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Abstract: Spatially distributed hydrologic models are useful for understanding the water balance
dynamics of catchments under changing conditions, thereby providing important information for
water resource management and decision making. However, in poorly gauged basins, the absence
of reliable and overlapping in situ hydro-meteorological data makes the calibration and evaluation
of such models quite challenging. Here, we explored the potential of using streamflow signatures
extracted from historical (not current) streamflow data, along with current remote sensing-based
evapotranspiration data, to constrain the parameters of a spatially distributed Soil and Water Assess-
ment Tool (SWAT) model of the Mara River Basin (Kenya/Tanzania) that is forced by satellite-based
rainfall. The result is a reduced bias of the simulated estimates of streamflow and evapotranspiration.
In addition, the simulated water balance dynamics better reflect underlying governing factors such
as soil type, land cover and climate at both annual and seasonal time scales, indicating the structural
and behavioral consistency of the calibrated model. This study demonstrates that the judicious use
of available information can help to facilitate meaningful calibration and evaluation of hydrologic
models to support decision making in poorly gauged river basins around the world.

Keywords: poorly gauged basin; hydrologic modeling; remote sensing; SWAT; flow duration curve;
evapotranspiration; multi-objective and multi-variable calibration

1. Introduction

Spatially distributed hydrologic models simulate the variability in hydrologic pro-
cesses by explicitly accounting for spatial heterogeneity in a watershed [1–3]. Such tools
can help us understand how a catchment responds under changing conditions, thereby en-
abling analyses of land use change, effects of changing climate and impacts of flooding and
drought events, and evaluate the consequences of water management interventions [1,4–6].
However, a hydrologic model’s predictive ability depends on how well the processes are
represented in the model and parametrized effectively to reflect conditions in the basin,
as expressed by the available observed hydrologic variables. In fact, calibration of such
parameters requires sufficiently long and overlapping observed hydro-meteorological data
both in space and time. Observed hydro-meteorological data are often scarce and/or
non-overlapping in poorly gauged basins. Thus, applying the classical model calibration
and evaluation strategies is challenging and may result in a poorly quantified model output
uncertainty [7].
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The question of how to calibrate and evaluate hydrologic models using streamflow
signatures has been an ongoing research topic in the scientific community [8–21]. Stream-
flow signatures provide useful information about the hydrologic response behavior of a
catchment and thus can be exploited for model parameterization and evaluation. Such infor-
mation can also be used in the “diagnostic” assessment of a hydrologic model [13,14,19,20]
by highlighting to what degree the dominant runoff processes are represented realistically,
and pointing directions for model structural improvement [14]. Yilmaz et al. [13] demon-
strated the potential of signature measures that characterize the overall water balance and
the vertical and temporal redistribution of soil moisture to aid in detecting potential model
structural inadequancies. They argued that signature measures can be helpful in deriving
consistent estimates of the parameters of a watershed model. Recently, Euser et al. [9] used
hydrological signatures to evaluate the realism of several hydrological model structures
in terms of performance and consistency. Westerberg et al. [10] calibrated a WASMOD
model and a Dynamic TOPMODEL using several evaluation points from observed flow
duration curves (FDCs) to reproduce the observed streamflow frequency distribution in the
extended GLUE approach. Their calibrated model results revealed a better overlap with
the observed data compared to “traditional” calibration using the Nash–Sutcliffe efficiency.

Note that most of the studies mentioned above used signature measures derived from
observed streamflow that overlap with the model evaluation period. Nevertheless, a few
studies have demonstrated the use of streamflow signatures in hydrologic model evaluation
by emulating ungauged basin conditions and/or using a time shift approach [10,17,18].
Westerberg et al. [10] calibrated a WASMOD model for the Paso La Ceibra catchment
in Honduras for 1989–1997 using the FDC for 1980–1988 which returned similar results
to when the 1989–1997 FDC was used. Our paper contributes to the use of streamflow
signatures in a basin where streamflow monitoring has been sporadic in recent years but
there are relatively better quality observations available from the past.

Under data-limited circumstances, it is crucial to consider the need for evaluation
measures that act together to achieve the synergy necessary for sound model evaluation.
In this regard, an FDC represents the relationship between the magnitudes and the fre-
quencies of the streamflow for a particular river basin [22,23]. It also provides information
about the watershed response as a function of geology, soil type and landuse, among
others. A steeper FDC indicates a flashiness of the streamflow with a small contribution
from the groundwater, whereas a flatter FDC points to a significant contribution of the
groundwater/subsurface flow and higher storage [22]. A high-streamflow regime (i.e.,
exceedance probability < 0.05) characterizes the watershed response to rainfall events,
while a low-streamflow regime (exceedance probability between 0.7 and 1.0) indicates the
long-term sustainability of the streamflow that is controlled by the interaction of baseflow
and riparian evapotranspiration during extended dry periods. To reduce the sensitivity of
FDCs to year-to-year climate variability and thereby enhance the information content of
catchment response behavior, studies have suggested to use the mean annual FDC instead
of the period-of-record FDC [23] and normalization using the mean annual streamflow [22].

One of the features of streamflow signature-based model evaluation is that such sig-
natures only carry information about specific parts of the streamflow response behavior
(i.e., the high-streamflow regime, the low-streamflow regime and the mean streamflow,
among others). Thus, unlike the conventional streamflow time series matching, the use of
hydrological signatures in model evaluation necessitates multi-objective approaches [19]
such that the system behavior is fully characterized. Further, because streamflow signatures
represent lumped properties at the watershed outlet, they do not provide explicit informa-
tion for spatially constraining parameters. In this work, we coupled multiple streamflow
signature measures with remote sensing-based evapotranspiration to help achieve more
spatial detail.

Developments in remote sensing techniques have provided spatially distributed and
temporally varying information relevant to hydrological process modeling [24–30]. In
particular, remotely sensed information offers large benefits for modeling data-scarce and
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ungauged basins [29,30]. Several studies have used remote sensing-based evapotranspira-
tion either alone [7,31], or in combination with observed streamflow data [32,33] and soil
moisture [34] for model calibration and evaluation. Immerzeel and Droogers [31] used
daily remotely sensed evapotranspiration time series to calibrate the Soil and Water Assess-
ment Tool (SWAT) model [35] for the Upper Bhima catchment (India), where streamflows
are highly regulated. Their results revealed that the evapotranspiration simulated by the
SWAT model compared well (R2 = 0.81) with the remotely sensed estimates at the sub-basin
level. At the same time, simulated streamflow mimicked the average patterns of the his-
torical observed streamflow. Winsemius et al. [7] constrained the land surface parameter
distributions of a conceptual semi-distributed hydrological model using dry season evapo-
transpiration time series from remote sensing as explanatory information. They observed
clustering of behavioral parameter sets for similar land cover types, indicating hydrolog-
ically meaningful signatures in the parameter response surface. These studies suggest
that remote sensing-based evapotranspiration can constrain spatially distributed param-
eters that control evapotranspiration processes in hydrologic models. Rientjes et al. [32]
reported an improvement in the Hydrologiska Byråns Vattenbalansavdelning (HBV) model
simulated evapotranspiration when constrained using remote sensing-based evapotran-
spiration. However, they noted a poor performance in the simulated streamflow, which
points to the limitation of using evapotranspiration alone to constrain parameters rele-
vant to surface runoff generation. Nevertheless, several studies have reported improved
model performance when multi-variable (streamflow and evapotranspiration) calibration
is used [32,33].

