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Abstract: The single-component adsorption of chromium (VI) and nickel (II) on oil palm bagasse
(OPB) and yam peels (YP) in a packed bed column was explored and improved using a central
22-star T composite design. The temperature, bed height, and particle size were evaluated, and
the optimized response variable was the removal efficiency. The remaining concentration of heavy
metals in solution was determined by Ultraviolet–Visible and Atomic Absorption Spectroscopy.
It was found that bioadsorbents have a porous structure, with the presence of functional groups
such as hydroxyl, carboxyl, and amino, which favor adsorption processes, and that the adsorption
mechanisms controlling the process is cation exchange, precipitation, and complexation on the
exposed surface of the biomaterials. In the adsorption trials, removal percentages higher than 87%
were obtained in all cases, showing better results in the removal of Cr(VI), and that particle size is
the most influential factor. Maximum Cr(VI) capacities of 111.45 mg g−1 and 50.12 mg g−1 were
achieved on OPB and YP, respectively, while for nickel values of 103.49 mg g−1 and 30.04 mg g−1

were obtained. From the adjustment of the breakthrough curve to the models, it was determined that
the model best able to adjust the data was the Thomas model, and the thermodynamic parameters
of Cr(VI) and Ni(II) removal suggest that the process on YP is endothermic, while on OPB it is
exothermic. In both biomaterials, the process is controlled by spontaneous chemisorption with a
great affinity of the active centers for the ions.

Keywords: continuous system; metal ions; adsorption mechanisms

1. Introduction

The release of industrial sewage polluted with toxic heavy metals is a global environ-
mental problem, because metals like chromium, mercury, cobalt, nickel, lead, copper, and
arsenic [1] can have serious impacts on human, animal, and aquatic life, as they have a very
stable nature and a reduced tendency toward the biodegradation of their compounds [2].
Among them, chromium and nickel are especially important, due to their multiple appli-
cations at the industrial level. Chrome compounds exist in water and soil, because of the
industrial activities of tanneries, electronic manufacturing, pigments, fertilizers, textiles,
and photography. Furthermore, when chromium comes into contact with water, it is toxic
for living beings, because it is subjected to oxidation (III) and (VI) [3]. For this reason,
Cr(VI) is considered a hazardous pollutant; normally, it occurs in chromate (CrO4

2−) or
dichromate (Cr2O7

2−) forms, and effortlessly trespasses biological barriers, while also
being carcinogenic [4]. On the other hand, nickel is applied in manufacturing activities
such as metallization, and in paint, electroplating, powder, batteries, and alloys, among
other things, as well as in everyday products such as cosmetics, clothing, and electronic
devices [5]. Ni(II) is toxic, and in high concentrations can cause lung, skin, cardiovascular,
and gastrointestinal diseases, and even cancer [6].
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Several methods have been implemented in the elimination of heavy metals from
effluent, including precipitation, electro-flocculation, ionic exchange, solvent extraction,
and osmosis; these methods have several disadvantages, including toxic sludge production,
the need for chemical additives, energy requirements, and the generation of secondary
contaminants [7]. For this reason, bioadsorption is presented as a viable, efficient, and
non-destructive method for removing heavy metals from waste to address environmental
problems [8]. Although adsorption has been widely used in the removal of heavy metals
from water systems, this implementation has most commonly been used in batch systems.
Among these, metal–organic frameworks have been used [9]. Additionally, nanomateri-
als and nanotechnologies have been developed that can be used to generate innovative
materials that are able to provide water treatment plants with extraordinary properties,
increasing cost efficiency [10].

Most of the research on Cr(VI) and NI(II) bioadsorption has been performed using
batch processes, because they are easy to apply on a small laboratory scale, but challenging
to use on a massive scale, especially when the volume of industrial effluent is huge [11]. In
addition, data from batch systems may not apply to continuous fixed-bed column operating
conditions, where residence time is not necessary for achieving equilibrium [12]. Therefore,
it is necessary to determine the real applicability of biosorbents in the continuous mode [13].
However, fixed-bed columns are preferred because of their high efficiency, easy method of
operation, and ability to be expanded beyond laboratory scale to produce higher quality
effluent [14]. Nevertheless, the use of eucalyptus in the elimination of Cr(VI) and Ni(II)
in the packed-bed system has been reported [15], as well as palm residues [16], plantain
waste [17], vetch [18], alharma [19] and kenaf [20], where the effects of temperature, pH,
bed height and particle size were determined, presenting high percentages of removal.

Thus, in the present work, the performance of yam peel (YP) and oil palm bagasse
(OPB) in the elimination of Cr(VI) and Ni(II) present in solution in a continuous system
was evaluated, and the effects of temperature variation, particle size, and bed height were
determined. The bioadsorbents were characterized using the proximal chemical analysis,
FTIR (Fourier transform–infrared spectroscopy), SEM (scanning electron microscopy) and
EDS (energy-dispersive X-ray spectroscopy) techniques.

