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Abstract: Eutrophication is one of the major threats to shallow lake ecosystems, because it causes 

large-scale degradation of submerged plants. N:P ratio is an important indicator to estimate nutrient 

supply to water bodies and guide the restoration of submerged plants. The massive input of N and 

P changes the structure of aquatic communities and ecological processes. However, the mechanism 

underlying the influence of changes in N and P content and the N:P ratio of a water body on the 

growth of submerged plants is still unclear. In this study, we simulated gradients of water N:P ratio 

in lakes in the middle-lower reaches of the Yangtze River using outdoor mesocosm experiments. 

Using established generalized linear models (GLM), the effects of total nitrogen (TN) content and 

N:P ratio of water, phytoplankton and periphytic algae biomass, and relative growth rate (RGR) of 

plants on the stoichiometric characteristics of two widely distributed submerged plants, Hydrilla 

verticillata and Vallisneria natans, were explored. The results reveal that changes in water nutrient 

content affected the C:N:P stoichiometry of submerged plants. In a middle-eutrophic state, the stoi-

chiometric characteristics of C, N, and P in the submerged plants were not influenced by phyto-

plankton and periphytic algae. The P content of H. verticillata and V. natans was positively correlated 

with their relative growth rate (RGR). As TN and N:P ratio of water increased, their N content in-

creased and C:N decreased. These results indicate that excessive N absorption by submerged plants 

and the consequent internal physiological injury and growth inhibition may be the important rea-

sons for the degradation of submerged vegetation in the process of lake eutrophication. 

Keywords: submerged plants; water N:P ratio; C:N:P stoichiometric characteristics; growth rate; 

middle-lower Yangtze River reach 

 

1. Introduction 

Submerged plants are important primary producers in lakes and play a unique role 

in maintaining clean water by competing with algae for light and nutrients [1]. Sub-

merged plants not only support macroinvertebrates and fishes in the lakes but also are 

important food resources for waterbirds, providing vital ecosystem services [2–4]. How-

ever, with the acceleration of industrialization processes, decline and disappearance of 

submerged plants is occurring worldwide, causing widespread concern [5,6]. Global lake 

aquatic plants assessment reported that 65% of study sites exhibited a significant reduc-

tion in the aquatic vegetation cover [7]. Over the past 20 years, biomass and diversity of 

submerged plants in China’s lakes are in decline due to deterioration of lake ecosystems 

[6,8,9]. Vallisneria natans and Hydrilla verticillata are submerged plants that are widely 
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distributed in lakes in the middle and lower reaches of the Yangtze River. The growth 

forms and biomass allocation strategies of these two submerged plants are different. V. 

natans is a rosette-type submerged plant with elongated leaves, well-developed roots, and 

short, upright stems and can tolerate low light [10,11]. H. verticillata is an erect submerged 

plant whose biomass is relatively evenly distributed among leaves, stems, and roots [10]. 

The biomass ratio of the aboveground and underground parts of H. verticillata is greater 

than that of V. natans; therefore, they may have different nutrient absorption and metab-

olism strategies.  

The eutrophication degree in lakes in mid- and low-latitude regions is higher than 

that in high-latitude regions [12]. In China, the ratio of the number of moderately eu-

trophic lakes relative to the total number of lakes considered for this study had raised 

from 31.3% in 2009 to 42.7% in 2018 [13]. Most of the lakes at the middle and lower reaches 

of the Yangtze River are mesotrophic or eutrophic, leading to a heavy decrease in light 

penetration [14]. The rapid increase in eutrophication has led to frequent occurrence of 

cyanobacterial blooms in the watershed. Phytoplankton death and decomposition con-

sumes dissolved oxygen in water, exacerbates the extinction of submerged plants, leads 

to biodiversity decline and simplification of the biological community structure, and de-

stroys the health of aquatic ecosystems [14–17]. 

