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Abstract: Urban Black and Odorous Water (BOW) has become an environmental problem in many
cities in China. The use of satellite remote sensing technology to identify BOW is still in its infancy,
and there are many problems that need further solutions. In order to monitor BOW by satellite,
between 2016 and 2017, the reflectance of remote sensing and some other parameters of 173 samples
were collected from multiple field water experiments first. The samples were located at the major
BOW in the urban areas of four Chinese cities, and the differences in remote sensing reflectance of
severe BOW (SBOW), moderate BOW (MBOW), and general water (GW) were analyzed. Based on
field measurements of spectral data, six remote sensing classification or identification models of
BOW were compared in terms of their correct identification rate and reliability. The results show that
compared with the GW in the study area, the urban BOW has the lowest reflectance. The peaks and
valleys were not obvious in the visible band, especially the remote sensing reflectance of heavy BOW,
which fluctuated very little in the visible band. Compared with the other five models, the H Index
model had the best identification correctness and reliability.

Keywords: Urban Black and Odorous Water (BOW); reflectance of remote sensing; remote sensing
identification model

1. Introduction

Urban Black and Odorous Water (BOW) has been described as having abnormal color
(black or grey) and unpleasant odor [1,2]. These waters have become the dominant water
environmental problem in many cities in China. The information published on the platform
“Urban black and odorous water remediation information” indicates that more than 70% of
large and medium-sized cities face black and smelly water problems of varying degrees.
This has greatly affected environmental quality [3,4]. The deadline for alleviating this
environmental quality issue is described in the “Action Plan for Prevention and Control
of Water Pollution”, which was issued by the State Council in 2015 [5]. Therefore, it is of
critical importance to monitor urban BOW.

Conventional methods, such as data collection, field measurement, and indoor testing
and analysis, are usually adopted to identify and monitor BOW. The data points obtained
by this method are scattered and do not clearly represent the actual river and urban water
quality. Furthermore, these methods are very time and labor-intensive and are costly [6].
With the development of remote sensing technology, the use of satellite remote sensing to
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monitor the quality of marine and inland waters has the advantages of time traceability
and large-scale synchronous measurement compared with conventional methods [7–9].
Remote sensing technology provides an effective way to monitor BOW.

Compared with the more mature application in inland waters, the use of remote
sensing technology in monitoring urban BOW is a more recent development. Based on
management requirements, Shen [10] established a remote sensing screening system for
urban BOW and proposed several technical requirements for identifying them using remote
sensing data. Based on BOW samples in different cities, Cao [11] proposed two methods,
saturation and spectral index (H Index method), to identify and validate BOW. Wen [12]
proposed and validated five algorithms, including Difference of Black-odorous Water Index
(DBWI), Slope of Black-odorous Water Index (SBWI), and Normalized Difference Black-
odorous Water Index (NDBWI), to identify urban BOW using high spatial resolution remote
sensing data. Yao [13] proposed the Black and Odorous Water Index (BOI) algorithm based
on the BOW data in Shenyang and achieved good identification effects. Li [14] analyzed
the correlation between dissolved organic matter (DOM), apparent optical properties
(AOPs), and inherent optical properties (IOPs) of urban BOW and compared it with that
of general water (non-BOW water). Jin [15] used GF-2 satellite images to obtain the water
area range in the built-up area of Beijing and used multiple water quality parameters to
distinguish the degree of BOW. Therefore, a series of comprehensive field water experiments
were conducted in the Shenyang and Beijing urban areas. Comparing and analyzing the
water quality parameters and spectral characteristics differences of severe BOW (SBOW),
moderate BOW (MBOW), and general water (GW), a model of Black and Odorous water
Classification Index (BOCI) was proposed [16]. Lu [17] examined the BOW in Qinzhou city,
Guangxi Province, as an example and combined PlanetScope data with field data to verify
five identification BOW methods. Ding [18] studied the urban BOW in four cities: Nanjing,
Wuxi, Yangzhou, and Changsha, and constructed a BOW identification and classification
algorithm based on the absorption coefficient.

In conclusion, the research mentioned above set the stage for monitoring BOW by
remote sensing. However, the algorithms were designed for a specific area, and though
they have high accuracy in that area, their applicability to other areas needs to be verified.

In this study, we examined the BOW in four cities: Shenyang, Beijing, Nanjing, and
Shenzhen. From the application perspective, we first evaluated the identification accuracy
of several BOW identification models using field data. Then, we set different thresholds for
each model to classify BOW into two grades: severe and moderate, before evaluating the
accuracy of those classifications. Finally, we attempted to determine which model provided
the best results and widest applicability.