2. Materials and Methods
2.1. Preparation of the Biomass

Oil palm bagasse (OPB) was obtained in Bolivar, Colombia, as a rejected by-product
of the palm oil extraction process. Yam peel (YP) was obtained as post-harvest residues.
Biomasses were selected in their best condition, washed with deionized water, sun-dried
until a constant mass, and reduced in size in a blade mill; size classification was performed
in a shaker-type sieve with stainless steel screens, selecting the particle diameters according
to the design of the experiments.

2.2. Characterization of the Bioadsorbent

Proximal chemical analysis was performed using analytical methods to determine the
content of pectin (thermogravimetry), lignin (acid digestion), cellulose (photolysis), hemi-
cellulose (thermogravimetry digestion), carbon (AOAC 949.14), hydrogen (AOAC 949.14),
nitrogen (AOAC 949.14-Kjeldahl), sulfur (948.13) and ash (nephelometry digestion). The
functional groups and structural change in the biomass were determined by FTIR anal-
ysis of the bioadsorbents before and after adsorption using a Shimadzu IRAinfinity-1S
spectrophotometer with a frequency of 32 scans between 600 and 4000 cm−1. The surface
properties of the biomasses were studied by SEM-EDS analysis using a scanning electron
microscope coupled to an energy dispersive spectrophotometer model JSM-6490LV JEOL
Ltd. (Tokyo, Japan).
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2.3. Column Adsorption Tests

Adsorption tests were performed in packed-bed system following an experimen-
tal design created in Statgraphics Centurion XVI®, with the central type composed of a
23+rotating star on the response surface; there were 5 levels of temperature variation (30, 40,
55, 70 and 80 ◦C), particle size (0.1, 0.355, 0.5, 1 and 1.2 mm) and bed height (6.1, 30, 65, 100
and 124 mm), for a total of 16 experiments for each biomass–metal system. The experiments
were conducted in an acrylic cylinder with height of 15 cm and internal diameter of 4.1 cm.
The solution at 100 mg L−1 was feed from a tank located at the top of the equipment,
flowing into the column by gravity at a flowrate of 0.75 mL/s. To prepare the synthetic
solutions, nickel sulfate (NiSO4) and Potassium Dichromate (K2Cr2O7) were used (Merck
Millipore; Burlington, MA, USA) and dissolved in deionized water using pH of 2 and 6 for
Cr(VI) and Ni(II), respectively.

The biomass packaging was filled with the biomaterials under study, and the con-
ditions of temperature, bed height, and particle size were configured according to the
proposed design of experiments. The samples were taken 5 min after starting the assays;
the final concentration of Cr(VI) was determined by UV-Vis spectrophotometry at 540 nm
in a Biobase spectrophotometer using phenolphthalein as an indicator, in accordance with
ASTM D1687-17 [3]. The residual nickel (II) was determined using an atomic absorption
spectrophotometer, Buck Scientific model 210 VGP, at 228.8 nm [5]. Adsorption efficiency
was determined using Equation (1):

%E =
C0 − Ci

C0
× 100 (1)

where C0 is the initial concentration of the studied metal and Ci is the concentration of the
studied metal after the adsorption process [21].

The effects of temperature, particle size, and bed height were studied using the Stat-
graphics Centurion software through the estimated response surface and the optimization
of such response using the Surface Response Method (SRM), which made it possible to
maximize the efficiency of the removal, determining the best conditions under which to
construct the breakage curve.

2.4. Breaktrhough Curve

The breakage curve or determining the time of service of the bed and the saturation of
the biomaterial was constructed by means of continuous experiments under the optimum
conditions obtained. The breakage curves for Cr(VI) and Ni(II) adsorption were adjusted
to the models described below in OriginPro®.

2.4.1. Thomas Model

This model obeys Langmuir’s adsorption and considers the axial dispersion to be
insignificant in the bed, because the driving force follows second-order kinetics with a
reversible reaction given by Equation (2).

C0

C
=

1

1 + exp
[

Kth
Q (q0X − C0V)

] (2)

where Kth is Thomas’ constant (mL min−1 mg−1); qo is the maximum concentration of
solute in the solid phase (mg g−1); X is the amount of adsorbent in column (g), Q is the rate
of flow (mL min−1), and V (L) is the volume of the effluent at the time of operation.

2.4.2. Yoon–Nelson Model

Yoon–Nelson model. This model relates the dimensionless parameter C/C0 throughout
the operating time by means of two parameters, KYN and τ, which correspond to the
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proportionality constant in min−1 and the time after which 50% of the initial adsorbate is
retained, respectively. This is shown in Equation (3).

C
C0

=
exp (KYNt − τKYN)

1 + exp (KYNt − τKYN)
(3)

2.4.3. Dose–Response (DR) Model

The DR model can be represented by Equation (4).

C
C0

= 1 − 1

1 +
[

C0×Qt
q0X

]a (4)

where a is the constant of the model; q0 is the maximum solute concentration in the solid
phase (mg g−1), X is the amount of adsorbent in the column (g), and Q is the rate of flow
(mL min−1).