2. Research Justification and Objectives

The Mara Basin (Kenya/Tanzania) is a data-scarce tropical basin, where the hydro-
meteorological monitoring network is sparse, and the available observed data show several
discontinuities. Figure 1 illustrates the availability of historical observed streamflow for
the Nyangores River at Bomet and the Mara River at Mara Mines. Figure 1 clearly shows
that streamflow data are scarce and intermittent after 1992, even though 1970–1992 has
a relatively better streamflow data availability. Likewise, the availability of rain gauge
measurements has been scarce in the last decade. In Kenya, the total number of rain gauge
stations has reduced from 2000 in 1977 to 700 in recent years [36]. Even when measurements
are available, their quality is unreliable, with several dubious values. On the other hand,
advancements in satellite technology have provided several benefits for poorly monitored
basins by providing spatially distributed and temporally varying information relevant to
understanding basin hydrology [34,37].
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Figure 1. Streamflow data availability for the Nyangores River at Bomet station (1LA03) and the
Mara River at Mines station (5H2).

This research seeks an innovative approach to exploit useful information contained in
historical streamflow observations, in tandem with spatially distributed remote sensing-
based evapotranspiration, to constrain parameters of the SWAT model. We use signature
information derived from historical streamflow under the assumption of stationarity for
application in more recent periods. We understand that land use changes affect the system
response behavior, apart from climate variability. However, Juston et al. [38] studied
the discharge response for a headwater region using historical streamflow rating and
daily gauge height data (1964–2007). Their analyses revealed that shifts in the basin
discharge response were rather subtle over the 44 years. Additionally, our study basin
has a substantial protected area that plays a dominant role in controlling the signature
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properties of the basin streamflow [39], which supports the stationarity assumption for the
streamflow signatures.

This research aimed to calibrate and evaluate the SWAT model using multiple stream-
flow signatures and spatially distributed remote sensing-based evapotranspiration data.
The specific objectives include:

i. To investigate the skill of using multiple streamflow signatures to calibrate and
evaluate a hydrologic model;

ii. To investigate the added value of coupling remote sensing-based evapotranspiration
with streamflow signature measures to constrain hydrologic models;

iii. To explore the potential of streamflow signatures and remote sensing information
for model calibration and evaluation of a distributed hydrologic model in a multi-
objective framework;

iv. To characterize rainfall partitioning in the basin in terms of the dominant water
balance components.

3. The Study Area

The Mara River originates from the forested Mau Escarpment (about 3000 m.a.s.l.) and
drains 13,750 km2, of which approximately 65% is located in Kenya and 35% in Tanzania
(Figure 2). The Amala and Nyangores Rivers are the only perennial tributaries draining the
headwater region. The Talek and the Sand Rivers are the two most notable seasonal rivers
stemming from Loita Hills in the southeast of the basin. The spatial rainfall distribution in
the basin varies considerably (Table 1), with the highest and lowest mean annual rainfall
being 1750 mm/year (Mau region) and 600 mm/year (southeast part), respectively [40].
The main factors influencing the rainfall distribution in the basin are its equatorial location
and the range of landforms in the region, including high mountains, expansive plains and
a large inland lake. Most parts of the basin receive rainfall with a bimodal pattern—the
short rainy season (October–December) and the long rainy season (March–May). The
rainfall in the short rainy season is driven by convergence and southward migration of
the Intertropical Convergence Zone (ITCZ), whereas south-easterly trade winds drive the
long rainy season. The mean annual temperature is approximately 25.5 ◦C and generally
increases southwards.

The basin is endowed with significant biodiversity through a sequence of zones from a
moist montane forest on the escarpment through a dry upland forest to scattered woodland
and then the extensive grasslands of the savanna, with areas of scrub and thorn trees. The
Serengeti–Masai Mara Plain is internationally famous for having the highest density and
most diverse combination of large herbivores on earth [41].

The geology of the Mara Basin is composed mainly of volcanic rocks of the Tertiary
and Nyanzian ages [40]. Dark volcanic origin soils are common on the escarpment and
rangelands. Lower down, freely draining shallow soils are found. Poorly drained soils
cover the plateau and support extensive grasslands or sorghum plantations. Finally, clay
soils have accumulated in the river valleys and low-lying wetlands.
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Figure 2. The location of the Mara Basin in East Africa. Selected sample watersheds with varying
aridity and landscape characteristics are marked with W1–W6. The inset map shows the boundary of
Kenya and Tanzania.

Table 1. Summary of selected watershed characteristics. P, ET0 and ET represent mean annual
(2002–2009) rainfall and reference and actual evapotranspiration, respectively. See their location in
Figure 2 and note that W1 and W6 are watersheds with gauging stations.

Watershed
ID

Area
(km2)

Elevation
(m.a.s.l.)

Dominant Land
Cover Dominant Soil Type P

(mm)
ET0

(mm)
ET

(mm)
Aridity
Index

W1 691 2397 Forest (63%) Andosols (100%) 1605 1494 1031 0.94
W2 695 2684 Forest (45%) Andosols (100%) 1428 1452 897 1.03
W3 1392 1507 Grassland (79%) Luvic Phaeozems (67%) 811 1656 703 2.12
W4 386 1892 Grassland (92%) Eutric Planosols (62%) 1238 1739 919 1.42
W5 622 1292 Wetland (40%) Eutric Planosols (56%) 1446 1710 953 1.19
W6 11,285 1811 Grassland (60%) Planosols (19%) 1117 1658 835 1.50

Basin 13,422 1729 Grassland (35%) Eutric Planosols (40%) 1153 1666 845 1.46

4. Methods and Data
4.1. SWAT Model Description

SWAT [35,42] is a comprehensive process-oriented and physically based simulator
designed for use at a river basin scale. SWAT requires specific information about weather,
soil properties, topography, vegetation and land management practices to simulate physical
processes in a watershed. The water balance is the driving force underpinning all the
processes in a basin [42]. The water balance equation (Equation (1); [42]) is solved at the
hydrological response unit (HRU) level for the soil water content of the actual day (SWt)
based on the initial soil water content of the previous day (SW0) and precipitation (P) as
input water and losses via surface runoff (Qsruf), evapotranspiration (ET), groundwater
flow (Qgw) and the amount of water leaving the soil profile to the vadose zone.

SWt = SW0 + P−Qsru f − ET −Wseep −Qgw (1)
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In SWAT, a basin is partitioned into sub-basins, using topographic information. The
sub-basins, in turn, are subdivided into HRUs that represent a unique combination of land
use, soil type and slope class. All the hydrologic processes are simulated at the HRU level
on a daily or sub-daily time step. The surface runoff is then aggregated to the sub-basin
level for routing into a river network [42].

Vegetation plays a central role in basin hydrology and influences evapotranspira-
tion, the largest water balance component in most climatic regions [1]. This study used
SWAT-T [43], a modified SWAT model with improved vegetation growth dynamics for
tropical conditions. The SWAT-T simulated leaf area index showed good agreement with
the remote sensing-based estimates for the study area [43].