2. Materials and Methods
2.1. Data Collection and Processing Methods
2.1.1. Urban Black and Odorous Water

In 2016, the Ministry of Housing and Urban–Rural Development of the People’s
Republic of China and the Ministry of Ecology and Environment of the People’s Republic of
China co-formulated the Guide to the Remediation of Urban Black and Odorous Water (referred
to as the “Guide”). The classification index and test method of the SBOW and MBOW in
urban areas were stipulated. The index includes Secchi Depth (SD, cm), dissolved oxygen
(DO, mg/L), Oxidation-Reduction Potential (ORP, mV), and NH3-N (mg/L) (Table 1).
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Table 1. Distinguishing standard and index determination method of urban BOW.

Standard MBOW SBOW Note

SD (cm) 10 a–25 <10 On-site in situ measurement
DO (mg/L) 0.2–2.0 <0.2 On-site in situ measurement
ORP (mV) −200–50 <−200 On-site in situ measurement

NH3-N (mg/L) 8.0–15 >15 Water sample was measured after
0.45 µm filtering

a When the water depth of the river section was less than 25 cm, we used 40% of the water depth.

This study determined the water body type and black and odorous water type based
on the criteria in the “Guide” and the results of the field identification of the BOW. Manual
identification in the field primarily distinguished BOW according to multiple conditions,
such as the color and odor of the water body (Table 2).

Table 2. Artificial discrimination index of BOW in the field.

Characteristics Definition Note

Color Unnatural color General water is mainly light green or green

Odor Unpleasant odor Severe BOW odor is pungent and
nausea-inducing

Fluid Dynamics Insufficient
Hydrodynamic Fluidity General water is more fluid

Water Body
Characteristics Turbid Water General water is clearer

Water Surface
Characteristics

Industrial or domestic
garbage, sludge, and

other substances floating
on the surface

General water surfaces are cleaner with
fewer impurities

2.1.2. Remote Sensing Reflectance

An ASD portable spectrometer (ASD, Malvern Panalytical, UK) was used in the field
to measure the remote sensing reflectivity of the water surface. The instrument has a
spectral resolution of 1 nm and a spectral measurement range of 350–2500 nm. It can obtain
continuous water surface spectral data in a study area. The remote sensing reflectance was
obtained using the method proposed by Tang et al. (the above-water method) [19]. The
spectrometer was preheated and calibrated before each experiment.

The Savitzky–Golay filter model was selected to smooth the measured remote sensing
reflectivity of the water body and correct the “jagged edges” phenomenon caused by the
influence of external environmental noise during the measurement process [20]. This study
used a quadratic polynomial model for smoothing and a window size of 25. Then, using the
GF2-PMS2 sensor as an example, the continuous hyperspectral remote sensing reflectance
data measured in the field were converted into the GF2-PMS2 sensor band equivalent
multispectral data such as 485 nm, 555 nm, 660 nm, and 830 nm. The model algorithm was
used to identify BOW from sufficiently sized bodies of water, such as rivers that are wider
than 5 pixels.

2.2. Study Area and Distribution of Sampling Points

From 2016 to 2017, on sunny days, field experiments were conducted in the urban
areas of Beijing, Shenyang, Nanjing, and Shenzhen. The sampling points were distributed
in typical cities in Northeast, North, East, and South China and mainly located at rivers and
lakes. Some parameters, such as surface remote sensing reflectance and transparency, were
measured at each sampling point. Upon collection, water samples were immediately stored
in cold storage prior to being transported to the laboratory for analysis of water quality
parameters such as ammonia nitrogen. Combining the value of SD, DO, ORP, and NH3-N
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and on-site artificial sensory identification, the water at each point were classified as SBOW,
MBOW, or GW, by the criteria listed in Tables 1 and 2. Figure 1 shows the geographic
location and distribution of sample points in the study area, and Table 3 lists the sampling
time and number of samples.
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Figure 1. Study area and distribution of sampling points. (a): geographical distribution of the study
area; (b–e): grey areas represent the urban areas of Shenyang, Beijing, Nanjing, and Shenzhen city,
respectively; blue indicates urban rivers.

Table 3. Date and number of sampling points.

