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Abstract: Pipeline transportation is widely used in industrial production and daily life. In order to
reduce the waste of resources and economic losses caused by pipeline leakage, effective pipeline
leakage detection and localization technology is particularly important. Among the many leakage
detection methods, the model-based method for pipeline leakage detection and localization is widely
used. However, the key to the method is how to obtain an accurate and reliable pipeline model
to ensure and improve the detection accuracy. This paper proposes a novel method to obtain a
reliable pipeline-mechanism model that fused data and mechanism models based on Bayesian theory.
Moreover, in the process of Bayesian fusion, the complexity and calculations in the mechanism
models were greatly reduced by establishing a surrogate model. After that, the multidimensional
posterior distribution was sampled by the Markov chain Monte Carlo-differential evolution adaptive
metropolis (ZS) (MCMC-DREAM (ZS)) algorithm, and the uncertainty in the model was updated
to obtain a reliable pipeline-mechanism model. Subsequently, the pipeline resistance coefficient,
which could be calculated based on the reliable pipeline-mechanism model, was proposed as an
indicator for detecting whether the pipeline leaked or not. Finally, the pipeline leak model was
used to determine the location of the leak. The reliable pipeline-mechanism model was applied in
an experimental device to validate its performance. The results showed that the proposed method
improved the accuracy and reliability of the mechanism model, and, in addition, the leakage could
be accurately located.

Keywords: pipeline leakage detection and localization; mechanism model; model reliability; Bayesian
theory; pipeline resistance coefficient; uncertainty quantification

1. Introduction

Pipeline transportation plays an important role in industrial production and daily
life. Moreover, pipeline transportation is also an important infrastructure of human society
because of its large capacity, simple construction, low price and easy control. However,
there are always some problems such as corrosion, aging and external force in the pipelines.
Under the influence of various internal and external factors, the phenomenon of pipeline
leakage exists widely. Pipeline leakage has caused a huge waste of resources and economic
losses. Therefore, in order to ensure the safety and reliability of the pipeline system, timely
detection and localization of pipeline leakage is very important in industrial production
and daily life. For this reason, a lot of pipeline leakage detection and localization methods
have been proposed by industry and academia [1–3]. The current pipeline leakage detection
methods can be mainly divided into three categories: (1) environmental detection outside
a pipeline; (2) detection of a pipeline’s internal condition; (3) detection of the fluid flow
state in a pipeline. The first category is concerned with detecting and locating leakages
by detecting changes in the environmental medium outside a pipeline. At present, the
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ground penetrating radar method is commonly used [4]. The second one detects defects
in a pipeline’s wall by instruments, such as optical fiber sensors [5,6], acoustic sensors [7],
magnetic leakage technology [8], etc. The third one establishes a model based on effective
data, such as flow and pressure that describe the flow state of the pipeline, and then
completes the real-time monitoring and positioning of a leak point. This type of method
mainly includes the negative pressure wave method [9,10], pressure gradient method [11],
volume/mass balance method [12] and transient test-based techniques (TTBTs) [13,14]. In
the last couple of decades, TTBTs could be used in pressurized pipes and are more widely
developed due to the stronger real-time nature of the acquired measurement data and lower
capital cost [15,16]. Currently, TTBTs mainly include the inverse transient-based method
(ITM) [17], frequency response-based method (FRM) [18], transient damping-based method
(TDM) [19] and transient reflection-based method (TRM) [20]. Zeng et al. [21] used the
transient pressure in a pipeline through a custom-made in-pipe fiber optic sensor array for
pipeline leakage detection and localization. Duan et al. [22] established a pipeline model
using the hydraulic properties of fluid transient flow and used FRM to detect leaks in
complex pipelines. Meniconi et al. [23] confirmed the potential of TTBTs for fault detection
in real pipe systems by two series of transient tests. Brunone et al. [24] introduced the
smart-portable pressure water maker (S-PPWM) device, which could be used for fault
detection in pressurized transmission mains within TTBTs. However, the effectiveness of
these methods is highly dependent on the accuracy of the pipeline model used. From the
perspective of model building, mechanism modeling and data-driven modeling, these are
the two main approaches. The data-driven approach does not require any specific in-depth
knowledge of pipeline hydraulics, it just learns from the collected historical data, coupled
with some statistical or pattern recognition tools. Among them, an artificial neural network
(ANN) and support vector machine (SVM) are the most commonly used. For example,
Wang et al. [25] used an eigenvector containing multiple sources of information for leak
recognition by an SVM classifier. Zadlkarami et al. [26] proposed the multi-layer perceptron
neural network classifier using process pipeline flow and pressure signals for leak detection
and localization. Da Cruz et al. [27] utilized various machine learning algorithms with
acoustic data to detect and locate leaks in gas pipelines.

For the pipeline leak detection method based on the mechanism model, the reliability
of the model has a great influence on the pipeline leak detection results. However, due
to the complicated changes of pipeline operating conditions and many uncertainties in
the actual process, even complex and advanced mathematical models cannot accurately
simulate a pipeline for actual operation. There is always a certain deviation between the
obtained model and the actual model, which in turn leads to a decrease in the correctness
of leakage detection and localization, resulting in the occurrence of false alarms or leak
alarms. On the other hand, from the perspective of water supply safety, the analysis of
potential hydraulic network failures, which allows for greater insight into failures occurring
in a pipe [28], also depends on the reliability of the pipe simulation or model. Therefore,
eliminating model uncertainty and improving the model accuracy and robustness have
become hot research topics for pipeline leakage detection and water supply safety. An
alternative way to improve model reliability is to fuse the mechanism model and the data-
driven model, the deviation of the model due to uncertainty can be adjusted and corrected
according to the change in actual operation parameters. Gerhard et al. [29] proposed
a leakage detection and localization method that combined real-time transient models
and artificial neural networks. Soldevila et al. [30] used a data-driven model to evaluate
residuals obtained by means of the comparison between the measurements and the values
obtained by the water-distribution-network model for leak localization. Wang et al. [31]
established a hybrid model, which used an RBF neural network to compensate for the
pipeline-mechanism model error. Nevertheless, these methods have certain limitations.
First, the data-driven model has the problems of repeated modeling and low computational
efficiency, that is, after each new design scheme is generated, it is necessary to re-collect
data to train a new data-driven model. Second, a large amount of sample data is required
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to establish a data-driven model. Third, the general combination of the data-driven model
and mechanism model often only updates the uncertainty in the output of the model, while
ignoring the uncertainty of the parameters in the model.