4.2. The Baseline Model

The Mara River Basin was set up using a high-resolution 30 m digital elevation
model (DEM) (URL: http://earthexplorer.usgs.gov, accessed on 9 September 2015), land
cover classes from the Africover project (URL: http://www.africover.org, accessed on
10 September 2015) and soil type classes from the World Harmonized Soil database [44] in
ArcSWAT2012. The basin was subdivided into 89 sub-basins to spatially differentiate areas
dominated by different land uses and/or soils with dissimilar impacts on hydrology. Each
sub-basin was further discretized into about 1500 HRUs. The constructed model represents
the 2002–2009 conditions. The SWAT model was forced by bias-corrected satellite rainfall
from Roy et al. [45]. Weather data relevant to the reference evapotranspiration computation
were obtained from the Global Land Data Assimilation System (GLDAS) [46]. Details
regarding the model setup and forcing datasets can be found in Alemayehu et al. [43].
Table 2 presents the selected SWAT parameters based on previous studies [43,47–50] and
expert knowledge for calibrating the baseline model. The baseline model has an improved
model structure to simulate the vegetation growth cycle for the tropical region [43].

Table 2. The list of SWAT parameters used during model calibration with their range.

Parameter Function (Unit) Variation Level
Range a

Adjustment b
Min Max

SOL_Z Soil depths (mm) HRU 240 2000 R
SOL_AWC Soil water content (mm) HRU 0 0.45 R

SOL_K Soil hydraulic conductivity (mm/h) HRU 0 67.6 R
ESCO Soil evaporation (-) HRU 0 1 V
EPCO Plant water uptake (-) HRU 0 1 V

REVAPMN Depth of water in the aquifer for “revap” (mm) Watershed 0 200 V
CN2 Surface runoff (-) HRU 25 98 R

SURLAG Surface runoff routing (day) HRU 0.01 10 V
ALPHA_BF Baseflow recession constant (day) Watershed 0 1 V
GWQMN Shallow aquifer minimum level for baseflow (mm) Watershed 0 500 V

GW_REVAP Groundwater “revap” coefficient (-) Watershed 0.02 0.2 V
RCHRG_DP Deep aquifer percolation (-) Watershed 0 1 V
GW_DELAY Groundwater delay (day) Watershed 0 100 V

CANMX Interception storage (mm) Land cover 0 6 R
a Parameter value range that is set after manual adjustment for automatic calibration; b type of change to be
applied to parameters during calibration: R means an existing parameter value is multiplied by an adjustment
factor, and V means a current parameter value is replaced by a given value.

4.3. Calibration and Evaluation Framework

Figure 3 illustrates the general workflow for the calibration and evaluation procedure.
The following section presents details about the information and data retrieval for manual
and automatic calibration within a multi-objective framework.

http://earthexplorer.usgs.gov
http://www.africover.org
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Figure 3. A schematic of the workflow used in this study.

4.3.1. The Procedures for the Extraction of Streamflow Signatures

As illustrated in Figure 1, the availability of historical observed daily streamflow time
series is relatively better for 1970–1990, which embodies valuable information about the
dominant rainfall–runoff processes for the two watersheds (W1 and W6) (see location in
Figure 2). FDCs extracted from such data can help make meaningful inferences about
the watershed’s characteristics and streamflow behavior outside the observation window.
Figure 4a depicts the annual FDCs derived using normalized daily streamflow for the
Nyangores River (i.e., divided by the annual mean streamflow). As shown in Figure 4a and
noted in Vogel and Fennessey [23], the mean annual FDC is not affected by the observation
of abnormally wet or dry periods during the period of record. The procedures used to
derive the streamflow signature information are outlined below:

i. After removing outliers, we considered years with 90% or more completeness
assuming these adequately represent the annual streamflow regime.

ii. Streamflow and thereby the associated FDCs are highly variable from year to year
depending on the climate variability. We normalized the daily streamflow by
dividing it by the mean and/or median streamflow. The normalization helps to
amplify differences in FDCs due to aridity, geology and other factors.

iii. We computed the dimensionless mean annual FDC using the normalized daily
streamflow from step ii. Such curves represent the exceedance probability of stream-
flow in a typical year [22,23].

Figure 4b illustrates the three segments of the mean annual FDC (i.e., based on the
normalized streamflow). We subjectively defined these segments such that the extracted
signature information characterizes the streamflow regime pattern reasonably. In the
remaining sections of this paper, the normalized mean annual FDC is referred to as the
FDC unless otherwise stated.
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4.3.2. Remote Sensing-Based Evapotranspiration

Remote sensing provides consistent estimates of evapotranspiration at various spatial
(gridded) and temporal resolutions [27]. Alemayehu et al. [51] estimated the evapotran-
spiration of the study area using the Moderate Resolution Imaging Spectroradiometer
(MODIS) land surface temperature based on the Operational Simplified Surface Energy
Balance (SSEBop) [52] algorithm at a 1 km spatial scale and an 8-day temporal resolution
(2002–2009). The authors reported that monthly evapotranspiration estimates exhibit good
linear associations (i.e., r = 0.80) with the globally upscaled eddy covariance measurement-
based ET product [53]. Additionally, this evapotranspiration product explained about 52%
of the observed variability in the 16-day normalized difference vegetation index (NDVI) [53].
We used these evapotranspiration data to constrain the SWAT model. Since the SWAT
model HRUs are non-georeferenced areas within a sub-basin, the remote sensing-based
evapotranspiration was extracted per SWAT land cover class. Here, we used only the
dominant land cover classes to reduce the uncertainty from the remote sensing estimates
due to the land cover mix in the 1 km pixels. In this study, 8-day remote sensing-based
evapotranspiration for evergreen forest, savanna grassland and shrubland was used to
constrain the SWAT simulated evapotranspiration at the HRU level aggregated per land
cover class.

4.3.3. The Stepwise Spatial Calibration Strategy

Our calibration framework was designed to maximize the effective use of the available
spatial information to constrain the model parameters. Our study area involves two
watershed categories—the humid watersheds in the headwater region (i.e., sub-basins 1–18)
and the semi-arid watersheds (i.e., sub-basins 19–89). The SWAT parameters (Table 2) for
the headwater region were adjusted first, and upon achieving a convincing model structure,
the parameters for the remainder of the basin were then adjusted. We used relative change
and replacement approaches to adjust the SWAT parameters as shown in Table 2. The
former adjustment accounts for spatial variability in the parameters, while the latter assigns
a space-invariant parameter value. The following section presents the details of the manual
and automatic calibration procedures.

4.3.4. The Manual Calibration Strategy

An initial model calibration was conducted with a manual adjustment of parameters
based on expert knowledge. Although subjective, in data-scarce basins, the adjustments of
model parameters can indeed be based on an understanding of the dominant hydrological
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processes. Hrachowitz et al. [16] demonstrated the potential of an expert-knowledge-driven
strategy for constraining hydrologic models.

For the manual calibration, we used two steps: (i) constraining the model parameters
using only streamflow signatures; (ii) further constraining the SWAT parameters that control
the evapotranspiration processes using remote sensing-based evapotranspiration data.
These two experiments aim to investigate the synergy of using streamflow signature indices
and remote sensing-based evapotranspiration for model evaluation in data-scarce basins.

The use of several diagnostic streamflow signatures during the manual calibration
can help constrain different aspects of the simulated streamflow simultaneously. The
high-streamflow regime signature (exceedance probability < 0.05) is useful to constrain
parameters that control the surface runoff generation (Figure 4). The slope of the mid-flow
segment of the FDC (exceedance probability between 0.2 and 0.7) provides information
to constrain parameters relevant to infiltration and the redistribution of water in the soil
profile. The low-streamflow regime signature (exceedance probability between 0.7 and
1.0) is helpful for adjusting the baseflow response. The parameters that control evapotran-
spiration processes were constrained using the remote sensing-based evapotranspiration
product [51].