City Date Number of Samples
Number of BOW
Samples (SBOW,

MBOW)

Shenyang 19 and 20 September 2016 28 25 (25, 0)
Shenyang 9–11 October 2016 28 28 (5, 11)

Beijing 20 September 2017 16 13 (10, 2)
Nanjing 19 and 20 July 2017 53 20 (4, 8)

Shenzhen 19, 20, 22, and 23 October 2017 48 48 (34, 25)
Total - 173 134 (88, 46)

2.3. Remote Sensing Identification Method for Black and Odorous Water

In this study, two classification models, the H Index method and the saturation method,
and the four identification models of BOI, SBWI, DBWI, and NDBWI, were selected for the
extraction of BOW bodies. The threshold was determined based on the measured data. The
GW, SBOW, and MBOW were identified.

2.3.1. The H Index Method

H =
2(Rrs(555)− Rrs(485)− Rrs(660)) · 345

sum(Rrs(485) : Rrs(830))
≤ T (1)

where Rrs(485), Rrs(555), Rrs(660), and Rrs(830) represent the field measured spectral
reflectance values corresponding to 485 nm, 555 nm, 660 nm, and 830 nm, respectively. T is
the selected threshold.
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2.3.2. The Excitation Purity (Pe) Method

The excitation purity (purity for short) of a stimulus is the distance from the white
point of the illuminant to the farthest point on the chromaticity diagram at an identical
dominant wavelength in the monochromatic sources. CIE (Commission Internationale
de l’éclairage, International Commission on Illumination) chromaticity diagram and the
purity of point C, which is defined as the distance ratio, i.e., SC/SD. The “white” point S is
located at (xs, ys) = (1/3, 1/3). Point C is located at the (x, y) coordinates of a specific Rrs.
Point D is the intersection of line SC with the boundary (the spectrum locus) [21]. When
the ratio was less than β, a sample was classified as black and odorous water, and when
the ratio was greater than β, it was classified as general water.

2.3.3. The BOI Method

BOI =
Rrs(G)− Rrs(R)

Rrs(B) + Rrs(G) + Rrs(R)
≤ T, (2)

where Rrs(B), Rrs(G), and Rrs(R) represent the sensing reflectance of the equivalent blue,
green, and red bands after remote sensor equivalencing, respectively, and T is the selected
threshold.

2.3.4. The SBWI Method

SBWI =
|Rrs(G)− Rrs(B)|

∆λ1
· |Rrs(G)− Rrs(R)|

∆λ2
≤ T, (3)

where Rrs(B), Rrs(G), and Rrs(R) represent the sensing reflectance of the blue, green, and
red bands after remote sensor equivalencing, respectively; T is the selected threshold; and
∆λ1 and ∆λ2 represent the difference between the equivalent blue–green and green–red
wavelengths on the satellite sensor.

2.3.5. The DBWI Method

DBWI = Rrs(G)− Rrs(B) ≤ T, (4)

where Rrs(B) and Rrs(G) represent the sensing reflectance of the blue and green bands
after remote sensor equivalencing, respectively, and T is the selected threshold.

2.3.6. The NDBWI Method

NDBWI =
Rrs(G)− Rrs(R)
Rrs(G) + Rrs(R)

≤ T, (5)

where Rrs(G) and Rrs(R) represent the sensing reflectance of the green and red bands after
remote sensor equivalencing, respectively, and T is the selected threshold.

2.4. Identification Accuracy Evaluation of Black and Odorous Water

We divided 173 samples of GW, MBOW, and SBOW in the study area into two parts
by a 1:2 ratio, namely, the threshold selection sample and the accuracy verification sample.
Two-thirds of the samples (115) were used to select the appropriate model thresholds, and
the remaining one-third of the samples (58) were used to evaluate the accuracy of the model.
This study used identification accuracy (RA) for accuracy verification. The formula is as
follows [21]:

RA =
M
N
· 100% (6)

where M represents the number of correctly identified samples in each category and N
represents the total number of samples in each category.
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To further evaluate the uncertainty and reliability of the BOW water identification
model, we used the overall classification accuracy (OA) and KAPPA coefficients to evaluate
the quantitative classification accuracy [22–24].