Bayesian theory is an effective technique for quantifying the uncertainty of the pa-
rameters in a model. The parameters in a model to be estimated can be treated as random
variables and, then, some relevant observed variables, or known conditions, can be used
to infer the parameters in order to obtain the posterior conditional probability of the
variables. In this way, the quantitative analysis of the model parameter uncertainties is
realized. Originally, the Bayesian method was used to analyze the sensitivity of eigen-
vectors and eigenvalues [32,33]. Beck et al. [34] studied a Bayesian update and reliability
method based on a Markov Chain. Kennedy et al. [35] used a Bayesian approach to model
error quantification and unknown parameter estimation. Recently, Bayesian methods
have been widely used in various fields, such as medicine [36], urban environment [37],
ecosystems [38], etc. Fleming et al. [39] used Markov modeling technology to predict the
influence of detection strategies on the reliability of a pipe network system, and used
the Bayesian method to quantify and analyze the uncertainty of the parameters of a pipe
network system. Rougier et al. [40] evaluated parameter uncertainty through Bayesian
theory and obtained posterior distributions of leakage location and size. For a nonlinear
high-dimensional posterior probability distribution, sampling methods are often used
for sampling statistical analysis. Among them, the Markov chain Monte Carlo method
(MCMC) is an efficient sampling method. At present, many sampling algorithms have been
derived from the MCMC method, which can be divided into single-chain MCMC sampling
algorithms and multi-chain MCMC sampling algorithms. The DREAM (differential evolu-
tion adaptive metropolis) algorithm is a representative of the multi-chain MCMC sampling
algorithm, which was proposed by Vrugt et al. in 2009 [41], and was improved to become
the DREAM(ZS) algorithm in 2012 [42]. It has been verified that the algorithm has higher
search efficiency for solving high-dimensional nonlinear problems.

In this paper, the reliable pipeline-mechanism model was established by integrating
the statistical data and the mechanism model based on Bayesian theory. In the process of
Bayesian fusion, a surrogate model was used to greatly reduce the calculational complexity
and load. The posterior probability density was sampled and analyzed by the DREAM(ZS)
algorithm. Then, based on the reliable pipeline-mechanism model, a pipeline resistance
coefficient observer and a pipeline-leakage model were established, which were used to
detect and locate pipeline leakage, respectively.

The contributions of this paper are summarized as follows:
(1) Through Bayesian fusion of historical statistics and the pipeline-mechanism model,

the uncertainty in the mechanism model was quantified and updated, and a pipeline-
reliability model was established;

(2) Based on the pipeline-reliability model, the pipe resistance coefficient could be
calculated as an indicator for leak detection, and the pipeline-leakage model could be
obtained for leak localization.

The remainder of this paper is organized as follows: in Section 2, the pipeline-reliability
model is established and pipeline detection and localization technology based on the
reliability model are described in detail; in Section 3, the research results are analyzed
and discussed through experiments; finally, the conclusions are given and future work is
discussed in Section 4.

2. Methods

In our study, the uncertainties of the pipeline-mechanism model mainly come from
three aspects: (1) model input variables—here the uncertainty comes from the operating
pressure and flow data at pipeline inlets and outlets, which are obtained by sensors;
(2) model parameters—these parameters, such as the pipeline resistance coefficient, the
angle of the fluid to the horizontal axis and internal diameter, are usually obtained by
measurement or experience, which are inherently uncertain; (3) quantitative relationship
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between model input and output—due to the inadequacies and limitations of the acquired
knowledge of the process, there is uncertainty in the quantitative relationship between
inputs and outputs in the modeling process. In this paper, by fusing the pipeline-mechanism
model and statistical data, a reliable pipeline-mechanism model integrating knowledge
and data was established, which quantified the uncertainty between inputs and outputs
and the uncertainty of model parameters. The obtained model was used to calculate the
pipeline resistance coefficient, which could be used as an indicator for pipeline leakage
detection. The scheme of the proposed method is shown in Figure 1.

Water 2022, 14, x FOR PEER REVIEW 4 of 21 

of the fluid to the horizontal axis and internal diameter, are usually obtained by measure-

ment or experience, which are inherently uncertain; (3) quantitative relationship between 

model input and output—due to the inadequacies and limitations of the acquired 

knowledge of the process, there is uncertainty in the quantitative relationship between 

inputs and outputs in the modeling process. In this paper, by fusing the pipeline-mecha-

nism model and statistical data, a reliable pipeline-mechanism model integrating

knowledge and data was established, which quantified the uncertainty between inputs 

and outputs and the uncertainty of model parameters. The obtained model was used to

calculate the pipeline resistance coefficient, which could be used as an indicator for pipe-

line leakage detection. The scheme of the proposed method is shown in Figure 1. 

Figure 1. The framework of the proposed method.