4.3.5. The Automatic, Multi-Objective Calibration Strategy

Despite the advantage of expert knowledge to manually adjust model parameters and
thus improve the “realism” of the representation of the dominant hydrologic processes,
it is cumbersome to objectively explore and illustrate the trade-offs within the feasible
parameter space. We therefore used the manual calibration procedure to better pose the
inverse problem for applying an efficient automated multi-objective optimization. The
initial parameter range was set based on our observation during the manual calibration
(Table 2). To explicitly solve the multi-objective, multi-modal problem, we used a global
optimization approach to iteratively converge towards a discrete approximation of the
Pareto set solutions. The multi-objective problem with M objectives is defined as

min(w.r.t. x F(x) = (F1(x), F2(x), F3(x), . . . , FM(x)), xεΩ (2)

where F(x) = F1(x), F2(x), . . . , FM(x) represents a set of M objectives (criteria), whereby each
criterion measures model performance in a different aspect, and x is the model parameter.
In such a formulation, the solution consists of non-dominated Pareto set solutions in the
feasible parameter space (Ω) corresponding to various trade-offs among the objectives.
Therefore, a model simulation using every member of the Pareto set will reproduce part of
the streamflow signatures and/or evapotranspiration per land cover class better than every
other member of the Pareto set, but the trade-off will be that some other characteristics
of the streamflow signatures and/or evapotranspiration will not be as well matched.
The predictive uncertainty of the calibrated SWAT model for simulating streamflow and
evapotranspiration was measured based on the range of simulations using the parameter
value range in the Pareto optimal solutions. For this, we used the recently developed Borg
multi-objective evolutionary algorithm (Borg MOEA) [54,55], as implemented in the R
programming environment by Hadka et al. [56]. We ran the algorithm for 3000 function
evaluations, using the five objective functions described in the next section.

4.3.6. The Evaluation Criteria
The Statistical Measures

The model calibration was conducted from 2002 to 2007 for both streamflow and
evapotranspiration, and the calibrated model was further verified for the period 2008–2009.
We used three statistical measures (evaluation criteria) to assess the degree of “closeness”
between the simulated and observed hydrologic variables. Yilmaz et al. [13] demonstrated
that biases in the high streamflow volume (BFHV), the mid-segment slope of the FDC
(BFMS) and the low streamflow volume (BFLV) are useful diagnostic measures to constrain
a hydrologic model. Therefore, we used these measures to quantify the degree of agreement
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between the SWAT simulated streamflow (QS) signatures and the observed historical
streamflow (QO) signatures. The measures are formulated as follows [13]:

BFHV =
∑H

h=1(QSh −QOh)

∑H
h=1 QOh

(3)

where h = 1, 2, . . . , H are the indices for the normalized streamflow magnitudes with
exceedance probabilities lower than 0.05.

BFMS =
|log(QSm1)− log(QSm2)| − |log(QOm1)− log(QOm2)|

|log(QOm1)| − |log(QOm2)|
× 100 (4)

where m1 and m2 are the lowest and highest normalized streamflow exceedance probabili-
ties (0.2 and 0.7, respectively) within the mid-segment of the mean annual FDC.

BFLV =
∑L

l=1[log(QSl)− log(QOl)]

∑L
l=1[log(QOl)− log(QO0.98)]

× 100 (5)

where l = 1, 2, . . . , L are the indices for the normalized streamflow magnitudes within the
low-streamflow regime of the FDC (0.7–1.0 exceedance probabilities).

The simulated and remote sensing-based evapotranspiration agreements were mea-
sured using the Pearson correlation coefficient (r) and the percent of bias (pbias). We
used r as an evaluation criterion because the SWAT simulated and remote sensing-based
evapotranspiration do not have the same definition and hence the same values; however,
they should be strongly correlated [33]. The additional use of pbias is considered important
here, as r does not account for possible biases.

Additionally, recently, the Mau Mara Serengeti (MaMaSe) Sustainable Water Initia-
tive (http://mamase.org/, accessed on 1 September 2015) has made an effort to create a
knowledge base on the hydrology of the Mara Basin (in Kenya) at ILA03. This initiative
has made quasi-observed daily streamflow for 2002–2007 available. Therefore, data were
used to evaluate the calibrated SWAT model based on the normalized mean squared error
(NMSE), the index of agreement (d), r and pbias.

Diagnostic Consistency Assessment

Apart from statistical performance measures, it is important to test the extent to which
a model is consistent with our understanding of reality [9,16,57], a critical step in poorly
gauged basin hydrologic model calibration.

Budyko [58] postulated that the available energy and water primarily control the
long-term catchment water balance, whereas the characteristics of the catchment (soil,
topography, geology, land cover, etc.) play a secondary role [59–61]. We used the Budyko
diagram—which depicts the evaporative index (ET/P) as a function of the aridity index
(ET0/P)—for a qualitative diagnostic assessment of the dominant hydrologic processes
as simulated by the calibrated SWAT model. Additionally, to evaluate the consistency
of the simulated annual evapotranspiration and total water yield across the basin, we
fitted the Budyko-like Fu curve [62]. In Fu’s equation (Equation (6)), the parameter w
represents the integrated effects of landscape characteristics on the water balance dynamics
of a watershed [61].

ET
P

= 1 +
ET0

P
−

[
1 +

(
ET0

P

)w]1/w

(6)

For this purpose, we identified six watersheds across the study area with varying
physiographic characteristics and climates (see Figure 2 and Table 1). We assumed that the
water balance simulations from a calibrated model should exhibit a consistent pattern with
the Budyko diagram across several watersheds within the basin.

http://mamase.org/
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4.3.7. Relative Performance Comparison

To evaluate the added value of each calibration strategy, we compared the relative
performances of the calibrated SWAT models to the baseline model performances. Here,
the relative performance (RP) for streamflow signatures (BFHV, BFMS and BFLV) and
evapotranspiration (pbias) of the baseline and calibrated SWAT models was computed as

RP =
(|BiasBaseline| − |BiasCalibrated|)

|BiasBaseline|
× 100 (7)

where BiasBaseline is the performance of the baseline model, and BiasCalibrated is the perfor-
mance of the calibrated model. Meanwhile, the relative performance of the correlation in
the 8-day ET was computed as

RP =
(|CorrelationBaseline| − |CorrelationCalibrated|)

|CorrelationBaseline|
× 100 (8)

where CorrelationBaseline is the performance of the baseline model, and CorrelationCalibrated is
the performance of the calibrated model. RP values greater than 0 indicate improvement in
model performance, a reduced bias and an increased correlation. On the other hand, RP
values less than 0 indicate a deterioration in model performance.

5. Results
5.1. The Baseline Model Performance

The FDCs derived from historical observations and simulations from the uncalibrated
baseline model show a similar pattern for the Nyangores River (Figure 5a). Despite the
matching streamflow regime patterns, there is a substantial bias in the simulated FDC high-
and low-streamflow regimes (Figure 6a). The bias in the high-streamflow regime is about
32% for the gauge located in the headwater region, suggesting a high-streamflow regime
overestimation by the baseline model. On the other hand, the bias in the slope of the FDC
is about −21%, which indicates underestimation in the slope of the FDC compared to the
historical observed FDC. A gentler slope in an FDC, in general, suggests a slower response
of a basin to precipitation forcing [13]. We note the good performance of the baseline model
in simulating the low-streamflow regime, with a bias of 3.5%.
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Mara Mines (b) using different calibration strategies: uncalibrated (baseline), manually calibrated
using only streamflow signatures (FDC) and coupled with evapotranspiration (FDC + ET), automatic
multi-objective calibration (bestMO). Note that the y-axis is in log scale.
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Figure 6. A comparison of the performance measures for simulated (2002–2007) coupled with
observed historical (1970–1990) streamflow signatures for the Nyangores River at Bomet (a) and
the Mara River at Mara Mines (b). BFHV and BFLV denote biases in the high- and low-streamflow
regimes, respectively; BFMS represents the bias in the slope of the flow duration curve.