Environmental stoichiometry can strongly affect an organism’s stoichiometry [18–

21]. This may alter competitiveness of species [22], leading to a shift in species composition 

[23] and affecting structure, function, and stability of lake ecosystems. Studies have re-

ported that N and P of water column are more important than those of sediment in deter-

mining C:N:P stoichiometric signatures of submerged plants [24–26]. The growth process 

of organisms is essentially a process of accumulating elements (mainly C, N, and P) and 

adjusting their relative ratios [27]. Based on this, the growth rate hypothesis proposes that 

C:N:P in organisms lacking P storage mainly depends on the rRNA content [27]. Fast-

growing organisms require a large amount of rRNA to participate in the formation of ri-

bosomes to synthesize proteins. Therefore, fast-growing organisms tend to have relatively 

low C:P and N:P ratios [28]. Some studies have confirmed that growth rate and biostoichi-

ometric characteristics of plants were closely related, and they follow the relative growth 

rate hypothesis [29–32]. In lakes, the addition of N and P increases the net growth rate and 

nutrient content of cells, so the stoichiometry of N:P ratio and C:P ratio will be reduced 

[33]. However, reports on the growth rate hypothesis are inconsistent. For example, under 

N restriction, the N:P ratio of Daphnia has no obvious relationship with the growth rate 

[34]. This inconsistency may be due to the decrease in the amount of anabolism closely 

related to growth that is used for physiological mechanisms, such as stress response, when 

organisms are in an N- and P-restricted environment [35]. The large input of N and P 

changes the structure of nutrient content of water and aquatic community, as the coupling 

effect between N and P restricts ecological processes. Water N:P ratio has become an im-

portant tool for researchers to evaluate the nutrient structure of water bodies and its in-

fluence on phytoplankton and submerged plants biomass [36–38].  

Studies show that during the eutrophication process, with the increasement of P and 

N in the water, the submerged plants first show good growth and are resistant to the in-

crease in N loading at moderate P concentrations [39], but as the nitrogen load increases, 

the biomass of submerged macrophytes decreases due to high concentrations of NH4+ and 

NO3−. This exerts toxic effects on aquatic plants [40], decreases the allocation of C, N, and 

P to the stem [41], and changes the light condition caused by cyanobacteria bloom 

[39,40,42]. However, when water P and N concentrations are sufficient but not over-ex-

cessive, submerged plants still lose biomass [6–9]. It is necessary to consider the influence 

of water N:P ratio.  

To understand how P and N contents in water column influence growth and stoichi-

ometric characteristics of submerged plants, we simulated P and N contents of the lakes 

in the middle and lower reaches of the Yangtze River by random setting of a gradient of 

90 N:P ratios. We assumed that when water N:P ratios increased, the excessive nitrogen 
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would inhibit the growth of submerged plants. As algae and submerged plants compete 

for light, nutrients, and space, we performed outdoor mesocosm experiments to explore 

the effects of N and P contents and N:P ratio of water and phytoplankton and periphytic 

algae biomass on the stoichiometric characteristics and growth of H. verticillata and V. na-

tans. 

2. Materials and Methods 

2.1. Experimental Design 

According to the literature summary of the total phosphorus (TP) and total nitrogen 

(TN) contents and N:P ratio of shallow lakes in the middle and lower reaches of the Yang-

tze River (Figure 1), the N:P ratio and TP and TN contents of middle-eutrophic lakes are 

mainly concentrated in the ranges of 9–29 (Table S1), 0.06–0.14 mg/L, and 0.5–3 mg/L, re-

spectively. The median values of TN and TP were 1.38 mg/L and 0.082 mg/L, respectively. 

The maximum and minimum values of TN were 3.86 mg/L and 0.212 mg/L, respectively; 

the maximum and minimum values of TP were 0.18 mg/L and 0.024 mg/L, respectively. 

 

Figure 1. Total phosphorus (TP) and total nitrogen (TN) contents in waters of shallow lakes of the 

middle and lower reaches of the Yangtze River based on literature data (Table S1). 

V. natans and H. verticillata were harvested from Poyang Lake and planted in plastic 

cups separately with the washed river sand as the substrate. Further, they were placed in 

two 50 L plastic buckets (upper diameter 40 cm, bottom 33 cm, height 41 cm) with purified 

water after 7 days of adaptation. Overall, 15 cups of V. natans or H. verticillata with good 

growth condition and similar weight were put into each 50 L plastic bucket. According to 

the literature summary of TP and TN contents and N:P ratio in shallow lakes of the middle 

and lower reaches of the Yangtze River (Figure 1, Table S1), we randomly set each bucket 

water N:P ratio within the range of 9–29, with TP and TN contents in the ranges of 0.06–

0.14 and 0.5–3 mg/L, respectively. 