2.4.4. Adams–Bohart Model

This model is implemented to describe the initial part of the breakage curve above the
breakage or saturation points, assuming that the adsorption velocity is proportional to the
adsorption capacity and the concentration of the adsorbed species. This model is described
according to Equation (5).

C
C0

=
exp(KABC0t)

exp
(

KAB N0L
v

)
− 1 + exp(KABC0t)

(5)

where KAB is the kinetic constant of Adams–Bohart in (L/mg.min), N0 is the maximum
volumetric adsorption capacity in mg L−1, v is the linear flow rate in (cm/min), L is
the depth of the column bed in cm, C0 is the internal concentration mg L−1, Ct is the
concentration of the effluent, and t is the residence time of the dissolution in the column.

2.4.5. Adsorption Capacity of the Column

The adsorption capacity of the column was determined using Equation (6).

qj =
C f

j Q

1000ms

∫ ts

0

1 −
Cout

j

C f
j

dt (6)

where qj is the concentration of the ion in the adsorbent (mmol/gram), Cjf is the feed
concentration of the j-ion in the liquid phase (mmol/L), Q is the volumetric flow rate of
the solution flowing through the column (cm3/min), ms is the mass of the biomass with
which the tower is packed (g), Cj

out is the j-ion output concentration in the liquid phase
(mmol/L), and ts is the time at which the column is saturated (min) [22].

2.5. Thermodynamic Parameters

To establish in a general way the type of adsorption of the metals using OPB and
YP, the equilibrium constant Kc and the values of adsorption enthalpy (∆H◦), adsorption
entropy (∆S◦), and Gibbs’ energy (∆G◦) were determined, making it possible to establish
the favorability of the process and the effect that the temperature has on it [23]. For this,
Van’t Hoff’s graphical method was used, according to the following equations:

∆G = ∆H − T∆S (7)

G = −RT × lnkc (8)

lnKc =
−∆H

RT
+

∆S
R

(9)
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3. Results
3.1. Characterization of Bioadsorbents

The bromatological analysis of OPB and YP is shown in Figure 1, where it can be seen
that the compounds with the greatest presence in both biomaterials are lignin and cellulose,
compounds which stand out for having hydroxyl, carboxyl, and phenolic functional groups
in their structure, and which are important in the adsorption of metallic ions [24].
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Figure 1. Bromatological analysis of OPB and YP: (a) polysaccharide compounds and (b) elementary
compounds [25,26].

The most abundant element in the two bioadsorbents is carbon, which is typical
of lignocellulosic materials due to the presence of lignin, cellulose, and hemicellulose.
Therefore, a high efficiency of Cr(VI) and Ni(II) adsorption is expected, because these
compounds are known to possess a large number of OH- groups [27], carboxyl, and phenol,
which can promote the adsorption of heavy metals [28]. Similarly, it can be observed that the
lignin content in YP and OPB is high, and therefore the removal efficiency may be higher in
these materials [29]. The ash content is higher than 4% in both biomaterials, indicating that
the biomass contains in its structure oxides of silica, aluminum, iron, calcium, magnesium,
titanium, sodium, and potassium [30].

The FTIR spectrum was obtained for OPB and YP before and after the Cr(VI) and Ni(II)
adsorption processes (Figures 2 and 3). For both adsorbents, the evident stretching between
frequencies of 3500 and 3800 cm−1 corresponds to the hydroxyl (O-H) functional group [31],
while the presence of primary and secondary amines is indicated by the stretching of the
N-H bond between 3200 and 3450 cm−1 [32]. Additionally, stretching and deformation
of the C-H group and carboxylic acid can be observed between the frequencies of 2700
and 3000 cm−1, as well as the stretching of carbon dioxide O=C=O close to the band at
2400 cm−1 [33]. The vibrations between 900 and 1800 cm−1 are attributed to alkenes,
aromatics, and carboxylic acids [19]. Around the band between 1600 and 1650 cm−1, a
stretch of the carbonyl group of pectin, cellulose, and hemicellulose carboxylic acids can be
observed, while between 900 and 1200 cm−1, vibrations corresponding to the C-O group
of alcohols and phenols are evident [28]. The presence of these multiple adsorption peaks
confirms the heterogeneous nature and structural complexity of the bioadsorbents under
study.