2.1. Pipeline-Mechanism Model

Based on the principle of hydraulics, the pipeline-mechanism model was established 

through the continuity equation, motion momentum equation and energy equation fol-

lowed in the operation of the pipeline fluid, and then a virtual pipeline could be con-

structed. Through the pipeline-mechanism model, the pressure and flow of the fluid in a 

pipeline were analyzed and calculated with respect to time along a pipeline. The real-time

transient mechanism model can be expressed as in [43,44]: 

𝜕𝑃

𝜕𝑡
+ 𝑣

𝜕𝑃

𝜕𝑥
+ 𝜌𝑎2

𝜕𝑣

𝜕𝑥
= 0 (1) 

NY

Historical statistics

Integrate data and knowledge based on Bayesian theory

Corrected virtual pipeline

Leak signature analysis based on pipeline resistance observer

Leak location Record measurement data

Initial virtual pipeline based on 
pipeline parameters and hydraulic knowledge

Surrogate model based on polynomial chaos 
expansions

101
PI

101
FI

102
PI

102
FI

 Leak ?

Figure 1. The framework of the proposed method.

2.1. Pipeline-Mechanism Model

Based on the principle of hydraulics, the pipeline-mechanism model was established
through the continuity equation, motion momentum equation and energy equation fol-
lowed in the operation of the pipeline fluid, and then a virtual pipeline could be constructed.
Through the pipeline-mechanism model, the pressure and flow of the fluid in a pipeline
were analyzed and calculated with respect to time along a pipeline. The real-time transient
mechanism model can be expressed as in [43,44]:

∂P
∂t

+ v
∂P
∂x

+ ρa2 ∂v
∂x

= 0 (1)

∂v
∂t

+
1
ρ

∂P
∂x

+ v
∂v
∂x

+ g sin α +
λ

2D
v2 = 0 (2)
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ρCV

(
∂T
∂t

+ v
∂T
∂x

)
+ T

∂v
∂x

(
∂P
∂T

)
− ρv2|v|λ

2D
− 4k

D
∇T(r) = 0 (3)

where Equation (1) is the flow continuity equation, Equation (2) is the motion momentum
equation and Equation (3) is the energy equation. P is the average pressure of the pipeline
section, v is the average velocity of the pipe section, ρ is the average density of fluid, λ is the
hydraulic resistance coefficient, g is the acceleration of gravity, α is the angle of the fluid to
the horizontal axis, D is the inner diameter of the pipe, a is the pressure wave propagation
speed, t is time, x is the distance along the pipeline, CV is the heat energy for the liquid in
the pipe, k is the ground thermal conductivity, T(r) is a function of temperature, T is the
liquid temperature and r is the radial distance from a specific position along the pipeline
to the center of the pipe diameter. If the fluid in the pipeline was liquid, the influence
of temperature on the fluid flow was usually negligible, that is, the energy change in the
pipeline could be ignored, so the original Equation (3) was not considered in our work.

If only fluid changes at different positions in a pipeline were considered and the
change in the fluid state with time was ignored, the steady state model of a pipeline could
be established, and the fluid flow parameters of each point along the pipeline could be
obtained through model Equations (1) and (2). Then, the steady state model of a pipeline
can be formulated as

v
∂P
∂x

+ ρa2 ∂v
∂x

= 0 (4)

1
ρ

∂P
∂x

+ v
∂v
∂x

+ g sin α +
λ

2D
v2 = 0 (5)

The pipeline steady-state model is a system of ordinary differential equations, which
can be solved using the fourth-order Runge–Kutta method. The pipeline real-time transient
model is a set of nonlinear partial differential equations, which can usually be solved by the
characteristic line method. There are three types of boundary conditions for the characteris-
tic line method, which are inlet flow and outlet pressure head (QH), inlet pressure head
and outlet flow (HQ) and inlet pressure head and outlet pressure head (HH), respectively.

2.2. Bayesian Fusion Method

The mechanism model and statistical data were integrated based on Bayesian theory,
and the purpose was to quantitatively analyze the model input parameters (including
pipeline input variables and pipeline model parameters) and model output errors, so
that the model could be revised. The principle of the Bayesian fusion model is shown
in Figure 2.
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2.2.1. Bayesian Method

From Bayesian theory, the posterior probability distribution is related to the product
of the prior distribution and the likelihood function. Therefore, the method of the Bayesian
fusion mechanism model and statistical data shown in Figure 2 can be expressed as

P′(Φ, θ, ∆) ∝ L(Ψ, M(Φ, θ), ∆|Φ, θ)× P(Φ, θ, ∆) (6)
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where P(Φ, θ, ∆) is the prior distribution of pipeline model input, pipeline model parame-
ters and model output error, L(Ψ, M(Φ, θ), ∆|Φ, θ) is the Bayesian fusion likelihood func-
tion representing the fusion of pipeline-mechanism models and statistical data, P′(Φ, θ, ∆)
is the posterior distribution of model input, pipeline model parameters, and model output
error obtained after Bayesian fusion, M(Φ, θ) is the mechanism models including pipeline
knowledge and its uncertainties, Φ is the input to the model, that is, the flow and pressure at
the inlet of the pipe, Ψ is the measurements of the model output (containing the uncertainty
in the measurement), θ is the pipeline model parameter including pipeline length, diameter,
local resistance coefficient, etc., ∆ is the model output error, that is, the difference between
the outlet pressure of the pipeline-mechanism model and the measured value of the actual
pipeline outlet pressure.