The experiment started on July 1, 2020, and ended on August 9, 2020, lasting for 40 

days. The fresh weight of transplanted plants was recorded as the weight at time 0 for 

relative growth rate calculation. A hand-held multi-parameter water quality meter 

(HQ40D, Hach Inc., Loveland, CO, USA) was used to measure environmental indicators 

such as water temperature (T), total dissolved solids (TDS), and oxidation–reduction po-

tential (ORP). During the experimental period, purified water was supplemented 
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regularly, and NH₄NO₃ and KH₂PO4 solutions were supplemented according to the nu-

trient gradient to maintain the initial nutrient level. At the end of the experiment, three V. 

natans and H. verticillata plants were randomly selected from each bucket, and a total of 

540 plants in 180 buckets were weighed (denoted as the weight at time t1) and recorded. 

Further, the plants were dried and ground, and the C, N, and P contents were analyzed. 

On days 20 and 40 after the start of the experiment, TN and TP contents and periphytic 

algae and phytoplankton biomass in the water of 180 experimental buckets were meas-

ured. 

2.2. Laboratory Analysis 

At days 0, 20, and 40, the TN, TP, DTN, and DTP contents in water were measured 

using alkaline K2S2O8 digestion UV spectrophotometry and K2S2O8 digestion (NH4)2MoO4 

spectrophotometry, respectively. NH4-N, NO3-N, NO2-N, and PO4-P contents in water 

were analyzed using flow analyzer (CleverChem 200+, DeChem-Tech.GmbH, Hamburg, 

Germany). Hot ethanol method was performed to measure the chlorophyll a of periphytic 

algae and phytoplankton.  

The samples of submerged plants were oven-dried at 80 °C for 48 h so that constant 

weight was obtained; further, they were ground into fine powder using a planetary ball 

mill (Mini Beadbeater-16, Biospec product, Bartlesville, OK, USA) before elemental anal-

yses. The C and N contents of plants were determined using an elemental analyzer (Flash 

EA 1112 series, CE Instruments, Waltham, MA, USA). P contents of plants were measured 

using sulfuric acid/hydrogen peroxide digestion and ammonium molybdate ascorbic acid 

methods [43]. 

2.3. Data Analysis 

The relative growth rate (RGR) of plants can be calculated using Equation (1): 

RGR =
(lnW1 − lnW0)

t⁄   (1) 

where RGR is the relative plant growth rate [mg·(g·d−1)]; W0 is the fresh weight of the 

plant at the beginning of the experiment (mg); W1 is the fresh weight of the plant at the 

end of the experiment (mg); and t is the experiment time (d). 

R 4.1.1 was used to establish GLM models to analyze the relationship of plant C, N, 

and P contents, C:N ratio, C:P ratio, N:P ratios, water body TN content and N:P ratio, 

phytoplankton biomass, periphytic algae biomass, and RGR of plants. T-test was used to 

compare C, N, and P contents of H. verticillata and V. natans. Reduced chi-squared test was 

used to analyze whether a nonlinear fitting relationship existed between the indicators. 

Reduced chi-squared test value was equal to chi-squared test value divided by degrees of 

freedom. The closer the reduced chi-squared test to 1, the better the fitting effect.  

3. Results 

3.1. Nutrient Concentrations in Mesocosm System and Stoichiometric Traits of Submerged 

Plants 

The contents of TN, TP, N:P ratio, phytoplankton Chl-a, and periphytic algae Chl-a 

in mesocosm systems of H. verticillata and V. natans are given in Table 1. C and N contents 

of H. verticillata were significantly higher than those of V. natans, whereas P content of H. 

verticillata was significantly lower than that of V. natans (all p < 0.05). The Chl-a content of 

phytoplankton in the H. verticillata group was significantly higher than that of the V. na-

tans group, and the TP content was significantly lower than that of the V. natans group (p 

< 0.05). The C/N ratio, C/P ratio, and N/P ratio of H. verticillata were significantly higher 

than those of V. natans (p < 0.05). Other environment data are shown in Table S2. 
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Table 1. Mean values of environmental parameters and stoichiometric traits of submerged plants. 