3. Results
3.1. Spectra Characteristics of Black and Odorous Water Bodies

The difference in the spectral characteristics between the SBOW, MBOW, and the
GW in the study area were analyzed (Figure 2). Generally, because of the absorption
of chlorophyll a and phycocyanin, the water reflectance valleys appeared near the three
wavebands of 440 nm, 620 nm, and 675 nm, with the peaks near the three wavebands of
550 nm, 650 nm, and 700 nm. According to the measured water quality parameters in this
study, the chlorophyll a concentration of general water (100.62 mg/m3) is considerably
higher than that of black and odorous water (MBOW: 1.84 mg/m3; SBOW: 2.55 mg/m3), the
reflectance peak of the red band at 700 nm was higher. Compared with GW, the change is
slow for SBOW in the range of 500–700 nm, without obvious peaks and valleys. MBOW had
a remote sensing reflectance similar to GW in the 400–550 nm and 700–900 nm wavebands,
but the reflectance fluctuations in the 550–700 nm range were relatively small.
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Figure 2. Remote sensing reflectance of BOW and GW: (a) GW; (b) MBOW; and (c) SBOW. The blue,
orange, and red curves represent the average reflectance values of GW, MBOW, and SBOW between
400 and 900 nm, respectively.

3.2. Evaluation and Comparison of Algorithm Identification Accuracy Based on Measured Spectra
3.2.1. Threshold Determination

The satellite sensor equivalent waveband reflectance data measured at 116 sampling
points in the study area (GW: 25, MBOW: 31, and SBOW: 60) were input into the six models,
and thresholds were chosen for each model. As shown in Figure 3, the ordinate represents
the frequency histogram of the three water classifications as calculated by a model. The
blue, yellow, and dark gray columns represent GW, MBOW, and SBOW, respectively.
The thresholds used to distinguish the three water types were determined based on the
distribution of the frequency histograms. By taking the H model as an example, the
frequency histogram shows that 92% of GW samples had an H > 0.6, and 87% of the MBOW
had an H < 0.6. Therefore, T2 = 0.60 was used to distinguish MBOW from general water
samples. Additionally, 93.22% of the SBOW had an H < 0.16, and 90.32% of MBOW had an
H > 0.16. Therefore, T1 = 0.16 was used as the threshold to distinguish MBOW from SBOW.
The thresholds of each model were determined in a similar fashion. The thresholds to
identify GW, MBOW, and SBOW were the following. Pe: T1 = 0.15, T2 = 0.20; BOI: T1 = 0.04,
T2 = 0.09; SBWI: T1 = 0.001, T2 = 0.005; DBWI: T1 = 0.003, T2 = 0.005; and NDBWI: T1 = 0.00,
T2 = 0.10.
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six kinds of BOW identification models: H index, Pe, BOI, SBWI, DBWI, and NDBWI, respectively.

3.2.2. Accuracy Evaluation

The 58 measured spectrum data (GW: 14; MBOW: 15; and SBOW: 29) were input into
the six models, and the thresholds of each model determined in the previous step were
used to verify the accuracy of the identification results. As shown in Figures 4 and 5, for
the H model, only one of the 14 GW samples was misclassified, and the identification
accuracy was as high as 92.86%. All 44 BOW samples were identified successfully. Of the
15 MBOW samples, eight were correctly recognized, with an identification accuracy of
53.33%. Only 2 of the 29 SBOW samples were recognized incorrectly, with an identification
accuracy as high as 93.10%. The identification accuracy of the GW of the Pe method was
consistent with the H index method (92.86%), and the identification accuracy of BOW was
59.10%. Among them, the SBOW identification accuracy was slightly lower (72.41%), and
the MBOW identification accuracy was only 20%. The SBWI method had high accuracy in
recognizing BOW samples (95.45%), among which the SBOW identification accuracy was
the highest (96.55%). However, the identification accuracy of GW and MBOW was very low,
with MBOW at only 6.67%. The identification results of the BOI model and the SBWI model
were consistent. The accuracy of the NDBWI and DBWI methods for recognizing BOW
samples were 86.36% and 56.82%, respectively. Among them, the identification accuracy of
SBOW was 72.41%, and the identification accuracy of GW was 78.57%.

In summary, among the six BOW identification methods, only the H index model had
an accuracy greater than 50% for recognizing MBOW, and the identification rate for both
mild and severe BOW was higher than 80%. This was the best overall identification accuracy.
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black dashed lines, S1 and S2, represent the boundaries of GW, MBOW, and SBOW, respectively.

Water 2022, 14, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 4. Model accuracy verification and comparison. (a–f) represent the accuracy verification re-

sults of H index, Pe, BOI, SBWI, DBWI, and NDBWI, respectively. Two red lines, T1 and T2, repre-

sent the thresholds determined by each model (distinguishing GW, MBOW, and SBOW). Two black 

dashed lines, S1 and S2, represent the boundaries of GW, MBOW, and SBOW, respectively. 