2.2.2. Prior Distribution

The pipeline prior distribution specified in our study came from empirical formulas
and data estimated from measurements. The prior probability distribution was assumed
to be a normal distribution with the mean value being the measured value or empirical
data, and the 95% confidence interval of the normal distribution was the mean ± 10%. The
joint prior probability density function was the prior probability density product of each
parameter to be calculated, expressed as

P(Φ, θ, ∆) = P(Φ)× P(θ)× P(∆) (7)

2.2.3. Likelihood Function

The key to Bayesian fusion is to determine the likelihood function. The mathematical
model considering uncertainty is generally expressed by the following equation:

Ψ = M(Φ) + E (8)

where E is the uncertain information, which leads to the difference between the outlet
pressure of the pipeline-mechanism model and the measured value of the actual pipeline
outlet pressure.

Assuming that the uncertainty information is normally distribution with a mean value
of 0 and a variance of σ2, and there are N groups of experimental data, the model input
is Φ = {ϕ1, ϕ2, ϕ3, . . . , ϕN} and the model output is Ψ = {Ψ1, Ψ2, Ψ3, . . . , ΨN}. So, the
likelihood function can be expressed as

L
(
Ψj
∣∣θ) = 1√

(2πσ2)
exp

(
−
(
Ψj −M

(
ϕj; θ

))2

2σ2

)
(j = 1, 2, · · ·N) (9)

where L
(
Ψj
∣∣θ) is the likelihood function obtained from the group j. Assuming that all data

are independent, the likelihood function can be written as

L(Ψ|θ) =
N

∏
j=1

L
(
Ψj
∣∣θ) = ( 1

2πσ2

) N
2

exp

(
−

∑N
j=1 ε2

j

2σ2

)
(10)

where,
ε j = Ψj − f (ϕj; θ) (11)

The variance of σ2 can be determined by the method of maximum likelihood estima-
tion, expressed by the following equations:

d
dσ2 lnL(Ψ|θ) = 0 (12)
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σ̂2 =
N

∑
j=1

ε2
j /N (13)

Substituting Equation (13) into Equation (10), the likelihood function for Bayesian
fusion can be obtained by the following expression:

L(Ψ, M(Φ, θ), ∆|Φ, θ) = L(Ψθ) =

(
1

2πσ̂2

) N
2

exp
(
−N

2

)
(14)

2.2.4. Posterior Distribution

Through the obtained prior probability density function (Equation (7)) and likelihood
function (Equation (14)), the posterior probability density function obtained by Bayesian
fusion shown in Equation (6) could be solved. Then, the joint posterior probability den-
sity of the input, parameters, and output data in the model could be obtained based on
Bayesian fusion. In addition, the tasks of quantifying error and updating uncertainty could
be achieved.

2.3. Surrogate Model

In order to reduce the amount of computation and the computation time in the process
of Bayesian fusion, the surrogate model was established to replace the pipeline-mechanism
model. In our work, the surrogate model of the pipeline-mechanism model was constructed
by the polynomial chaos expansion (PCE) method [45], and the method was mainly based
on the theory of chaotic polynomials (polynomial chaos, PC), which approximates and
accurately represents a random expansion process through the sum of a series of orthogonal
polynomials related to the input parameters. The surrogate model is expressed as

Y = A0H0 +
n
∑

i1=1
Ai1 η1

(
ξi1
)
+

n
∑

i1=1

i1
∑

i2=1
Ai1i2 η2

(
ξi1 , ξi1

)
+

n
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1
Ai1i2i3 η3

(
ξi1 , ξi2 , ξi3

)
+ . . .

(15)

where, A
(

A0, Ai1 , Ai1i2 , . . .
)

is the polynomial coefficient, ηn
(
ξi1 , ξi1 , ξi3 , . . .

)
is the n-dimensional

Hermite polynomial of degree n, ξ = [Φ, θ, ∆] is an independent random variable contain-
ing uncertain parameters in the pipeline model.

2.4. Sampling Method

Sampling is widely used in Bayesian inference. In order to obtain the high-
dimensional and nonlinear joint posterior probability density distribution, the MCMC-
DREAM(ZS) algorithm to sample the joint posterior probability density distribution
was utilized in our study. The DREAM algorithm belongs to the multi-chain MCMC
sampling algorithm, which has better performance than the single-chain MCMC algo-
rithm for parameters with complex distribution. Detailed content of the algorithm can
be found in the literature [41,42].

2.5. Leak Detection
2.5.1. Pipeline Resistance Coefficient Observer

The resistance coefficient λ of a pipeline is related to the shape of the pipeline and the
working condition of the fluid, so it is very difficult to correct it through the uncertainty
and quantification of a single parameter. Generally, the resistance coefficient of a pipeline
can be obtained through empirical formulas (Blasius formula, Severson’s formula, etc.). If
the parameters obtained by this method are denoted as λ1, it can be expressed as

λ1 = f
(

Re,
ε

D

)
(16)
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where Re is the Reynolds number, ε is absolute roughness, D is the pipe’s inner diameter,
f is the empirical formula for calculating pipeline resistance coefficient.

Alternatively, the pipeline resistance coefficient can also be calculated from the rela-
tionship of the pipeline model, expressed by the following equations:

λ2 =
PH − PE − ρg∆h

kρLQ2 (17)

∆h = L sin α (18)

k =
8

π2D5 (19)

where λ2 is the resistance coefficient calculated from the relationship of the pipeline model,
PH is the inlet pressure of the pipeline, PE is the outlet pressure of the pipeline. Once the
reliable pipeline-mechanism model was established, the resistance coefficient obtained by
the model was more accurate.

Comparing λ1 and λ2, when the error exceeded a given value, the resistance coefficient
could be updated by introducing C1 and C2. In this way, the resistance coefficient λ can be
expressed as:

λ = C1 × λ1 + C2 × λ2 (20)

A pipeline resistance coefficient can be calculated by the pipeline flow and pressure
measured at the inlet and outlet of the pipeline by Equation (20). The pipeline resistance
coefficient observer is established by observing the pipeline resistance coefficient of the
inlet and outlet of the pipeline in real time.