 H. verticillata V. natans 

 Mean Standard Error Mean Standard Error 

Water TN (mg/L) 1.79  0.12 1.60 0.09 

Water TP (mg/L) 0.09 0.00 0.10 0.00 

Water N:P 22.29 1.26 17.85 1.02 

Phytoplankton Chl-a (mg/m3) 14.41 2.67 13.08 1.13 

Periphytic algae Chl-a (mg/m2) 5.2 × 10−3 0.01 5 × 10−3 4.5 × 10−3 

Plant C (mg/g) 0.14 4 × 10−3 0.13 2 × 10−3 

Plant N (mg/g) 8.98 × 10−3 2.9 × 10−4 8.75 × 10−3 2.1 × 10−2 

Plant P (mg/g) 2 × 10−4 1 × 10−4 9 × 10−4 3 × 10−5 

Plant C:N 17.6 0.6 15.5 0.3 

Plant C:P 856.7 65.2 153.4 3.9 

Plant N:P 49.7 3.6 10.3 0.3 

3.2. Factors Determining Stoichiometric Characteristics of H. verticillata 

The C:N ratio of H. verticillata was negatively correlated with the TN content and N:P 

ratio of water (Table 2, Figure 2). The N content of H. verticillata was positively correlated 

with water TN content; the reduced chi-squared test value was close to 1, indicating that 

the nonlinear fitting curve had a good fitting effect (Table 3, Figure 3). The P content of H. 

verticillata was positively correlated with RGR and TN in the water body (Table 4, Figure 

4), indicating that with the increase of the TN content in the water body, the P content of 

H. verticillata also increased. C content and the N:P and C:P ratios of H. verticillata had no 

significant correlation with the following five factors: water body TN content, N:P ratio, 

phytoplankton biomass, periphytic algae biomass, and RGR of plants (p > 0.05). 

Table 2. Summary of the best model of the relationship between H. verticillata C:N and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 22.573 1.281 17.623 <0.001 

TN (mg/L) −1.229 0.534 −2.303 0.024  

Water N:P −0.143 0.049 −2.927 0.005  

Phytoplankton (mg/m3) 0.129 0.130 0.991 0.325 

Periphytic algae (mg/m2) −193.167 268.323 −0.720 0.474 

RGR [mg·(g·d−1)] −61.470 54.298 −1.132 0.262 

Bold numbers indicate significant differences (p < 0.05). 



Water 2022, 14, 1263 6 of 19 
 

 

 

Figure 2. The relationship between H. verticillata C:N, water TN, and water N:P. 

Table 3. Summary of the best model of the relationship between H. verticillata N and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 6.833 × 10−3 7.491 × 10−4 9.121 <0.001 

TN (mg/L) 8.527 × 10−4 3.122 × 10−4 2.732 0.008  

Water N:P 2.753 × 10−6 2.853 × 10−5 0.096 0.923 

Phytoplankton (mg/m3) −5.350 × 10−5 7.628 × 10−5 −0.701 0.485 

Periphytic algae (mg/m2) 8.544 × 10−2 1.569 × 10−1 0.544 0.588 

RGR [mg·(g·d−1)] 2.199 × 10−2 3.175 × 10−2 0.693 0.491 

Bold numbers indicate significant differences (p < 0.05).  

 

Figure 3. The relationship between H. verticillata N and water TN. 
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Table 4. Summary of the best model of the relationship between H. verticillata P and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 1.675 × 10−4 2.689 × 10−5 6.228 <0.001 

TN (mg/L) 2.473 × 10−5 1.120 × 10−5 2.207 0.031  

Water N:P −7.076 × 10−7 1.024 × 10−6 −0.691 0.492 

Phytoplankton (mg/m3) −7.101 × 10−7 2.738 × 10−6 −0.259 0.796 

Periphytic algae (mg/m2) 4.353 × 10−4 5.632 × 10−3 0.077 0.939 

RGR [mg·(g·d−1)] 2.897 × 10−3 1.140 × 10−3 2.542 0.013  

Bold numbers indicate significant differences (p < 0.05). 

