factors Determining Stoichiometric Characteristics of V. natans

C:N ratio of V. natans was negatively correlated with TN content and N:P ratio of
water (Table 5, Figure 5). The N content of V. natans was positively correlated with TN
content of water. The reduced chi-squared test value was close to 1, indicating that the
fitting effect of the nonlinear fitting curve was good (Table 6, Figure 6). The P content of
V. natans was positively correlated with RGR of plant (Table 7, Figure 7), and the N:P of
V. natans was positively correlated with the TN of the water body. The higher the TN of
the water body, the higher the N:P of V. natans. The reduced chi-squared test value was
close to 1, indicating that the fitting effect of the nonlinear fitting curve was good (Table 8,
Figure 8). The C:P ratio of V. natans was negatively correlated with RGR (Table 9, Figure 9).
No significant correlation existed between the C content of V. natans and the above five
factors (p > 0.05).
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Table 5. Summary of the best model of the relationship between V. natans C:N and water N:P.

Predictor Coefficient Std. Error t Value p

Intercept 20.100 0.664 30.259 <0.001
TN (mg/L) −0.362 0.512 −2.662 0.009
Water N:P −0.096 0.048 −2.008 0.048

Phytoplankton (mg/m3) −0.115 0.116 −0.992 0.324
Periphytic algae (mg/m2) 136.287 266.497 0.511 0.610

RGR [mg·(g·d−1)] −21.892 41.237 −0.531 0.597

Bold numbers indicate significant differences (p < 0.05).
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Predictor Coefficient Std. Error t Value p

Intercept 6.197 × 10−3 4.162 × 10−4 14.890 <0.001
TN (mg/L) 9.825 × 10−4 3.206 × 10−4 3.065 0.003
Water N:P 3.251 × 10−5 3.009 × 10−5 1.080 0.283

Phytoplankton (mg/m3) 8.610 × 10−5 7.254 × 10−5 1.187 0.239
Periphytic algae (mg/m2) −1.235 × 10−1 1.670 × 10−1 −0.740 0.462

RGR [mg·(g·d−1)] 2.339 × 10−2 2.583 × 10−2 0.905 0.368

Bold numbers indicate significant differences (p < 0.05).



Water 2022, 14, 1263 9 of 19Water 2022, 14, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. The relationship between V. natans N and water TN. 

Table 7. Summary of the best model of the relationship between V. natans P and water N:P. 

Predictor Coefficient Std. Error t Value p 
Intercept 9.103 × 10−4 6.087 × 10−5 14.956 <0.001 

TN (mg/L) 2.362 × 10−5 4.688 × 10−5 0.504 0.616 
Water N:P −4.172 × 10−6 4.401 × 10−6 −0.948 0.346 

Phytoplankton (mg/m3) 1.620 × 10−5 1.061 × 10−5 1.527 0.131 
Periphytic algae (mg/m2) −3.116 × 10−2 2.442 × 10−2 −1.276 0.206 

RGR [mg·(g·d−1)] 8.342 × 10−3 3.778 × 10−3 2.208 0.030  
Bold numbers indicate significant differences (p < 0.05). 

 
Figure 7. The relationship between V. natans P and relative growth rate (RGR). 

  

Figure 6. The relationship between V. natans N and water TN.

Table 7. Summary of the best model of the relationship between V. natans P and water N:P.

Predictor Coefficient Std. Error t Value p

Intercept 9.103 × 10−4 6.087 × 10−5 14.956 <0.001
TN (mg/L) 2.362 × 10−5 4.688 × 10−5 0.504 0.616
Water N:P −4.172 × 10−6 4.401 × 10−6 −0.948 0.346

Phytoplankton (mg/m3) 1.620 × 10−5 1.061 × 10−5 1.527 0.131
Periphytic algae (mg/m2) −3.116 × 10−2 2.442 × 10−2 −1.276 0.206

RGR [mg·(g·d−1)] 8.342 × 10−3 3.778 × 10−3 2.208 0.030

Bold numbers indicate significant differences (p < 0.05).

Water 2022, 14, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 9. The relationship between V. natans C:P and relative growth rate (RGR). 

4. Discussion 
4.1. The Influence of Water Nutrients on the Stoichiometric Characteristics of Submerged Plants 

Water nutrients were the basis of C, N, and P content allocation in submerged plants 
to meet the needs of rapid growth and reproduction [44,45]. Changes in the nutrient con-
tent of a water body affect stoichiometric characteristics of submerged plants and plant 
community composition [19,21,46,47]. The input of external nutrients trigger change in 
C:N:P stoichiometric signatures in the aquatic plants. Plants accumulated nutrients in ex-
cess of their cellular requirements when their growth was not limited by N and P availa-
bility [40,48]. Because of the high concentration of P in water, the C:P and N:P ratios de-
creased, and intracellular C:N:P stoichiometric signatures of aquatic plants significantly 
lowered [49]. Bi et al. [50] studied the growth of Rhodomonas sp., Phaeodactylum tricornutum, 
and Isochrysis galbana; N:P ratios varied within the environmental N:P ratio, and lower 
N:P ratio promoted the growth of algae [50].  