The performance of the baseline model for the Mara River is illustrated in
Figures 5b and 6b. The biases in the high-streamflow regime and the slope of the FDC
are about −11% and −12.6%, respectively. Hence, the baseline model underestimates the
high-streamflow regime and leads to a higher infiltration and high contribution of ground-
water to streamflow, as indicated by the flatter slope in the FDC compared to the observed
historical streamflow signatures. In contrast, the bias in the low-streamflow regime is about
65%, which means the baseline model overestimates the low-streamflow regime compared
to the historical observed streamflow, as shown in Figure 5b.

We compared the 8-day SWAT simulated HRU level evapotranspiration aggregated
per land cover class with the remote sensing-based estimates from 2002 to 2007 (Figure 7).
The median correlations between the baseline model simulated and remote sensing-based
evapotranspiration are about 0.65 and 0.61 for the savanna grassland and shrubland land
cover classes, respectively. We also noted a low median correlation (i.e., r = 0.48) for the
evergreen forest cover type. Although the baseline model simulated evapotranspiration
corresponds somewhat to the remote sensing-based estimates for the three land cover
classes, there is an overestimation bias of up to 12%.

5.2. The Manual Calibration Results

The manual calibration of the SWAT model was performed stepwise to reduce biases
in streamflow. First, we calibrated the model using only the FDC signature measures for
sub-basins 1–18. Subsequently, the parameters for the dominant part of the basin (sub-
basins 19–89) were adjusted using the FDC signature measures. As shown in Figure 6,
constraining the SWAT model using the FDC signature measures reduced most of the
biases observed from the baseline model. However, the calibrated model shows a poor
performance in simulating the low-streamflow regime for the Nyangors River, with a bias
of about 25%, but this bias was reduced substantially from 65% to −15% for the Mara
River. The poor performance in the low-streamflow regime is partly attributed to the
parameters that control recharge and evapotranspiration. At this point, the parameters that
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control the evapotranspiration simulation (such as SOL_AWC, ESCO and SOL_Z) in the
“calibrated model” are the same as in the baseline model, and thus the simulated 8-day
evapotranspiration shows slightly better and/or similar performances when compared with
the remote sensing-based estimates (Figure 7). As shown in Figure 7a, the model calibrated
using streamflow signatures only shows reduced biases for savanna grassland (up to 50%)
and shrubland evapotranspiration, with a slight deterioration in their correlations. On the
other hand, we noted an increase in the bias for evergreen forest evapotranspiration, while
the correlation improved considerably.
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Figures 6 and 7 show that the SWAT model reasonably reproduces the observed stream-
flow regime signatures (i.e., with low biases) when the remote sensing-based evapotranspi-
ration and streamflow signatures constrain the model. The addition of evapotranspiration
in the SWAT model calibration reduced the biases in the streamflow signature measures to
lower than 6.5% and 5.6% for the Nyangores and Mara Rivers, respectively. Interestingly,
the use of remote sensing-based evapotranspiration effectively helped in constraining the
parameters that control the redistribution of soil moisture and recharge, resulting in lower
biases in the low-streamflow regime and the slope of the FDC than when the model was
constrained using only the streamflow signatures. Additionally, the simulated evapotran-
spiration reveals relatively low biases (pbias < 4.8%) and better correlations (r > 0.66) for
the three dominant land cover classes (Figure 7b).

5.3. The Automatic, Multi-Objective Calibration Results

Next, we calibrated the SWAT model parameters using a multi-objective optimization
framework to explore trade-offs between the streamflow signatures and remote sensing-
based evapotranspiration. In principle, this should help expose deficiencies in the model
structure [20,63] and illustrate the interaction between parameters.

Figure 8 presents the parallel coordinates plot to visually represent the five-dimensional
evaluation criteria, where each line represents a trade-off in the multi-criteria evaluation.
Here, the “parallel plots” clearly indicate that the “model calibration problem is inherently
multi-objective” [63]. Additionally, Figure 9 presents the trade-offs considering a combina-
tion of two criterion spaces (i.e., 5 ×2 = 10 combinations). The gray lines (dots) in Figures 8
and 9 represent the subset of evaluation measures (out of 3000 function evaluations) that sat-
isfy the within 50% bias for the streamflow signatures and evapotranspiration, as well as a
higher than 0.3 correlation for evapotranspiration (i.e., MO (constrained)). What is apparent
from these multiple illustrations is the existence of a high degree of compensation within
the five evaluation measures, suggesting that a parameter set that returns a low bias for the
high-streamflow regime results in a poor performance for the other evaluation criteria and
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vice versa. This is particularly notable for watersheds dominated by a semi-arid climate
(i.e., sub-basins 19–89) compared to the semi-humid watersheds (i.e., sub-basins 1–18) (see
Figures S1 and S2). Interestingly, however, there is less compromise between the biases in
the slope of the FDC and the goodness-of-fit measures for evapotranspiration (i.e., r and
pbias), thereby resulting in considerable parameter solution sets that satisfy a less than 5%
bias and a correlation above 0.6 (black dots in Figure 9f,g and Figure S2f,g). For instance,
for sub-basins 19–89, there are about 487 (r vs. BFMS) and 218 (pbias vs. BFMS) parameter
solution sets out of 685 solutions (MO (constrained)). This signifies that a good estimation
of model parameters that control the vertical soil water redistribution such as SOL_AWC
and ESCO using signature measures from the slope of the FDC could also assure a good
evapotranspiration prediction and vice versa.
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Figure 8. The trade-off in evaluation criteria in a constrained search using the Borg MOEA for sub-
basins 1–18 based on streamflow signatures and remote sensing-based evapotranspiration during the
calibration period (2002–2007). The location where the line intersects each vertical axis designates the
relative objective value. The gray lines represent the efficiency measures in the provided parameter
space (MO (constrained)), while the solid black line represents the selected best trade-off (BestMO)
from the Pareto solution set. Note that the correlation coefficient is defined as 1−r.

Solutions along the Pareto front (i.e., the lower part of the “parallel plot” and the
diagonal in the two-dimensional space) are “equally optimal”, in the sense that a user can
choose one particular solution based on the importance of the calibration criteria and/or
the intended application of the model. In this study, we set a threshold for the bias and the
correlation indices such that only Pareto set solutions with relatively better (compromise)
criterion values are selected to simulate the water balance components. The threshold
for the bias was set to lower than 10% and 15% for sub-basins 1–18 and sub-basins 19–89,
respectively, for the three streamflow signature measures, whereas greater than 0.65 and less
than 10% thresholds for the correlation and bias in evapotranspiration, respectively, were
set for all three land cover classes. In doing so, a total of 13 (out of 781) and 11 (out of 685)
Pareto set solutions (Bestpareto) were selected for sub-basins 1–18 and sub-basins 19–89,
respectively. Finally, we chose one “best” multi-objective solution (BestMO) out of the
selected Pareto set solutions, albeit involving some degree of subjectivity. The sampled
parameter sets gave, on average, an acceptable performance across the five measures.
However, the selected parameter values show a large spread, indicating a parameter
identification problem. This can be partly attributed to the limited number of function
evaluations (i.e., 3000) compared to the number of evaluation criteria involved in the multi-
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objective optimization. However, we believe this is sufficient to demonstrate the framework
to calibrate watershed models using historical streamflow signature measures and remote
sensing-based evapotranspiration in a multi-objective approach in data-limited basins.
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(2002–2007). The gray dots show all the evaluations in the constrained search (MO (constrained)); the
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5% and a correlation higher than 0.65. The upward triangle and downward triangle markers denote
evaluations for the baseline and manually calibrated models (FDC + ET), respectively. The square
marker represents the selected best trade-off taking into account all the objectives (BestMO).