 

Figure 4. The relationship between H. verticillata P, water TN, and relative growth rate (RGR). 

3.3. Factors Determining Stoichiometric Characteristics of V. natans 

C:N ratio of V. natans was negatively correlated with TN content and N:P ratio of 

water (Table 5, Figure 5). The N content of V. natans was positively correlated with TN 

content of water. The reduced chi-squared test value was close to 1, indicating that the 

fitting effect of the nonlinear fitting curve was good (Table 6, Figure 6). The P content of 

V. natans was positively correlated with RGR of plant (Table 7, Figure 7), and the N:P of 

V. natans was positively correlated with the TN of the water body. The higher the TN of 

the water body, the higher the N:P of V. natans. The reduced chi-squared test value was 

close to 1, indicating that the fitting effect of the nonlinear fitting curve was good (Table 

8, Figure 8). The C:P ratio of V. natans was negatively correlated with RGR (Table 9, Figure 

9). No significant correlation existed between the C content of V. natans and the above five 

factors (p > 0.05). 

Table 5. Summary of the best model of the relationship between V. natans C:N and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 20.100 0.664 30.259 <0.001 

TN (mg/L) −0.362 0.512 −2.662 0.009 

Water N:P −0.096 0.048  −2.008 0.048  

Phytoplankton (mg/m3) −0.115 0.116 −0.992 0.324 
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Periphytic algae (mg/m2) 136.287 266.497 0.511 0.610 

RGR [mg·(g·d−1)] −21.892 41.237 −0.531 0.597 

Bold numbers indicate significant differences (p < 0.05). 

 

Figure 5. The relationship between V. natans C:N, water TN, and water N:P. 

Table 6. Summary of the best model of the relationship between V. natans N and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 6.197 × 10−3 4.162 × 10−4 14.890 <0.001 

TN (mg/L) 9.825 × 10−4 3.206 × 10−4 3.065 0.003  

Water N:P 3.251 × 10−5 3.009 × 10−5 1.080 0.283 

Phytoplankton (mg/m3) 8.610 × 10−5 7.254 × 10−5 1.187 0.239 

Periphytic algae (mg/m2) −1.235 × 10−1 1.670 × 10−1 −0.740 0.462 

RGR [mg·(g·d−1)] 2.339 × 10−2 2.583 × 10−2 0.905 0.368 

Bold numbers indicate significant differences (p < 0.05). 
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Figure 6. The relationship between V. natans N and water TN. 

Table 7. Summary of the best model of the relationship between V. natans P and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 9.103 × 10−4 6.087 × 10−5 14.956 <0.001 

TN (mg/L) 2.362 × 10−5 4.688 × 10−5 0.504 0.616 

Water N:P −4.172 × 10−6 4.401 × 10−6 −0.948 0.346 

Phytoplankton (mg/m3) 1.620 × 10−5 1.061 × 10−5 1.527 0.131 

Periphytic algae (mg/m2) −3.116 × 10−2 2.442 × 10−2 −1.276 0.206 

RGR [mg·(g·d−1)] 8.342 × 10−3 3.778 × 10−3 2.208 0.030  

Bold numbers indicate significant differences (p < 0.05). 

 

Figure 7. The relationship between V. natans P and relative growth rate (RGR). 
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Table 8. Summary of the best model of the relationship between V. natans N:P and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 6.909 0.694 9.951 <0.001 

TN (mg/L) 1.204 0.535 2.250 0.027 

Water N:P 0.065 0.050 1.294 0.199 

Phytoplankton (mg/m3) −0.057 0.121 −0.468 0.641 

Periphytic algae (mg/m2) 159.002 278.573 0.571 0.570 

RGR [mg·(g·d−1)] −66.161 3.105 −1.535 0.129 

Bold numbers indicate significant differences (p < 0.05). 

 

Figure 8. The relationship between V. natans N:P and water TN. 

Table 9. Summary of the best model of the relationship between V. natans C:P and water N:P. 