In the FTIR spectrum of the OPB and the YP following Cr(VI) and Ni(II) adsorption,
changes in the functional groups of the biomasses can be observed, and the difference in the
vibrations is remarkable. This is attributed to the incorporation of the metals under study
onto the surface of the biomass, whereby they are joined to different functional groups on
it [34]. The change in the intensity of the bands of the groups OH, CH, CO, NH, and C=C
evidences the union of the ions; active and present functional groups in the biomass are key
to the mechanism of adsorption of cationic pollutants [35]. Between 900 and 1800 cm−1, the
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presence of aromatic rings in the lignin and stretching of the C-O groups can be observed [4].
The vibrations of the bands between 700 and 1300 cm−1 present inorganic groups [36].
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In Figure 4 and Table 1, it can be seen that YP exhibits an irregular surface with the
presence of mesopores, while the morphology of OPB is fibrous, with the presence of
porosity and cavities [26]. Carbon, calcium, and oxygen are present in both materials,
with YP exhibiting the most diverse structure, with traces of multiple elements such as
potassium, silicon, aluminum, phosphorus, and iron, among others [37]. The presence
of these elements is related to the functional groups present in lignocellulosic materials
(cellulose, hemicellulose, lignin, and pectin) [4] and its ability to capture cations due to
electrostatic forces; therefore, white particles are observed on the micrographs [38]. It is
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evident that the pores of the biomaterials are covered by the metals following adsorption,
and so they are softened when they are covered by Cr(VI) and Ni(II) [39].
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With respect to SEM and EDS after adsorption, the presence of Cr(VI) was observed
on the basis of the characteristic high-intensity peaks at 1, 5.6, and 5.8 keV, while the
appearance of Ni(II) was found on the basis of the peaks at 1.4, 7.8 and 8.2 keV. Due to
the structural changes reflected in the FTIR (Figures 1 and 2) and the EDS spectra after
adsorption, as well as the increase in the number of white particles precipitated onto the
surface of the two adsorbents, it can be established that the mechanism of adsorption
of both metals in the biomaterials is an exchange between the studied cations and the
disponible centers of the material [40], which promotes the formation of microcomplexes
and precipitation [41] when Cr(VI) and Ni(II) are retained at the active centers [42]. In
the EDS after Cr(VI) adsorption, a decrease in Ca intensity of 0.2 keV was observed in
OPB, while the intensity of O increased at 0.6 keV, and K appeared at 3.6 keV; meanwhile,
YP presented a decrease in the peaks of Ca at 0.6 keV, Fe at 1.1 keV, and K at 3.6 keV,
while P disappeared at 2.0 keV and S at 2.1 keV. Following the removal of Ni(II), OPB
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presented an increase in the Fe peak at 0.8 keV, and the appearance of Al at 1.8 keV, S at
2.2 keV, Fe at 6.6, and 6.9 keV, while in YO presented the disappearance of P at 2.0 keV,
Al at 1.8 keV, S at 2.1 keV, Fe at 0.7 keV, 6.5 keV, and 7 7 keV, and Cu at 0.9 keV, 8 keV,
and 8.6 keV; there was also a decrease in the peaks for K at 3.4 keV and Ca at 0.2 keV and
3.8 keV; the disappearance of these compounds in the structure of the biomaterials was
due to the formation of links with the heavy metals, and their entry into the lignocellulosic
structure is shown in the FTIR spectra (Figures 2 and 3), corroborating that ion exchange is
the mechanism of adsorption [28]. The above occurred along with slight variations in the
intensity of the peaks marking the presence of Ca, while a new peak of Cr(VI) and NI(II)
was observed with the C, N, K, Na, Mg, Al, silicon, chlorine and Ca groups contained on
the surface, confirming the adsorption of the heavy metals under study [39].

Table 1. EDS compositional analysis.

Element
OPB OPB—Cr(VI) YP YP—Cr(VI)

Weight % Atomic % Weight % Atomic % Weight % Atomic % Weight % Atomic %

C 50.90 59.07 48.65 56.49 47.40 57.07 54.50 63.25
O 44.60 38.85 48.82 42.56 43.20 39.05 39.67 34.56
Al 0.75 0.40 0.82 0.42
Si 3.87 1.92 1.12 0.56 2.16 1.11 1.21 0.60
P 0.66 0.31
S 0.17 0.08
K 0.20 0.07 4.46 1.65 0.44 0.16
Ca 0.19 0.07 0.25 0.09 0.34 0.12 0.99 0.34
Fe 0.60 0.16 0.59 0.15
Cu 0.45 0.10 0.49 0.11 0.27 0.06 0.45 0.10
Cl 0.45 0.18
Cr 0.48 0.13 0.88 0.24

Totals 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

3.2. Adsorption Tests

Tables 2 and 3 summarize the results of Cr(VI) and Ni(II) adsorption on OPB and
YP under the evaluated conditions. For the removal of Cr(VI) and Ni (II) using OPB, the
results were very similar under all of the evaluated operating conditions; therefore, a
deeper statistical analysis was necessary in order to be able to draw any conclusions (see
Section 3.3). This can be explained by the fact that OPB, as a fibrous material, ensures the
tortuosity of the bed, regardless of the bed height.

On the other hand, when using YP, the best conditions, found on the basis of optimiza-
tion analysis, for Cr(VI) removal were a particle size of 0.355, a temperature of 55 ◦C and a
bed height of 89 mm, while for Ni(II), they were a particle size of 1 mm, a temperature of
70 ◦C, and a bed height of 123 mm (Table 3).