In our study, the mean N:P ratio of V. natans was approximately 10.3:1, which was a 
bit lower than that of plants (11:1) in the River Spey in Great Britain, as reported by De-
mars and Edwards [50]. Our result was consistent with the studies on the floodplain lakes 
of eastern China [11] and the middle and lower reaches of the Yangtze River [49]; these 
studies reported that as the water body TN increased, the N content and N:P ratio of V. 
natans also increased [11,49]. Many studies have reported that freshwater organisms 
change their N:P and C:P ratios in response to P enrichment [11,35,51]. However, the N:P 
ratio of H. verticillata (49.7:1) was much higher than that reported in previous studies. H. 
verticillata might have the ability to absorb N in water more easily.  

In addition, the stoichiometric characteristics of C:N:P in plant tissues depended not 
only on nutrient supply but also on the availability of light in the water column. The light 
in the water column could affect the physiology, morphology, and biomass distribution 
of submerged plants, resulting in large variations in the concentration of C, N, and P and 
stoichiometry of C:N:P in plants [40,52–54]. N is a constituent element of plant cell pro-
teins and nucleic acid, and it participates in the synthesis of chlorophyll in the chloroplast. 
Therefore, it is closely related to the ability of plant photosynthesis [55]. The 

Figure 7. The relationship between V. natans P and relative growth rate (RGR).



Water 2022, 14, 1263 10 of 19

Table 8. Summary of the best model of the relationship between V. natans N:P and water N:P.

Predictor Coefficient Std. Error t Value p

Intercept 6.909 0.694 9.951 <0.001
TN (mg/L) 1.204 0.535 2.250 0.027
Water N:P 0.065 0.050 1.294 0.199

Phytoplankton (mg/m3) −0.057 0.121 −0.468 0.641
Periphytic algae (mg/m2) 159.002 278.573 0.571 0.570

RGR [mg·(g·d−1)] −66.161 3.105 −1.535 0.129

Bold numbers indicate significant differences (p < 0.05).
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Predictor Coefficient Std. Error t Value p
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TN (mg/L) 2.079 × 100 0.229 × 100 0.288 0.774
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4. Discussion
4.1. The Influence of Water Nutrients on the Stoichiometric Characteristics of Submerged Plants

Water nutrients were the basis of C, N, and P content allocation in submerged plants
to meet the needs of rapid growth and reproduction [44,45]. Changes in the nutrient
content of a water body affect stoichiometric characteristics of submerged plants and
plant community composition [19,21,46,47]. The input of external nutrients trigger change
in C:N:P stoichiometric signatures in the aquatic plants. Plants accumulated nutrients
in excess of their cellular requirements when their growth was not limited by N and P
availability [40,48]. Because of the high concentration of P in water, the C:P and N:P ratios
decreased, and intracellular C:N:P stoichiometric signatures of aquatic plants significantly
lowered [49]. Bi et al. [50] studied the growth of Rhodomonas sp., Phaeodactylum tricornutum,
and Isochrysis galbana; N:P ratios varied within the environmental N:P ratio, and lower N:P
ratio promoted the growth of algae [50].

In our study, the mean N:P ratio of V. natans was approximately 10.3:1, which was a
bit lower than that of plants (11:1) in the River Spey in Great Britain, as reported by Demars
and Edwards [50]. Our result was consistent with the studies on the floodplain lakes of
eastern China [11] and the middle and lower reaches of the Yangtze River [49]; these studies
reported that as the water body TN increased, the N content and N:P ratio of V. natans
also increased [11,49]. Many studies have reported that freshwater organisms change their
N:P and C:P ratios in response to P enrichment [11,35,51]. However, the N:P ratio of H.
verticillata (49.7:1) was much higher than that reported in previous studies. H. verticillata
might have the ability to absorb N in water more easily.

In addition, the stoichiometric characteristics of C:N:P in plant tissues depended not
only on nutrient supply but also on the availability of light in the water column. The light
in the water column could affect the physiology, morphology, and biomass distribution
of submerged plants, resulting in large variations in the concentration of C, N, and P and
stoichiometry of C:N:P in plants [40,52–54]. N is a constituent element of plant cell proteins
and nucleic acid, and it participates in the synthesis of chlorophyll in the chloroplast.
Therefore, it is closely related to the ability of plant photosynthesis [55]. The photosynthetic
compensation point and photophobicity of V. natans were lower than those of H. verticillata.
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Therefore, V. natans could adapt to low-light environments, which resulted in higher N:P
ratio in H. verticillata than that in V. natans [10]. Therefore, the shading effect caused by
phytoplankton may have affected the photosynthesis of the plants. In our study, the content
of phytoplankton Chl-a in the water of the H. verticillata planting was higher than that of
the V. natans planting.