Predictor Coefficient Std. Error t Value p 

Intercept 1.518 × 102 9.384 × 100 16.174 <0.001 

TN (mg/L) 2.079 × 100 0.229 × 100 0.288 0.774 

Water N:P 8.067 × 10−2 6.785 × 10−1 0.119 0.906 

Phytoplankton (mg/m3) −1.262 × 100 1.636 × 100 −0.772 0.443 

Periphytic algae (mg/m2) 1.935 × 103 3.765 × 103 0.514 0.609 

RGR [mg·(g·d−1)] −1.199 × 103 5.826 × 102 −2.058 0.043 

Bold numbers indicate significant differences (p < 0.05). 
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Figure 9. The relationship between V. natans C:P and relative growth rate (RGR). 

4. Discussion 

4.1. The Influence of Water Nutrients on the Stoichiometric Characteristics of Submerged Plants 

Water nutrients were the basis of C, N, and P content allocation in submerged plants 

to meet the needs of rapid growth and reproduction [44,45]. Changes in the nutrient con-

tent of a water body affect stoichiometric characteristics of submerged plants and plant 

community composition [19,21,46,47]. The input of external nutrients trigger change in 

C:N:P stoichiometric signatures in the aquatic plants. Plants accumulated nutrients in ex-

cess of their cellular requirements when their growth was not limited by N and P availa-

bility [40,48]. Because of the high concentration of P in water, the C:P and N:P ratios de-

creased, and intracellular C:N:P stoichiometric signatures of aquatic plants significantly 

lowered [49]. Bi et al. [50] studied the growth of Rhodomonas sp., Phaeodactylum tricornutum, 

and Isochrysis galbana; N:P ratios varied within the environmental N:P ratio, and lower 

N:P ratio promoted the growth of algae [50].  

In our study, the mean N:P ratio of V. natans was approximately 10.3:1, which was a 

bit lower than that of plants (11:1) in the River Spey in Great Britain, as reported by De-

mars and Edwards [50]. Our result was consistent with the studies on the floodplain lakes 

of eastern China [11] and the middle and lower reaches of the Yangtze River [49]; these 

studies reported that as the water body TN increased, the N content and N:P ratio of V. 

natans also increased [11,49]. Many studies have reported that freshwater organisms 

change their N:P and C:P ratios in response to P enrichment [11,35,51]. However, the N:P 

ratio of H. verticillata (49.7:1) was much higher than that reported in previous studies. H. 

verticillata might have the ability to absorb N in water more easily.  

In addition, the stoichiometric characteristics of C:N:P in plant tissues depended not 

only on nutrient supply but also on the availability of light in the water column. The light 

in the water column could affect the physiology, morphology, and biomass distribution 

of submerged plants, resulting in large variations in the concentration of C, N, and P and 

stoichiometry of C:N:P in plants [40,52–54]. N is a constituent element of plant cell pro-

teins and nucleic acid, and it participates in the synthesis of chlorophyll in the chloroplast. 

Therefore, it is closely related to the ability of plant photosynthesis [55]. The 



Water 2022, 14, 1263 12 of 19 
 

 

photosynthetic compensation point and photophobicity of V. natans were lower than 

those of H. verticillata. Therefore, V. natans could adapt to low-light environments, which 

resulted in higher N:P ratio in H. verticillata than that in V. natans [10]. Therefore, the shad-

ing effect caused by phytoplankton may have affected the photosynthesis of the plants. In 

our study, the content of phytoplankton Chl-a in the water of the H. verticillata planting 

was higher than that of the V. natans planting.  

Differences in nutrient absorption and adaptability strategies were observed between 

H. verticillata and V. natans. Whereas V. natans has roots, H. verticillata was a “pseudo-root 

tip” plant with only whisker-shaped adventitious roots [10]. With lower C input for sup-

porting tissues, the C absorption of V. natans was lower than that of H. verticillata, which 

was conducive to its tolerance under low-light stress and was consistent with its low-light 

photosynthetic compensation point [25,56,57]. In addition, the C:N metabolism level of V. 

natans was lower and carbohydrate storage was higher than those of H. verticillata [25,58]. 

This might be because of H. verticillata allocating more C on the stem to stretch its branches 

to the surface of the water [56,59]. 