OPB exhibits a high efficiency of Ni(II) and Cr(VI) removal, with percentages higher
than 87%; this is due to the heterogeneity of the biomass due to its lignocellulosic character,
which ensures the presence of hydroxyl, carboxyl, amino, unsaturated hydrocarbon, and
phenol groups, which have a direct influence on the removal of these ions [43]. Despite
the good performance of the bioadsorbent for the two metals, there is evidence of better
behavior with respect to Cr(IV), which can be explained by their ionic radius: Cr(VI)
has an ionic radius of 0.69, while Ni(II) has an ionic radius of 0.78, and the lower ionic
radius increases the diffusion of the metal in solution and on potential adsorption sites [44].
Regarding the evaluated variables, an increase in temperature from 30 ◦C to 55 ◦C decreases
the retention of both metals on OPB and YP, while at temperatures greater than 55 ◦C,
increasing temperature results in a slight increase in removal efficiency. This may be due to
the fact that the increase in temperature contributes to an increase in the speed of the ions
within the solution and the biomass, counterbalancing the thermodynamic effect, which
in turn causes a reversal of the trend whereby the temperature continues to increase [45].
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Considering the high degree of removal achieved by the biomass, the effect of this variable
is considered to be insignificant, since it does not constitute a determining aspect for the
process, suggesting that energy changes in the system do not have an important effect on
the mass transfer mechanisms that allow the diffusion of ions on the biomass. However,
variation in temperature is important, since it constitutes a critical variable when scaling the
process up. Therefore, it is considered that the best conditions for carrying out the removal
exist at room temperature. The influence of bed height presents a positive behavior when
using the two adsorbents, removal efficiency increasing with increasing bed height, which
can be explained by the availability of a greater number of link sites for adsorption and the
increased residence time. Therefore, the diffusion of the ions is more effective, since the
contact between the phases is more intimate [17].

Table 2. Cr(VI) and Ni(II) removal efficiency over OPB in a continuous system.

Temperature (◦C) Particle Size (mm) Bed Height (mm)
OPB

Cr(VI) Ni(II)

70 0.355 30.0 100.00 99.86
40 0.355 100.0 99.97 99.53
55 0.500 6.13 99.98 89.85
70 1.000 30.0 99.99 87.24
40 1.000 30.0 100.00 90.37
40 0.355 30.0 100.00 98.93
70 0.355 100.0 99.98 99.57
30 0.500 65.0 100.00 98.33
40 1.000 100.0 99.97 97.16
70 1.000 100.0 99.99 96.77
55 0.500 123.9 99.99 99.76
55 0.500 65.0 99.99 96.80
80 0.500 65.0 100.00 96.95
55 0.500 65.0 99.99 96.80
55 0.135 65.0 99.98 99.76
55 1.219 65.0 99.99 91.18
55 0.500 65.0 99.99 96.80

Table 3. Cr(VI) and Ni(II) removal efficiency over YP in a continuous system.

Temperature (◦C) Particle Size (mm) Bed Height (mm)
YP

Cr(VI) Ni(II)

70 0.355 30.0 96.26 96.65
40 0.355 100.0 87.30 87.4
55 0.500 6.13 65.30 91.40
70 1.000 30.0 97.43 90.20
40 1.000 30.0 98.30 96.72
40 0.355 30.0 96.95 95.22
70 0.355 100.0 87.01 87.0
30 0.500 65.0 87.70 94.46
40 1.000 100.0 88.24 94.07
70 1.000 100.0 91.10 95.91
55 0.500 123.9 92.30 98.74
55 0.500 65.0 94.50 98.17
80 0.500 65.0 94.88 98.82
55 0.500 65.0 97.32 97.25
55 0.135 65.0 87.1 87.2
55 1.219 65.0 98.01 91.66
55 0.500 65.0 94.50 98.15

On the other hand, the increase in particle size positively affects the influence of Cr(VI)
removal when OPB is used, which is decisive for establishing the hydrodynamics of the
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adsorption column, and thus the prevention of overflow [46]. Meanwhile, removing Ni(II)
using OPB as well as using YP to remove both metals is favored by decreased particle
diameter due to increased area of contact exposed to the smaller particle size; this, in
turn, favors the diffusion velocity [47]. However, in practice, for packed-bed systems in
which the flow is continuous, very small particle sizes are inadequate, because the close
spacing between the bed particles leaves less space for the transit of the fluid, affecting the
tortuosity of the bed. In fact, while executing the experiment, it was noticed that the smaller
particle sizes caused an obstruction of the fluid on the bed, making its transit difficult; this
represents a difficulty, since the ideal is to treat as much of the solution as possible without
decreasing the quality of the removal achieved during operation. In this case, sacrificing a
small amount of the optimal particle size can lead to better operation of the system, without
sacrificing much of the effectiveness of the operation.