As shown in Figures 5a and 6a, the selected relatively best trade-off parameter set
(BestMO) reproduces the observed streamflow signatures for both the Nyangores and Mara
Rivers. For the Nyangores River, the biases of the three signature measures are lower
than 4%. For the Mara River, the model shows good performances for both the high- and
low-streamflow regimes, albeit a negative 14% bias (i.e., underestimation) in the slope of the
FDC. As shown in Figure 7b, the selected Pareto set solutions also improve the correlations
between the SWAT simulated and remote sensing-based evapotranspiration, with median
correlations of 0.71 (evergreen forest), 0.69 (savanna grassland) and 0.65 (shrubland) at the
8-day scale. Additionally, the median biases are lower than 6% (Figure 7a).

Even though the simulated evapotranspiration for savanna grassland is improved
when using the Pareto set solutions, the estimated evapotranspiration shows a positive
bias (about 6%). This is linked to the negative biases noted for the slope of the FDC for the
Mara River. For all the selected Pareto set solutions, the SWAT model shows an average
negative bias of 10% for the slope of the FDC for the Mara River, indicating the limitation
of the model in simulating the soil moisture redistribution and hence the subsurface flow.
The slope of the FDC is strongly associated with SWAT parameters that control the vertical
soil water redistribution (such as SOL_AWC, SOL_K and ESCO; see definition in Table 2).
An increase in water storage in the soil results in a gentle slope in the FDC and an increase
in soil evaporation and transpiration.
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Figure 10 presents the mean annual FDCs of the simulated streamflow using the
selected Pareto set solutions for the Nyangores and Mara Rivers. These plots depict a
somewhat comparable streamflow regime pattern for the selected Pareto set solutions (Best-
Pareto) for both rivers, indicating the extent to which the historical streamflow signatures
and remote sensing-based evapotranspiration constrained the SWAT model parameters.
The median streamflow ranges from 5.2 to 8.1 m3/s for the Nyangores River at Bomet and
from 38 to 42.3 m3/s for the Mara River at Mines.
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5.4. The Validation of the Calibrated Models

Table 3 summarizes the performance indices of the calibrated SWAT models for
simulating evapotranspiration during the validation period. We note the general positive
biases of 12.1% (evergreen forest), 16.9% (savanna grassland) and 7.2% (shrubland) of
the SWAT simulated evapotranspiration compared to the remote sensing-based estimates,
regardless of the existence of fair correlations at the 8-day scale. The difference in the mean
annual rainfall between the calibration and validation periods is minimal (5 mm), and
hence rainfall could not justify the bias in the simulated evapotranspiration. Nevertheless,
the reference evapotranspiration increases slightly by 63 mm in the validation period and
thus leads to an increase in the SWAT simulated evapotranspiration. The other contributing
factor is the consistent poor performance of the SWAT model during the calibration period
in sub-basins 19–89, as depicted Figure 6b, where there is a bias of−13.6% in the slope of the
FDC (BestMO). A negative bias in the slope of the FDC indicates soil water storage in the soil
profile and hence leads to a flatter slope. The water stored in the soil profile subsequently
increased the soil evaporation and transpiration. The biases in the satellite-based rainfall
and evapotranspiration could also contribute to the observed poor performance in the
SWAT simulated evapotranspiration.
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Table 3. Performance metrics for the simulated evapotranspiration during the validation period
(2008–2009). Legend: FRSE = evergreen forest; RNGE = savanna grassland; RNGB = shrubland.

FRSE RNGE RNGB

pbias r pbias r pbias r

FDC 3.5 0.12 12.7 0.75 5.8 0.73
FDC + ET 14.3 0.67 12.5 0.76 4.9 0.73
BestMO 12.1 0.64 16.9 0.81 7.2 0.78

Table 4 presents the summary statistics for the simulated streamflow for the evaluation
period. On average, the calibrated models show a reasonable skill in reproducing the
observed streamflow statistics. The simulated median streamflow using the manually
calibrated SWAT model for the Nyangores River during the validation period shows a good
match with the long-term historical median streamflow. However, the simulated streamflow
for the Mara River is double the long-term median streamflow. It is acknowledged here that
the lack of overlapping observations hampers rigorous validation of the model performance.
Therefore, to further evaluate the skill of the calibrated model parameters, we compared
the daily simulated streamflow with observations at the Nyangores watershed. Note that
the quasi-observed streamflow time series were not used during the calibration period.

Table 4. Summary statistics for the simulated and observed mean annual streamflow duration curves
(in m3/s) for 2008–2009.

Nyangores River Mara River

Historical 1 FDC FDC + ET BestMO Historical 1 FDC FDC + ET BestMO

Min 0.3 0.1 0.1 0.0 0.01 3.3 3.5 3.5
Median 5.2 5.1 5.3 8.2 16.8 27.2 30.1 31.8

IQR 7.8 7.0 6.9 10.0 30.3 37.0 40.8 33.2
Max 52.3 50.8 47.3 82.0 655 459 517 546

1 Based on historical available daily observed streamflow (1970–1990).

The simulated streamflow using the selected 13 Pareto set solutions compares fairly
with the observed streamflow (2002–2007). The median values for the NRMSE, the IA, Pear-
son’s correlation r and the KGE are about 0.18, 0.77, 0.69 and 0.53, respectively, indicating
the relatively good performance of the calibrated model in simulating daily streamflow (see
Figure S3). Figure 11 compares the simulated daily streamflow with observations. Close
visual inspection shows that the model tends to overestimate the peak streamflow; this
is clearly shown by the large scatter in Figure 11 (top panel) using 13 Pareto set solutions
(ParetoRange). In general, however, the calibrated SWAT model shows a better streamflow
simulation ability than the baseline model.