In addition, C:N ratio of H. verticillata and V. natans decreased with the increase in 

water TN, and water C:N ratio reflected the high N-based biomass of plant unit C and 

the decrease in nutrient use efficiency [60]. The same conclusion was obtained while stud-

ying the stoichiometric characteristics of algae [61]. Moreover, the phytoplankton biomass 

is limited by the nutrient concentration and the ratio of limiting nutrients [21]. In our 

study, the attached algae had no significant effect on the stoichiometric characteristics of 

the submerged plants, whereas the periphytic algae may be less affected by the nutrient 

enrichment in the water column [62].  

With the increase in TN content of the water body, the N:P of water increased, but 

C:N of H. verticillata and V. natans decreased. Low C:N of plants under high N and P en-

vironment indicated the overabsorption of N; this led to the accumulation of ammonia 

nitrogen in tissues, change in nitrogen metabolism, and the production of free amino acids 

producing physiological toxicity [42]. Soluble sugar accumulates in plant leaves in re-

sponse to stress, resulting in the decrease in soluble sugar content in plant roots. This af-

fects the production of new buds and finally inhibits the growth of plants [42]. Submerged 

plants may be resilient to abrupt increases in N loading at moderate TP concentrations; 

however, after prolonged exposure, a complete collapse occurs [39]. Excessive N content 

reduces stem strength. When water TN content reached 0.92 mg/L and water TP was 0.12 

mg/L, V. natans had low ramet counts and biomasses [41]. Excessive N concentration, for 

example, >5 mg/L, had negative effects on the photosynthetic efficiency and biomass of 

submerged plants [39,63]. The excessive uptake capacity of submerged plants under rich 

N and P conditions with high water N:P ratio enhances the decline in growth of sub-

mersed plants, which can markedly alter the aquatic ecosystem from a plant-dominated 

clear state to an algal-dominated turbid state. 

4.2. The Relationship between Growth Rate and Stoichiometric Characteristics of Submerged 

Plants 

Fast-growing organisms usually have lower C:P and N:P ratios. The growth rate hy-

pothesis proposes that fast-growing organisms allocate most of their resources to the syn-

thesis of rRNA (high P) instead of protein (high N) [26,64], which explains the positive 

correlation between the P content and growth rate of H. verticillata and V. natans. The neg-

ative correlation between H. verticillata and V. natans C:P and N:P ratios and the growth 

rate was considered to be the conclusion of the growth rate hypothesis [65–68]; this reflects 

the requirement of P for rRNA and rapid protein synthesis to support rapid growth [28]. 

Therefore, the higher the N content of the water body, the greater the N:P ratio of V. natans 

and slower its growth rate. The C:P and N:P ratios had no correlation with the growth rate 

of H. verticillata. In the case of vascular plants, tissue N:P ratio was higher when the growth 

rate was low, and tissue N:P ratio was lower when the growth rate was high [27,41,68]. 

Therefore, after determining the N:P ratio of water, the tipping point of submerged plant 
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determined its growth. This would provide a new solution for submerged plant restora-

tion in shallow lakes. 

5. Conclusions 

In our study, the N:P ratio of V. natans was approximately 10.3:1. As TN of the water 

body increased, the N content and N:P ratio of V. natans also increased. However, the N:P 

ratio (49.7:1) of H. verticillata was much higher than that reported in previous studies. H. 

verticillata tended to absorb more N in water. P content of H. verticillata and V. natans pos-

itively correlated with their growth rates. As water TN and N:P ratio increased, N content 

increased and C:N decreased in H. verticillata and V. natans. The negative correlation be-

tween H. verticillata and V. natans C:P and N:P ratios and the growth rate was considered 

to be the conclusion of the growth rate hypothesis. This indicates that excessive N absorp-

tion by submerged plants and the consequent internal physiological injury and growth 

inhibition may be the important reasons for the degradation of submerged vegetation in 

the process of lake eutrophication. In a middle-eutrophic state, the stoichiometric charac-

teristics of C, N, and P in submerged plants were not influenced by phytoplankton and 

periphytic algae. 

Supplementary Materials: The following supporting information can be downloaded at: 
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