Table 4 shows the qmax data of the parameters reported for the removal of Cr(VI) and
Ni(II) with different evaluated adsorbents, showing that the results obtained in the present
study lie in the average range for bioadsorbents of lignocellulosic origin.

Table 4. qmax of Cr(VI) and Ni(II) in a fixed bed using various adsorbents.

Metal Adsorbent Conditions qmax (mg/g) Reference

Cr(VI)

Pecan nut husk 0.85 mm particle size, pH = 6.2 180.75 [4]

Eucalyptus pH = 2, 15 cm bed height, 50 mg/L initial
concentration 381.82 [15]

Palm Oil Fuel Ash 100 mg/L initial concentration, 36.4 g adsorbent,
pH = 2. 0.41 [16]

Biosynthesized melanin-coated
PVDF membranes 0.5 mL/min, 3 mg/L, 10 mg adsorbent 9.29 [28]

Plantain starch residues 0.75 mL/s, 100 mg/L initial concentration, pH = 2,
68 ◦C, 81.49 mm bed height 29.85 [17]

OPB 0.75 mL/s, 100 mg/L initial concentration, pH = 2 115.45
This workYP 50.12

Ni (II)

Plantain starch residues 0.75 mL/s, 100 mg/L initial concentration, pH = 6 28.01
[22]Yam starch residues 22.08

Fenton modified with
Hydrilla verticillate

Bed height = 25 cm, 10 mL/min, initial
concentration 5 mg/L 87.18 [48]

Carboxylated sugarcane
bagasse 25 ◦C, pH = 5.5, 0.5 g adsorbent 1020 [49]

OPB 0.75 mL/s, 100 mg/L initial concentration, pH = 6,
55 ◦C

103.49
This workYP 30.04

3.3. Application of the Surface Response Method (SRM)

SRM was applied to the experimental data using the Statgraphics Centurion software,
and a mathematical expression of adsorption efficiency was obtained that fits the results
of the experimental results presented in Tables 2 and 3; in this way, it was possible to
vary the parameters of the factors temperature, particle size, and bed height by means of
Equation (10) for Cr(VI) and Equation (11) for Ni(II), using OPB as the adsorbent.

%R = 100.04838 − 0.0014138539 A − 0.046518846 B
−0.00033061127 C + 0.0000076169902 A2

−0.00010335917 A B + 0.0000071428571 A C
+0.041973067 B2 + 0.000022148394 B C + 3.8888414E
−7 A2

(10)

%R = 105.71338 − 0.14294739 A − 9.4454119 B − 0.007324277 C
+0.00153546 A2 − 0.11583979 A B
+0.00044214286 A C − 3.7284854 B2 + 0.17744186 B C
−0.00052249029 C2

(11)
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where %R is the percentage removal, A is the temperature in ◦C, B is the particle size in mm,
and C is the bed height in mm. Using these equations, graphs of the estimated response
surface were obtained (Figure 5), which described the influence of the evaluated variables
on the processes of Cr(VI) and Ni(II) adsorption on OPB. The concave downwards shape
indicates the adverse effect of increasing temperature and particle size at different bed
heights. The optimal conditions for maximizing the removal efficiency of the process were
obtained as follows: temperature of 40 ◦C, particle size of 1 mm size, and bed height of
30 cm for Cr(VI), while for Ni(II) these values were a temperature of 80 ◦C, particle size of
0.212 mm, and a bed height of 50.3 mm. The breakage curve of the two metals on OPB was
constructed under these optimal conditions.
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Previous studies on Cr(VI) and Ni(II) adsorption on Fenton Hydrilla verticilata (FMB)-
modified dry biomass in industrial waste, in which the effect of bed height, flow rate,
influent metal ion concentration, and particle size were evaluated, concluded that the values
most favorable for the removal of heavy metals were the highest bed height (25 cm); a lower
flow rate (10 mL min−1), and a lower concentration of influential metal (5 mg L−1), in order
to ensure optimal tortuosity and hydrodynamic conditions with the aim of maximizing
bed removal [48].

Regarding the application of SRM to the results obtained for the adsorption of Cr(VI)
and Ni(II) on YP, Equations (12) and (13) were obtained for the two metals, respectively,
where %R is the percentage of removal, A is the temperature in ◦C, B is particle size in mm,
and C is the bed height in mm.

%R = 77.51 − 0.0065A − 2.622B B + 0.45C − 0.0018 A2 + 0.18 A B
+0.0019 A C + 0.426 B2 − 0.0165 B C − 0.0039C2 (12)

%R = 77.67 + 0.438A + 17.45B − 0.0228C − 0.0035A2 + 0.11AB
−0.000826AC − 32.23B2 + 0.338BC − 0.0011B2 (13)

From these equations, the estimated response surface was obtained (Figure 6), and the
significant positive effect of increasing particle size on the quantity of Cr(VI) elimination
was observed, while the concave shape of the scheme for nickel shows that intermediate
values of the considered variables favored its removal. In addition, a temperature of
62 ◦C, a particle size of 1.22, and a bed height of 89.3 mm were determined to be the optimal
conditions for the removal of Cr(VI), while for Ni(II) these parameters were a temperature
of 70 ◦C, a particle size of 1 mm, and a bed height of 123.8 mm. The breakage curve was
constructed under these conditions.
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The optimization of the response variable was obtained using the RSM methodology,
as shown in Table 5. The experiments for analyzing the breakage curve were performed
under these conditions.