Differences in nutrient absorption and adaptability strategies were observed between
H. verticillata and V. natans. Whereas V. natans has roots, H. verticillata was a “pseudo-
root tip” plant with only whisker-shaped adventitious roots [10]. With lower C input for
supporting tissues, the C absorption of V. natans was lower than that of H. verticillata, which
was conducive to its tolerance under low-light stress and was consistent with its low-light
photosynthetic compensation point [25,56,57]. In addition, the C:N metabolism level of
V. natans was lower and carbohydrate storage was higher than those of H. verticillata [25,58].
This might be because of H. verticillata allocating more C on the stem to stretch its branches
to the surface of the water [56,59].

In addition, C:N ratio of H. verticillata and V. natans decreased with the increase in
water TN, and water C:N ratio reflected the high N-based biomass of plant unit C and the
decrease in nutrient use efficiency [60]. The same conclusion was obtained while studying
the stoichiometric characteristics of algae [61]. Moreover, the phytoplankton biomass
is limited by the nutrient concentration and the ratio of limiting nutrients [21]. In our
study, the attached algae had no significant effect on the stoichiometric characteristics of
the submerged plants, whereas the periphytic algae may be less affected by the nutrient
enrichment in the water column [62].

With the increase in TN content of the water body, the N:P of water increased, but
C:N of H. verticillata and V. natans decreased. Low C:N of plants under high N and P
environment indicated the overabsorption of N; this led to the accumulation of ammonia
nitrogen in tissues, change in nitrogen metabolism, and the production of free amino acids
producing physiological toxicity [42]. Soluble sugar accumulates in plant leaves in response
to stress, resulting in the decrease in soluble sugar content in plant roots. This affects the
production of new buds and finally inhibits the growth of plants [42]. Submerged plants
may be resilient to abrupt increases in N loading at moderate TP concentrations; however,
after prolonged exposure, a complete collapse occurs [39]. Excessive N content reduces
stem strength. When water TN content reached 0.92 mg/L and water TP was 0.12 mg/L,
V. natans had low ramet counts and biomasses [41]. Excessive N concentration, for example,
>5 mg/L, had negative effects on the photosynthetic efficiency and biomass of submerged
plants [39,63]. The excessive uptake capacity of submerged plants under rich N and P
conditions with high water N:P ratio enhances the decline in growth of submersed plants,
which can markedly alter the aquatic ecosystem from a plant-dominated clear state to an
algal-dominated turbid state.

4.2. The Relationship between Growth Rate and Stoichiometric Characteristics of Submerged Plants

Fast-growing organisms usually have lower C:P and N:P ratios. The growth rate
hypothesis proposes that fast-growing organisms allocate most of their resources to the
synthesis of rRNA (high P) instead of protein (high N) [26,64], which explains the positive
correlation between the P content and growth rate of H. verticillata and V. natans. The
negative correlation between H. verticillata and V. natans C:P and N:P ratios and the growth
rate was considered to be the conclusion of the growth rate hypothesis [65–68]; this reflects
the requirement of P for rRNA and rapid protein synthesis to support rapid growth [28].
Therefore, the higher the N content of the water body, the greater the N:P ratio of V. natans
and slower its growth rate. The C:P and N:P ratios had no correlation with the growth rate
of H. verticillata. In the case of vascular plants, tissue N:P ratio was higher when the growth
rate was low, and tissue N:P ratio was lower when the growth rate was high [27,41,68].
Therefore, after determining the N:P ratio of water, the tipping point of submerged plant
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determined its growth. This would provide a new solution for submerged plant restoration
in shallow lakes.

5. Conclusions

In our study, the N:P ratio of V. natans was approximately 10.3:1. As TN of the water
body increased, the N content and N:P ratio of V. natans also increased. However, the
N:P ratio (49.7:1) of H. verticillata was much higher than that reported in previous studies.
H. verticillata tended to absorb more N in water. P content of H. verticillata and V. natans
positively correlated with their growth rates. As water TN and N:P ratio increased, N
content increased and C:N decreased in H. verticillata and V. natans. The negative corre-
lation between H. verticillata and V. natans C:P and N:P ratios and the growth rate was
considered to be the conclusion of the growth rate hypothesis. This indicates that excessive
N absorption by submerged plants and the consequent internal physiological injury and
growth inhibition may be the important reasons for the degradation of submerged vegeta-
tion in the process of lake eutrophication. In a middle-eutrophic state, the stoichiometric
characteristics of C, N, and P in submerged plants were not influenced by phytoplankton
and periphytic algae.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14081263/s1, Table S1: Literature summary of TN and TP
in lakes in the middle and lower reaches of the Yangtze River in the past decade; Table S2: Main
experimental conditions (water quality parameters) [69–165].
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