2.5.2. Leak Detection

The traditional model-based pipeline leak detection method is usually based on
monitoring the flow and pressure at the inlet and outlet of a pipeline to judge whether a
leak occurs during the operation of the pipeline. However, this method is prone to false
negatives and false positives in the case of sudden changes in working conditions, small
leakage and large noise. In our study, the change in the inlet and outlet resistance of the
pipeline was regarded as an indicator, and when its change exceeded a given value, the
pipeline was considered to have a leak. The resistance of the inlet and outlet of a pipeline
was observed by establishing a pipeline resistance observer in real time.

2.6. Leak Location

The location of pipeline leakage was realized by establishing a pipeline-leakage model.
When pipeline leakage occurred, the pipeline leakage point was set as the pipeline boundary
condition. Through the steady state model (Equations (4) and (5)), the pipeline leakage
location could be obtained through the following equation:

Lr =
(PH − PE − ρg∆h)− kλEρLQ2

E
kρ
(
λHQ2

H − λEQ2
E
) (21)

where, QH is the measured value of the flow at the inlet of the pipeline, QE is the measured
value of the flow at the outlet of the pipeline, λH is the pipe resistance coefficient calculated
from the data at the inlet of the pipeline, λE is the pipe resistance coefficient calculated
from the data at the outlet of the pipeline.

It should be noted that the leakage position calculated according to Equation (21) had
large fluctuations, which could be improved by the least squares method to locate the
specific leakage.

The numerator and denominator of Equation (21) are defined as

Ly = (PH − PE − ρg∆h)− kλEρLQ2
E (22)
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Lx = kρ
(

λHQ2
H − λEQ2

E

)
(23)

Therefore,
Ly = Lr× Lx (24)

When the objective function ∑n
i=1 (Lyi − Lr× Lxi)

2 reaches the minimum, the obtained
leakage position Lr is shown as

Lr =
∑n

1 Lyi × Lxi

∑n
1 L2

xi
(25)

3. Experiments and Results
3.1. Experimental Device

The feasibility of the proposed method in our work was verified by simulation with
the experimental device shown in Figure 3. The total length of the pipeline was about 42 m,
the diameter of the pipe was about 0.023 m and the medium in the pipe was water. The
pressure and flow at the inlet and outlet of the pipeline were measured by using sensors. As
shown in Figure 3, Flowmeter #1 and Pressure Sensor #2 were a flowmeter and a pressure
sensor, respectively, at the inlet of the pipeline, and Flowmeter #2 and Pressure Sensor #2
were a flowmeter and a pressure sensor, respectively, at the outlet of the pipeline. The data
within 30 s of stable operation of the pipeline was obtained, and the sampling frequency
was 1000 Hz, so each set of data contained 30,000 points. The data under different working
conditions was obtained by changing the fluid flow and pressure at the inlet of the pipeline,
and the leakage of the pipeline was controlled by electromagnetic valves. Two leakage
positions were considered in the pipeline, the positions were 30% and 80% of the total
length of the pipeline, respectively. The size of the leakage aperture wes controlled by two
electromagnetic valves, as shown in the Figure 3. Leakage Apertures 1 and 2 represented
large leaks and small leaks, respectively. The large leak aperture was 3 mm and the small
leak aperture was 1.2 mm.
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Figure 3. Experimental device. (a) Photo of experimental setup and components; (b) schematic
diagram of experimental setup.

3.2. Model Validation

In this paper, the establishment of pipeline model and Bayesian fusion were carried
out in MATLAB 2019b. Through a set of experiments, the pressure and flow of the inlet
and outlet of the pipeline under different working conditions were recorded as historical
statistical data for the pipeline, and the parameters of the pipeline model could be updated
through Bayesian fusion. When the pressure at the inlet of the pipeline was 2.41 bar and the
flow velocity was 2.45 m/s, the joint posterior distribution results of the obtained pipeline
model parameters are shown in Figure 4, the updated maximum posterior distribution
parameter values are shown in Table 1.
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Figure 4. Posterior distribution obtained after Bayesian fusion. (“×” represents the parameter value
when the maximum posterior probability was obtained). (a) Posterior distribution of input and
output errors; (b) Posterior distribution of in-model parameters.

Table 1. Updated maximum posterior distribution parameter values.

Parameter Prior Uncertainty
Distribution

Parameter Value at Maximum
Posterior Probability

Input error (∆ Input (Pa) × 104) N (0, 0.1) −0.1414
Output error (∆ Output (Pa) × 104) N (0, 0.1) −0.137

Coefficient of local resistance (ζ) N (9, 0.4) 8.547
Angle (α(rad)) N (0.04, 0.002) 0.03874

Internal diameter (D(m)) N (0.023, 0.00115) 0.02237

The established model was corrected after using Bayesian fusion. Figure 5 shows the
actual pipe outlet pressure measurement compared to the model output (before and after
correction), and it could be seen that the corrected model performed better. As the pipeline
statistics increased, the uncertainty of parameters could be updated in real time through
Bayesian fusion, making the model more robust and reliable.

3.3. Leak Detection

Traditional pipeline leakage detection methods detect pipeline leakage by compar-
ing the flow and pressure residual between the measurements and the values obtained
by the mechanism model. However, in the case of large noise and small leakage, this
method may cause false negatives and false positives. When leakage occurred at 15 s,
the pressure changes at the outlet of the pipeline and the model output change are
shown in Figure 6. Figure 6a is the pressure change diagram when a large leak oc-
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curred, and Figure 6b is a pressure change diagram when a small leak occurred. The
residuals between the actual pipeline and the model output after the leakage occurred
are shown in Figure 7; the red dotted line is the set threshold, and when the change
value exceeded the threshold, it would be regard as a leakage. It could be seen that in
the case of a small leakage, the leakage residual was difficult to distinguish from the
measurement noise.