Table 5. Optimization of removal efficiency of Cr(VI) and Ni(II) over OPB and YP.

Factor
OPB YP

Cr(VI) Ni(II) Cr(VI) Ni(II)

Temperature (◦C) 30 80 55 70
Particle size (mm) 0.5 0.212 0.355 1
Bed height (mm) 65 50.3 89 123

3.4. Breakthrough Curve

The breakage curve shows the performance of a fixed-bed column in terms of the amount
of metal that can be retained, expressed in terms of a standardized concentration (C/Ci), as a
function of time or effluent volume for a fixed bed height [50]. For this study, the breakpoint
was established as the point at which the concentration at the end of the column reached
0.1% of the Ci, while the concentration at which 95% was reached was established as the
column saturation point [20]. Figure 7 shows the Cr(VI) and Ni(II) breakage curves on OPB
and YP, which were made at the best conditions found and at 100 mg L−1.
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The experimental data obtained from experiments were analyzed to evaluate the effect
on the Cf/Ci vs. time plot, and to stablish the q (mg/g) of the bed. It was evidenced that
the highest adsorption of metal ions occurred at the beginning of the tests, due to the high
disposal of active sites in the unsaturated bioadsorbent [31].

As a result, metal ions were retained around or inside the active sites, while the effluent
from the end of the bed was almost raw without the presence of the cations. As the bed
operation time passed, its capability to capture ions progressively diminished due to the
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occupation of the existing active sites; therefore, the concentration of the effluent increased
until the outlet concentration was 30% of the inlet concentration [21]. However, the total
saturation of the adsorbent was not reached in the column, so the breakage curve exhibits
an upward trend after the contact time. Applying Equation (3), the maximum adsorp-
tion capacity of the column was determined for each adsorbent–metal system, indicating
that the highest adsorption capacities were obtained for Cr(VI), with 111.45 mg g−1 and
50.12 mg g−1 on OPB and YP, respectively; meanwhile, for Ni(II), values of 103.49 mg g−1

and 30.04 mg g−1 were obtained. With respect to the values obtained for the removal of
Ni(II) on OPB (Elaeis guineensis) in stages, a qe of 103.3 mg g−1 biomass was reported for
bagasse, which is very close to the value obtained in the present study [51], which is supe-
rior to those reported by [22] using plantain, yam and OPB residues, respectively. Likewise,
the results of Cr(VI) removal using OPB and YP are superior to those obtained in other
studies, where 29.85 mg g−1 on plantain residues was achieved [17]. The experimental
adsorption capacity for the removal process of both metals in the column was higher for
palm bagasse; this is attributed to its highly porous nature and the typical fibrous surface
of lignocellulosic materials [52].

On the other hand, designing a continuous adsorption system requires knowing
mainly its adsorption profile (concentration–time), so there are different theoretical models
that seek to describe the behavior of a column, estimating some kinetic parameters [21].
Breakage curve data were fitted to the Dose–Response, Yoon–Nelson, Adams–Bohart, and
Thomas models. The fitting parameters are summarized in Table 6.

Table 6. Adjustment parameters for Cr(VI) and Ni(II) adsorption on OPB and YP using non-linear
regression.

Model Parameter OPB-Cr OPB-Ni YP-Cr YP-Ni

Thomas
KTh (mL min−1 mg −1) 0.06 0.077 0.09 0.06
qTh (mg g−1) 58.85 27.69 47.58 23.94
R2 0.66 0.55 0.87 0.84

Dose-
Response

qD-R (mg g−1) 62.18 24.74 54.21 54.93
a 0.67 1.29 2.85 0.84
R2 0.91 0.86 0.92 0.95

Yoon–
Nelson

KY-N (min−1) 0.00616 0.01 0.008615 0.00609
τ (min) 255.9752 269.36 533.67 486.79
R2 0.66 0.55 0.87 0.8391