 

Figure 5. Identification accuracy of models. 

In summary, among the six BOW identification methods, only the H index model 

had an accuracy greater than 50% for recognizing MBOW, and the identification rate for 

both mild and severe BOW was higher than 80%. This was the best overall identification 

accuracy.  

To further quantitatively evaluate the uncertainty and reliability of the BOW identi-

fication models, this study used the OA and KAPPA coefficients to evaluate the classifi-

cation accuracy. As shown in Figure 6, the KAPPA coefficient of the H index method was 

the highest among the six models, followed by the Pe method. The KAPPA coefficients of 

the remaining identification algorithms were all less than 0.4, which means that the con-

sistency of the classification results was average. From the perspective of the OA, the H 

Figure 5. Identification accuracy of models.

To further quantitatively evaluate the uncertainty and reliability of the BOW identifi-
cation models, this study used the OA and KAPPA coefficients to evaluate the classification
accuracy. As shown in Figure 6, the KAPPA coefficient of the H index method was the
highest among the six models, followed by the Pe method. The KAPPA coefficients of the
remaining identification algorithms were all less than 0.4, which means that the consistency
of the classification results was average. From the perspective of the OA, the H index model
had the highest (82.76%), and its overall identification effect was the best. The OA of the
other models was around 60%.
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Compared with other identification algorithms, the H-index model had the highest
identification accuracy and reliability. This model can be used to effectively identify BOW
and classify them into two levels of severity.

4. Discussion

Section 3.2 evaluates the identification accuracy of different algorithms. All models
had a high identification accuracy for GW and SBOW, but the identification accuracy for
MBOW was very low. Among them, only the H index model had an identification accuracy
greater than 50% for MBOW. In addition, the Pe and DBWI models tended to misidentify
some BOW as GW. The SBWI method tended to identify GW as BOW. The main reasons
for the above phenomenon are described below:

The remote sensing reflectance of some measured MBOW in the study area was
comparable to GW or SBOW. After wave band equivalencing, the hyperspectral remote
sensing reflectance was converted to multispectral remote sensing reflectance, making the
difference smaller, and thus lowering the identification accuracy rate of the MBOW.

Using the Pe model as an example (Figure 7), the gray curve has no obvious changes
in the near-infrared band, and it can directly be classified as BOW using the Pe method.
However, for example, the red curve and the blue curve in Figure 7 vary greatly in the
visible light band. The remote sensing reflectance of these BOW samples exhibited the
reflectance characteristics of GW. After satellite sensor band equivalencing, the visible light
retained considerable variation. As a result, the calculated purity was misrecognized as a
GW (the calculated purity of the samples of the two red curves was greater than 0.2).

The instrument measurement errors and the human intuitive perception of BOW,
which misidentified the types of water in the field measurement process, ultimately affected
the identification accuracy of the model.
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Figure 7. Spectral curve comparison. (a) The figures in the legend show the Pe determined according
to the remote sensing reflectance. Two red curves show that the Pe of the water with SBOW was
mistakenly recognized as a GW. The four black curves show that the Pe of the water with SBOW
remained classified as SBOW after calculation, and the blue curve shows a GW. (b) The remote
sensing reflectance after the equivalent band of the satellite sensor corresponding to (a).

5. Conclusions

Compared with GW in the study area, in the range of 500–700 nm, the overall remote
sensing reflectance fluctuations of SBOW were relatively small. MBOW were similar to GW
in the two wavebands of 400–550 nm and 700–900 nm, but the reflectance fluctuations of
MBOW in the 550–700 nm range were relatively small, which is different from GW.

By using the field measurement data in the study area, six typical BOW remote sensing
identification models were compared. The results show that the H Index model was more
effective in terms of identification accuracy and model reliability.

The next step of the research will be to explore the factors affecting the identification
accuracy of BOW and classify the remote sensing reflectance of mild and severe BOW
and GW in more detail based on the characteristics of BOW. Additionally, efforts will be
directed toward selecting appropriate identification models for various categories to obtain
higher identification accuracy.

Future research should use multi-source high spatial resolution remote sensing images
to develop better identification models, extract the temporal and spatial distribution of
BOW in the study area, and monitor the changes in urban BOW pollution levels in real
time. This will provide technical support for government agencies to scientifically and
effectively rectify and supervise urban BOW. We will attempt to apply this method to the
supervision of black and odorous water in rural areas.
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