Water 2022, 14, x FOR PEER REVIEW 12 of 21 

Figure 5. Comparison of pipeline measurement data and model predictions (before and after cor-

rection). 

3.3. Leak Detection 

Traditional pipeline leakage detection methods detect pipeline leakage by comparing 

the flow and pressure residual between the measurements and the values obtained by the 

mechanism model. However, in the case of large noise and small leakage, this method 

may cause false negatives and false positives. When leakage occurred at 15 s, the pressure 

changes at the outlet of the pipeline and the model output change are shown in Figure 6. 

Figure 6a is the pressure change diagram when a large leak occurred, and Figure 6b is a 

pressure change diagram when a small leak occurred. The residuals between the actual 

pipeline and the model output after the leakage occurred are shown in Figure 7; the red 

dotted line is the set threshold, and when the change value exceeded the threshold, it 

would be regard as a leakage. It could be seen that in the case of a small leakage, the 

leakage residual was difficult to distinguish from the measurement noise. 

Figure 6. Comparison between the model output and the actual pressure change value at the outlet 

of the pipeline when leakage occurred. (a) Large leakage; (b) small leakage. 

(a) (b) 

Figure 5. Comparison of pipeline measurement data and model predictions (before and
after correction).

Water 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 5. Comparison of pipeline measurement data and model predictions (before and after cor-

rection). 

3.3. Leak Detection 

Traditional pipeline leakage detection methods detect pipeline leakage by comparing 

the flow and pressure residual between the measurements and the values obtained by the 

mechanism model. However, in the case of large noise and small leakage, this method 

may cause false negatives and false positives. When leakage occurred at 15 s, the pressure 

changes at the outlet of the pipeline and the model output change are shown in Figure 6. 

Figure 6a is the pressure change diagram when a large leak occurred, and Figure 6b is a 

pressure change diagram when a small leak occurred. The residuals between the actual 

pipeline and the model output after the leakage occurred are shown in Figure 7; the red 

dotted line is the set threshold, and when the change value exceeded the threshold, it 

would be regard as a leakage. It could be seen that in the case of a small leakage, the 

leakage residual was difficult to distinguish from the measurement noise. 

Figure 6. Comparison between the model output and the actual pressure change value at the outlet 

of the pipeline when leakage occurred. (a) Large leakage; (b) small leakage. 

  

(a) (b) 

Figure 6. Comparison between the model output and the actual pressure change value at the outlet
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Figure 7. Residual between the model output and actual pressure at the outlet of the pipeline when
leakage occurred. (a) Large leakage; (b) small leakage.

In our work, the leakage could be detected by the pipeline resistance coefficient
observer. Comparing the pipeline resistance coefficients of the inlet and outlet of the
pipeline, and when the deviation between the two was greater than a given threshold, it
was concluded that leakage had occurred. Figure 8 shows the comparison results between
the inlet resistance coefficient and the outlet resistance coefficient of the pipeline, and
Figure 9 presents the residual plots of the pipeline resistance coefficients at the inlet and
outlet of the pipeline in case of a large leakage and a small leakage. In order to evaluate
the performance of the proposed method, the traditional pressure residual method and
SVM were selected to compare the accuracy. The leak detection accuracy obtained by each
method is shown in Table 2. It could be seen that the detection method of the pipeline
resistance coefficient observer could obtain better results in the case of small leakages and
large noise, compared with the other two methods.
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occurred. (a) Large leakage; (b) small leakage.
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Figure 9. Residuals of resistance coefficients between the inlet and outlet of the pipeline when leakage
occurred. (a) Large leakage; (b) small leakage.

Table 2. Comparison of leak-detection accuracy of various methods.

Detection Method Leak Size Accuracy

Pressure residual
Large 93.36%
Small 84.94%

Resistance coefficient
Large 99.34%
Small 96.19%

SVM
Large 92.74%
Small 49.96%

3.4. Leak Location

When the pipeline leaked, the pipeline-leakage model was used to locate the pipeline
leakage. The output of the pipeline-leakage model was processed by the least squares
method to reduce the fluctuation of the output. The optimization effect is shown in
Figure 10, it could be seen that the fluctuation in the output result could be effectively
weakened by the least squares method.
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The location results of the proposed leak model are shown in Figure 11. Compared
with the other two localization methods (i.e., NPW and the uncorrected model-based
method), the comparison results of each localization method are shown in Table 3. It could
be seen that the proposed method gave better localization accuracy.
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Figure 11. The result of leakage location. (a–c) Leak point 1, leak size: large; (d–f) leak point 1, leak size: small; (g–i) leak point 2, leak size: large; (j–l) leak point 2,
leak size: small.
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Table 3. Comparison of leak location of various methods.