Adams–
Bohart

KA-B (L min−1 mg−1) 3.622 × 10−5 4.09 × 10−5 7.43 × 10−5 4.98 × 10−5

No (mg L−1) 39388.88 15013.42 13281.04 9302.27
R2 0.53 0.21 0.85 0.81

From the data presented in Table 6, it can be stated that, according to their respective
square correlation coefficients, the experimental Cr(VI) and Ni(II) removal data on YP and OPB
best fit the DR model, with R2 exceeding 90%. Considering the industrial implementations
of adsorption, the established advance time defines the operational limits of the column;
however, in the present study, such saturation was not reached. Rather, it was established
that all the biomasses could be used during the study time, since they present a high
heavy metal adsorption capacity, as reported when Fenton-modified Hydrilla verticillata
biomass was used as Cr(VI) and Ni(II) adsorbents [48]. Despite the R2 value reported
for the DR model, it was observed that the q reported by this model when using OPB
to remove the two metals was much lower than that obtained experimentally. Similarly,
the theoretical q obtained by the models was much higher than the experimental q with
YP; in this sense, the model that comes closest to the experimental values is the Thomas
model, so it was assumed that the mechanism of adsorption was Langmuir-type adsorption
followed by chemical sorption of a pseudo-second-order monolayer, which is evident in the
precipitation and micro complex formation evidenced in the SEM micrographs reported
in Figures 3 and 4 [36]. The prediction of the breakage curve by the Thomas model has
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previously been reported by Srivastava et al. [36], Nordin et al. [16], and Xavier [49] using
red beans impregnated with nanoparticles of magnetite, OPB and carboxylated OPB resin.
It has been reported, when using mangosteen peel for Cd(II), that the good fit of the data
using the Thomas model suggests that external and internal diffusion will not be the
limiting step [6].

3.5. Thermodynamic Parameters

It is established on the basis of the positive sign of ∆H◦ that the processes of removal
of Cr(VI) on OPB and YP is of an endothermic nature, such that the energy must be
proportional to the system in order to boost diffusive phenomena (Table 7) [22]. It also
follows that the limiting step of chromium adsorption on OPB and YP is the chemical
adsorption [53]. In addition, the positive values of ∆G◦ for Cr(VI) removal onto the two
evaluated adsorbents suggest that the system is non-spontaneous, and the increase in
the module with increasing temperature indicates that the process becomes energetically
more favorable [54]. The positive value of ∆S◦ exposes the high affinity of Cr(VI) ions
with biomaterials and also the possibility of some structural modifications due to the
development of links with functional groups at the interface, as well as high randomness
at the solid–solution interface, as shown by FTIR spectra and SEM-EDS analysis; it is also
inferred that the process is reversible.

Table 7. Thermodynamic parameters for chromium (VI) and nickel (II) adsorption at bed height of 65
mm.

Biomass
Cr (VI) Ni (II)

T (K) qe (mg/g) ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (kJ/mol × K) ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (kJ/mol × K)

OPB
303.15 0.79 30.19

3.46 28.81
0.79 −84.29

−107.32 −25.91328.15 0.78 32.68 0.78 −91.25
353.15 0.78 35.17 0.78 −98.20

YP
303.15 2.70 20.16

18.65 6.59
−75.54

−19.65 −24.98328.15 2.91 21.80 −81.79
353.15 2.92 23.45 −88.03

For Ni(II), the ∆H◦ values establish that the removal process possesses an exothermic
nature and occurs by physisorption [53]. ∆G◦ values indicate the spontaneity of the process
and that it becomes energetically more favorable, evolving by itself. On the basis of the
negative magnitude of ∆S◦, it can be said that the bond between the metal and the biomass
is strong, with a low possibility of desorption [54].

The difference found in the adsorption mechanism regarding the thermodynamic
parameters may be in accordance with the chemical nature of Cr(VI) and Ni(II), and its
influence over the chemical interactions with the active centers in the adsorbent; thus, the
different valences, atomic ratios and the ionic energies between the heavy metals cause
the energetic requirements for each case to be specific. When using eucalyptus as an
adsorbent of Cr(VI), equal results were obtained [15], as well as when using nanocellulose
modified with polypyrrole [55], in addition to when using pea peels [18] and composites of
Polyaniline and Iron Oxide [56] for removing Ni(II) ions.

4. Conclusions

The monocomponent elimination of Cr(VI) and Ni(II) on OPB and YP was performed.
The morphological and physical characterizations showed a porous, heterogeneous struc-
ture with high presence of functional groups that favor heavy metal adsorption processes.
The SEM-EDS results suggest that the adsorption mechanism that controls the process is
cation exchange with the active sites of the adsorbent, as well as precipitation and com-
plexing on the exposed surface of the biomaterials. From the adsorption essays, removal
efficiencies above 80% were obtained in all cases, presenting better performance in Cr(VI)
removal due to its diffusion capacity through the bioadsorbent pores. Statistical analy-
sis shows that particle size was the most significant factor in the adsorption processes.
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Mximum capacities of Cr(VI) of 111.45 mg g−1 and 50.12 mg g−1 were achieved on OPB
and YP, respectively; while for nickel, capacities of 103.49 mg g−1 and 30.04 mg g−1 were
obtained. The Thomas model fitted very well to the experimental breakage curves, so it
is assumed that monolayer adsorption was followed by chemisorption. Thermodynamic
study suggested an endothermic process that was non-spontaneous, with high affinity be-
tween Cr(VI) and the adsorbents; meanwhile, Ni(II) adsorption onto OPB and YP exhibited
an exothermic and spontaneous nature.
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