5.5. Consistency Assessment

We reran the calibrated SWAT models for 2002–2009 to evaluate the simulations in
the context of varying biotic and abiotic factors across the selected watersheds in the
Mara Basin (Table 1). Figure 12 shows the Budyko diagrams for six watersheds (W1–W6)
and the whole basin. Both the annual and mean annual evaporative index (ET/P) and
the aridity index (ET0/P) are within the domain of the energy and water limit boundary,
suggesting the consistency of the simulated water balance components. However, in
the semi-arid watershed W4 (see location on Figure 2), the evaporative index slightly
surpasses the water limit for the years 2005, 2007 and 2009 (Figure 12a), indicating the
annual evapotranspiration exceeded the annual rainfall. Remarkably, 2005 and 2009 were
drought years in that region [64,65], and hence the soil water evaporation and the root water
uptake by the vegetation exceeded the rainfall. Figure 13a presents the correlation of the
runoff coefficient—the ratio of total water yield and rainfall—with the fitted Fu w parameter
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values and the evaporative index, while Figure 13b depicts the runoff coefficient relationship
with the evaporative index (ET/P) for watersheds W1–W6 and the whole basin. The high
negative correlation (r = 0.81) between the runoff coefficient and w suggests that watersheds
with a high annual evaporation rate tend to have a lower runoff coefficient (i.e., low water
yield). This observation sufficiently reflects the watershed characteristics presented in
Table 2, whereby in the semi-arid watersheds (e.g., W3 and W4), the dominant part of the
annual rainfall leaves the watersheds as evapotranspiration. In summary, the calibrated
SWAT model using streamflow signatures and evapotranspiration can consistently simulate
the basin water balance components.
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Figure 12. Budyko diagram based on the annual (a) and the mean annual (b) rainfall (P), evapotran-
spiration (ET) and reference evapotranspiration (ET0) estimates across several watersheds (W1–W6).
The solid lines show the Fu curves for w values of 2.6 and 2.0.
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5.6. Relative Performance Comparison

Figure 14 illustrates the relative performance of SWAT models calibrated using only
streamflow signatures (FDC), using streamflow signatures and remote sensing-based evap-
otranspiration manually (FDC+ET) and automatically in a multi-objective framework
(BestMO) compared to the baseline model performance. As shown in Figure 14a,b, we note
the general above 50% relative performance of all the calibration approaches for streamflow
signatures for the Nyangores and Mara Rivers, suggesting a substantial reduction in biases.
However, the relative performance for the biases in the low-streamflow regime for the
Nyangores River exhibits a decrease in model performance when calibrated using only the
streamflow signatures (see Figure 6a). This indicates that the baseline model has a lower
bias in simulating the baseflow regime for the Nyangores River. The relative performance
of SWAT in simulating evapotranspiration for evergreen forest depicts a deterioration for
the calibrated models using streamflow signatures alone (FDC) and when coupled with
remote sensing-based evapotranspiration (FDC+ET). Yet, the calibration approaches overall
improved the performances in correlation by up to 25% for all the land cover classes. The
slight improvements in evapotranspiration after calibration are partly attributed to the
calibrated vegetation growth parameters in the baseline model [43].

The calibration exercise revealed that the coupling of streamflow signatures with
remote sensing-based evapotranspiration decreases the biases in the simulated streamflow
signatures and increases the correlation of evapotranspiration (see Figure S4). We highlight
the relatively better performance of the calibrated SWAT model using streamflow signatures
and remote sensing-based evapotranspiration in sub-basins 1–18 than in sub-basins 19–89.
This is in agreement with Kunnath-Poovakka et al. [34], who noted the better performance
of calibration using remote sensing-based evapotranspiration in catchments with medium
to high average runoff. Overall, we conclude that the simulated evapotranspiration is
improved when the model is constrained by both the streamflow signatures and the remote
sensing-based evapotranspiration.
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 1 Figure 14. The relative performance of calibrated SWAT compared to the baseline model for stream-
flow signature bias measures for the Nyangores (a) and Mara (b) Rivers, and for evapotranspiration
using correlation (c) and percent of bias (d). FDC: calibration using only streamflow signature
measures; FDC + ET: calibration using streamflow signature measures and remote sensing-based
evapotranspiration; BestMO: automatic multi-objective calibration based on the selected best parame-
ter set from the Pareto set solutions.

6. Discussion
6.1. Parameter Estimation

One of the challenges in poorly gauged/ungauged basins is the parameter estimation
of hydrologic models due to the lack of in situ observation to adjust model parameters. This
study attempted to estimate selected SWAT model parameters using historical streamflow
signatures and remote sensing-based evapotranspiration manually and automatically in
a multi-objective framework. Table 5 presents the calibrated SWAT parameters for sub-
basins 1–18 and sub-basins 19–89. For sub-basins 1–18, the manually calibrated CN2,
which controls the runoff generation at the HRU level, was reduced substantially by 33%,
suggesting a lower surface runoff generation potential and hence that more water will
infiltrate into the subsurface. The surface runoff lag coefficient (SURLAG) was also reduced
from 4 (initial value) to 0.1, meaning the generated runoff contributes to the main channel
with less delay (lag). The soil water content (SOL_AWC) also decreased by about 21%, and
therefore more soil water percolates to the shallow aquifer as recharge. This will result
in a high groundwater contribution as baseflow and deep aquifer recharge. These are
reflected by the baseflow recession constant (ALPHA_BF) of 0.9 and deep aquifer recharge
(RCHRG_DP) of 0.7. The addition of the remote sensing-based evapotranspiration to
constrain the SWAT parameters (FDC + ET) increased the soil depth by 60% and slightly
increased the SOL_AWC (i.e., by 3%) compared to the parameter estimates using historical
streamflow signatures alone. Compared to sub-basins 1–18, sub-basins 19–89 tend to
generate more surface runoff with less groundwater contribution. Thus, CN2 increased by
14%, and ALPHA_BF was reduced to 0.02.
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Table 5. Calibrated SWAT parameters using streamflow signatures (FDC), streamflow signatures
and remote sensing-based evapotranspiration (FDC + ET) and automatic multi-objective calibration
(Pareto range).

Sub-Basins 1–18 Sub-Basins 19–89
FDC FDC+ET Pareto Range FDC FDC+ET Pareto Range

Parameter Adjustment Min Max Min Max

SOL_Z R 0.00 0.60 −0.05 1.00 0.00 0.60 −0.20 0.35
SOL_AWC R −0.21 −0.18 −0.40 0.40 −0.21 −0.18 −0.12 0.18

GW_REVAP V 0.02 0.17 0.02 0.20 0.02 0.02 0.02 0.08
GWQMN V 150.00 150.00 49.88 278.22 100.00 100.00 157.20 462.10

RCHRG_DP V 0.70 0.70 0.00 0.52 0.10 0.10 0.00 0.46
SOL_K R −0.20 −0.20 −0.30 0.29 −0.20 −0.20 −0.30 0.30

REVAPMN V 500.00 100.00 90.00 177.41 500.00 100.00 136.20 168.30
ALPHA_BF V 0.90 0.90 0.00 0.90 0.02 0.02 0.04 0.89

SURLAG V 0.10 0.10 0.00 2.00 0.35 0.35 0.90 1.93
CN2 R −0.33 −0.33 −0.35 0.06 0.14 0.14 −0.10 0.09

ESCO V 0.95 0.98 0.00 0.96 0.95 0.98 0.00 1.00
EPCO V 1.00 1.00 0.00 1.00 1.00 1.00 0.02 1.00

GW_DELAY V 15.00 15.00 15.00 46.17 60.00 60.00 45.50 60.00
CANMX R −0.80 −0.80

We noticed that the parameter range for the selected Pareto set solutions using the Borg
MOEA [54] shows a wide range, but it is not sufficient to envelope the observed streamflow
for the Nyangores River (Figure 11, top panel). The selected Pareto range captured about
50% of the observed streamflow, and this increases to about 80% if we consider a large
sample from a Pareto set solution (i.e., 781 in MO (constrained) in Figure 8). This indicates
that the failure of the selected Pareto range in capturing high and low streamflow in
some instances is mainly attributed to the tunable model parameters given the limited
number of function evaluations (i.e., 3000 simulations) during the optimization using five
objective functions. Therefore, this requires future research with a more computational
budget to properly assess the range of Pareto set solutions. Additionally, the satellite-based
datasets that were used as model input (i.e., rainfall) and observed calibration data (i.e.,
evapotranspiration) could carry biases due to cloud contamination, particularly in the
mountainous part of the basin, and thus could contribute to the limited performance of the
selected Pareto set solutions.