Leak Point Leak Size Pipeline Entry Data Leak Location Method Leak Location Absolute Error

1

Large

2.64 m/s
2.84 bar

Model (before correction) 87.55 m 74.95 m
Model (corrected) 13.20 m 0.60 m

NPW 9.00 m 3.60 m

2.41 m/s
2.41 bar

Model (before correction) 74.04 m 61.44 m
Model (corrected) 13.77 m 1.17 m

NPW −2.00 m 14.60 m

2.03 m/s
1.73 bar

Model (before correction) 62.22 m 49.62 m
Model (corrected) 13.08 m 0.48 m

NPW 6.00 m 6.60 m

Small

2.46 m/s
2.41 bar

Model (before correction) 181.12 m 168.40 m
Model (corrected) 15.96 m 3.36 m

NPW −14.00 m 26.6 m

2.37 m/s
2.26 bar

Model (before correction) 138.61 m 126.01 m
Model (corrected) 13.41 m 0.81 m

NPW 1.00 m 11.60 m

2.72 m/s
2.64 bar

Model (before correction) 122.33 m 109.73
Model (corrected) 10.31 m 2.29 m

NPW 20.50 m 7.9 m

2

Large

2.75 m/s
2.92 bar

Model (before correction) 121.40 m 87.80 m
Model (corrected) 33.39 m 0.21 m

NPW 26.00 m 7.60 m

2.71 m/s
2.84 bar

Model (before correction) 122.89 m 89.29 m
Model (corrected) 33.61 m 0.01 m

NPW 25.00 m 8.60 m

2.62 m/s
2.67 bar

Model (before correction) 126.40 m 92.80 m
Model (corrected) 33.07 m 0.53 m

NPW 32.00 m 1.60 m

Small

2.50 m/s
2.18 bar

Model (before correction) 160.90 m 127.3 m
Model (corrected) 31.20 m 2.40 m

NPW 23.00 m 9.6 m

2.81 m/s
2.74 bar

Model (before correction) 148.11 m 114.51 m
Model (corrected) 36.20 m 2.60 m

NPW 67.00 m 33.4 m

2.88 m/s
2.83 bar

Model (before correction) 150.32 m 116.72 m
Model (corrected) 32.15 m 1.45 m

NPW 45.00 m 11.40 m

4. Discussion and Conclusions

The main achievement of this article was the proposition of a pipeline-reliability model-
ing method that integrated the pipeline-mechanism model and historical statistics through
a Bayesian method, which updated the uncertainty in the pipeline model and corrected the
pipeline-mechanism model. Moreover, based on the reliable pipeline-mechanism model
obtained, the pipeline resistance coefficient could be calculated and used as an indicator
for pipeline leakage detection, and then the pipeline-leakage model was obtained to locate
the pipeline leakage. As opposed to the traditional methods of the hybrid model, the
traditional methods of combining the data-driven model and the mechanism model usually
only corrected the uncertainty in the output of the mechanism model, while our model,
after Bayesian fusion, could quantify the uncertainty of the input, output and internal
parameters of the model simultaneously. Moreover, the uncertainty in the model could be
continuously updated through this method, making the model more reliable.
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In this study, it could be seen from experimental results that the model established by
the proposed method could effectively analyze and quantify uncertainty existing in the
original pipeline model, and the pipeline leak detection method based on this model had
high accuracy.

In the actual water supply network, uncertainty is often ignored by water companies.
The authors believe that the water supply network should be simulated regularly, the
uncertainty of the residual series between the simulation results and the actual water
supply network measurements should be evaluated and then the uncertainty parameters
should be updated using the method proposed in our work, or other alternative methods,
so that pipeline leak detection is more accurate. Finally, water companies should be advised
to analyze potential failures in the water distribution network based on reliable models,
which could provide a deeper understanding of failures that occur in the network and thus
respond more effectively to such failures.

However, the actual water supply pipeline is more complicated than our experimental
setup, and there are more uncertain factors, such as water demand, equipment operation,
data measurement, etc. Furthermore, as the dimensionality increases, the computational ef-
fort of the uncertainty distribution of the parameters obtained by Bayesian theory increases
exponentially. Therefore, our future research work will consider more complex pipelines to
validate and improve the proposed method and, at the same time, consider how to reduce
computational complexity during the Bayesian fusion process.

Author Contributions: Conceptualization, T.G. and Y.C.; Formal analysis, M.Z.; Investigation, B.C.;
Methodology, M.Z., Y.X. and Y.H.; Project administration, M.Z. and X.S.; Resources, Y.H.; Software,
Y.X.; Supervision, Y.C. and X.S.; Validation, T.G.; Visualization, Y.X.; Writing—original draft, Y.X. and
B.C.; Writing—review & editing, M.Z. and B.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Application Research of Public Welfare Technology in Zhejiang
Province, China, grant number LGF20E090005 and National Natural Science Foundation of China,
grant number 21676251.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical. The
data presented in this study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moubayed, A.; Sharif, M.; Luccini, M.; Primak, S.; Shami, A. Water Leak Detection Survey: Challenges & Research Opportunities

Using Data Fusion & Federated Learning. IEEE Access 2021, 9, 40595–40611.
2. Preetha, P.; Eldhose, N.V. Survey on Recent Trends in Pipeline Monitoring to Detect and Localize Leaks using Sensors. Int. J. Adv.

Sci. Technol. 2020, 29, 3199–3210.
3. Lu, H.; Iseley, T.; Behbahani, S.; Fu, L. Leakage detection techniques for oil and gas pipelines: State-of-the-art. Tunn. Undergr.

Space Technol. 2020, 98, 103249. [CrossRef]
4. Hyun, S.Y.; Jo, Y.S.; Oh, H.C.; Kim, S.Y.; Kim, Y.S. The laboratory scaled-down model of a ground-penetrating radar for leak

detection of water pipes. Meas. Sci. Technol. 2007, 18, 2791. [CrossRef]
5. Xu, C.; Du, S.; Gong, P.; Li, Z.; Song, G. An Improved Method for Pipeline Leakage Localization with a Single Sensor

Based on Modal Acoustic Emission and Empirical Mode Decomposition with Hilbert Transform. IEEE Sens. J. 2020, 20,
5480–5491. [CrossRef]

6. Ibrahim, K.; Tariq, S.; Bakhtawar, B.; Zayed, T. Application of fiber optics in water distribution networks for leak detection and
localization: A mixed methodology-based review. H2Open J. 2021, 4, 244–261. [CrossRef]

7. Zhiwang, Z.; Qiang, W.; Xiaohong, G.U.; Ya, Z.; Kai, Z. Analysis on underground water pipes multi-point leakage location
method based on distributed optical fiber. J. Appl. Opt. 2020, 41, 228–234. [CrossRef]

8. Wu, D.; Liu, Z.; Wang, X.; Su, L. Composite magnetic flux leakage detection method for pipelines using alternating magnetic field
excitation. NDT E Int. 2017, 91, 148–155. [CrossRef]

http://doi.org/10.1016/j.tust.2019.103249
http://doi.org/10.1088/0957-0233/18/9/008
http://doi.org/10.1109/JSEN.2020.2971854
http://doi.org/10.2166/h2oj.2021.102
http://doi.org/10.5768/JAO202041.0108002
http://doi.org/10.1016/j.ndteint.2017.07.002


Water 2022, 14, 1255 19 of 20

9. Ge, C.; Wang, G.; Hao, Y. Analysis of the smallest detectable leakage flow rate of negative pressure wave-based leak detection
systems for liquid pipelines. Comput. Chem. Eng. 2008, 32, 1669–1680. [CrossRef]

10. Li, J.; Zheng, Q.; Qian, Z.; Yang, X. A novel location algorithm for pipeline leakage based on the attenuation of negative pressure
wave. Process Saf. Environ. Protect. 2019, 123, 309–316. [CrossRef]

11. Abdulshaheed, A.; Mustapha, F.; Ghavamian, A. A pressure-based method for monitoring leaks in a pipe distribution system: A
Review. Renew. Sustain. Energy Rev. 2017, 69, 902–911. [CrossRef]

12. Liou, J.C. Leak detection by mass balance effective for Norman wells line. Oil Gas J. 1996, 94, 220623.
13. Xu, X.; Karney, B. An Overview of Transient Fault Detection Techniques. In Modeling and Monitoring of Pipelines and Networks:

Advanced Tools for Automatic Monitoring and Supervision of Pipelines; Verde, C., Torres, L., Eds.; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 13–37.

14. Duan, H.F.; Pan, B.; Wang, M.; Chen, L.; Zheng, F.; Zhang, Y. State-of-the-art review on the transient flow modeling and utilization
for urban water supply system (UWSS) management. J. Water Supply Res. Technol.-Aqua 2020, 69, 858–893. [CrossRef]

15. Chen, Q.; Xing, X.; Jin, C.; Zuo, L.; Wu, J.; Wang, W. A novel method for transient leakage flow rate calculation of gas transmission
pipelines. J. Nat. Gas Sci. Eng. 2020, 77, 103261. [CrossRef]

16. Liu, E.; Kuang, J.; Peng, S.; Liu, Y. Transient operation optimization technology of gas transmission pipeline: A case study of
west-east gas transmission pipeline. IEEE Access 2019, 7, 112131–112141. [CrossRef]

17. Soares, A.K.; Covas, D.I.; Reis, L.F.R. Leak detection by inverse transient analysis in an experimental PVC pipe system.
J. Hydroinform. 2011, 13, 153–166. [CrossRef]

18. Rubio Scola, I.; Besançon, G.; Georges, D. Blockage and leak detection and location in pipelines using frequency response
optimization. J. Hydraul. Eng. 2017, 143, 04016074. [CrossRef]

19. Covas, D.; Ramos, H.; De Almeida, A.B. Standing wave difference method for leak detection in pipeline systems. J. Hydraul. Eng.
2005, 131, 1106–1116. [CrossRef]

20. Sun, J.; Wang, R.; Duan, H.-F. Multiple-fault detection in water pipelines using transient-based time-frequency analysis.
J. Hydroinform. 2016, 18, 975–989. [CrossRef]

21. Zeng, W.; Gong, J.; Cook, P.R.; Arkwright, J.W.; Simpson, A.R.; Cazzolato, B.S.; Zecchin, A.C.; Lambert, M.F. Leak detection for
pipelines using in-pipe optical fiber pressure sensors and a paired-IRF technique. J. Hydraul. Eng. 2020, 146, 06020013. [CrossRef]

22. Duan, H.F. Transient frequency response based leak detection in water supply pipeline systems with branched and looped
junctions. J. Hydroinform. 2016, 19, 17–30. [CrossRef]

23. Meniconi, S.; Capponi, C.; Frisinghelli, M.; Brunone, B. Leak detection in a real transmission main through transient tests: Deeds
and misdeeds. Water Resour. Res. 2021, 57, e2020WR027838. [CrossRef]

24. Brunone, B.; Capponi, C.; Meniconi, S. Design criteria and performance analysis of a smart portable device for leak detection in
water transmission mains. Measurement 2021, 183, 109844. [CrossRef]

25. Wang, Z.; He, X.; Shen, H.; Fan, S.; Zeng, Y. Multi-source information fusion to identify water supply pipe leakage based on SVM
and VMD. Inf. Process. Manag. 2022, 59, 102819. [CrossRef]

26. Zadkarami, M.; Shahbazian, M.; Salahshoor, K. Pipeline leakage detection and isolation: An integrated approach of statistical
and wavelet feature extraction with multi-layer perceptron neural network (MLPNN). J. Loss Prev. Process Ind. 2016, 43,
479–487. [CrossRef]

27. Cruz, R.P.D.; Silva, F.V.d.; Fileti, A.M.F. Machine learning and acoustic method applied to leak detection and location in
low-pressure gas pipelines. Clean Technol. Environ. Policy 2020, 22, 627–638. [CrossRef]
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