6.2. Effects of Calibration on the Soil Water Redistribution

One of the major synergies noted in this study is the effectiveness of the streamflow
signature measures and remote sensing-based evapotranspiration to constrain the SWAT
model parameter related to the soil water balance. As illustrated in the automatic multi-
objective calibration in Section 5.3, a low bias in the slope of the FDC tends to give a high
correlation and low bias for evapotranspiration. Figure 15 presents the daily soil water
content simulated by the baseline and the calibrated SWAT models averaged over the basin.
The daily mean soil water content ranges from 129 mm/d (for calibration with streamflow
signatures only) to 246 mm/d (for calibration with streamflow signatures and remote
sensing-based evapotranspiration), suggesting considerable change due to the calibrated
soil parameters. The soil water content is a function of rainfall, soil texture and land cover
type, among other factors. As a result, we can observe the remarkable spatial variation
differences when the SWAT model is calibrated with streamflow signature measures and
remote sensing-based evapotranspiration, as shown in Figure 16. For instance, as depicted
in Figure 16b for 5 May 2002 for the model calibrated using streamflow signatures and
remote sensing-based evapotranspiration, the average HRU-level soil water content is about
266 mm/d (±102 mm/d), indicating substantial spatial variation in the soil water content.
A noticeable difference, on average 98 mm/d (±49 mm/d), is marked between SWAT
models calibrated with streamflow signature measures alone and streamflow signature
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measures combined with remote sensing-based evapotranspiration, as shown in Figure 16c.
The observed substantial changes in the calibrated SWAT model simulated soil water
content are mainly attributed to the changes in the soil depth (SOL_Z), the available soil
water content (SOL_AWC) and ESCO, as presented in Table 5.
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6.3. Can Streamflow Signatures and Remote Sensing-Based Evapotranspiration Constrain a
Distributed Model Meaningfully?

In the preceding sections, we discussed how available information can be used innova-
tively to constrain the parameters of a semi-distributed hydrologic model in a data-scarce
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region. In a multi-objective framework, we explored different calibration strategies to
constrain the SWAT model using both streamflow signatures and remote sensing-based
evapotranspiration. The statistical evaluation metrics indicate that a relatively good result
has been achieved, meaning that the calibrated SWAT model can reproduce the observed
historical streamflow signatures and the overlapping remote sensing-based evapotranspi-
ration estimates.

Figure 17 compares the contributions of surface runoff and subsurface streamflow to
the total water yield annually for the Nyangores (W1) and Mara (W6) Rivers as simulated
by the baseline and calibrated models. The baseline model exhibits a dominance of the
subsurface flow contribution to the streamflow at both locations. In contrast, the calibrated
model exhibits a comparable contribution of water from both the surface and subsurface
components for the Nyangores River and surface runoff domination for the Mara River
(Figure 17). On average, the surface runoff and subsurface flow contributions to the total
water yield in the Nyangores (Mara) River are about 53% (68%) and 47% (32%), respectively.
Given the physical characteristics of these watersheds (land use, soil and climate) shown in
Table 1, we would expect differences in the dominant streamflow response behavior for the
two watersheds. In theory, for a humid watershed (i.e., W1) with a moderate infiltration
rate and a predominant evergreen forest cover, the surface runoff and subsurface flow
contributions to the total water yield should be comparable. In contrast, the surface
runoff contribution should dominate over the subsurface flow contribution for a semi-
arid watershed (i.e., W6) with a moderate to low infiltration rate and a predominant
savanna grassland cover. By these standards, the calibrated model shows both realistic
and consistent watershed response behaviors when constrained using observed historical
streamflow signatures and remote sensing-based evapotranspiration in a multi-objective
framework. Our observations are consistent with Coxon et al. [66] and Yadav et al. [12], who
demonstrated the dependence of the information content of diagnostics and its ability to
constrain catchment response on catchment characteristics. The annual basin-level rainfall,
evapotranspiration and water yield range from 951 to 1274 mm/year, 805 to 916 mm/year
and 141 to 341 mm/year, respectively, for 2002–2009 (Figure S6). On average (2002–2009),
the total water yield accounts for 24% of 1605 mm (W1: the Nyangores watershed at Bomet)
and 21% of 1117 mm (W6: the Mara Basin at Mara Mines) of the input rainfall, whereas
evapotranspiration accounts for 68% (W1) and 70% (W6). Our results agree with Dessu
and Melesse [48], who reported the partitioning of the Mara Basin average rainfall as 70%
evapotranspiration and 17% water yield.

Figure 18 presents the monthly evapotranspiration and water yield dynamics in a
hydrological year as simulated by the calibrated SWAT model for the Mara River. The
water balance components reflect the rainfall seasonality well, with high water yields in
April and August. However, the calibrated model shows limitations in representing the
average watershed remote sensing-based evapotranspiration for the Nyangores watershed
(W1) (see Figure S5).
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Figure 18. The monthly water balance dynamics for 2002–2009 over the Mara Mines watershed (W6)
as simulated by SWAT. The months are arranged according to the hydrological year (Oct–Sept).

7. Conclusions

We have presented a framework to calibrate and evaluate a hydrologic model for a
poorly gauged basin. The core contribution is a demonstration of how to innovatively
combine historical in situ streamflow observations with more recent remote sensing-based
evapotranspiration to constrain a distributed hydrologic model within a multi-objective
framework. Calibrating the SWAT model using multiple streamflow signatures derived
from a normalized FDC reduced the biases in the simulated streamflow signatures con-
siderably (above 25%) compared to the baseline (benchmark) model. The addition of the
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remote sensing-based evapotranspiration to the streamflow signatures to constrain the
SWAT model further reduced the biases in the simulated streamflow signatures and im-
proved the correlation of evapotranspiration (up to 25%) for the evergreen forest, savanna
grassland and shrubland land cover classes. Our results highlight the potential of historical
streamflow signature information and remote sensing-based evapotranspiration to effec-
tively constrain different parts of the simulated streamflow regimes and evapotranspiration
estimates. Even though rigorous model evaluation is limited, the formulated methodology
contributes to the ongoing efforts to improve the modeling of poorly gauged and ungauged
basins. We acknowledge the need for further application of the framework in different
regions and more rigorous work on automatic multi-objective calibration with a sufficient
number of function evaluations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14081252/s1, Figure S1: The trade-off in evaluation criterion in a
constrained search using Borg MOEA for the head water region (MM) based on streamflow signatures
and RS-ET. Figure S2: Trade-off in two evaluation criterion spaces for the head water region (MM).
Figure S3: Performance summary of the SWAT model for simulating the daily streamflow (2002–2007)
using 13 Pareto set pa-rameters. Figure S4: Comparison of relative performances using SWAT
model calibrated based on streamflow signature measures only (FDC) as reference for streamflow
signature bias measures at the Nyangores and the Mara Rivers, and for evapotranspiration using
correlation and percent of bias. Figure S5: The monthly water balance dynamics for 2002–2009 over
the Nyangores watershed (HW) as simulated by SWAT. Figure S6: Simulated annual water balance
for 2002–2009 over the Mara River Basin.
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