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Abstract: Technical, economic, regulatory, environmental, and social and political interests make
the process of selecting an appropriate wastewater treatment technology complex. Although this
problem has already been addressed from the dimensioning approach, our proposal in this research,
a model of decision making for conventional secondary treatment of municipal wastewater through
continuous-discrete, non-parametric Bayesian networks was developed. The most suitable network
was structured in unit processes, independent of each other. Validation, with data in a mostly Mexican
context, provided a positive predictive power of 83.5%, an excellent kappa (0.77 > 0.75), and the
criterion line was surpassed with the location of the model in a receiver operating characteristic
(ROC) graph, so the model can be implemented in this region. The final configuration of the Bayesian
network allows the methodology to be easily extended to other types of treatments, wastewater, and
to other regions.

Keywords: decision making model; wastewater secondary treatment; Bayesian networks; structured
expert judgment

1. Introduction

The current and growing need for water that is available in sufficient quantity and
quality for all has resulted in its reuse (or recovery) near the place of consumption [1–5].
Wastewater treatment has become relevant for sustainable development, the environment
and human health [1,6]; however, about 32% of the world’s population lacks coverage of
wastewater treatment plants (WWTPs). In most developing countries, construction and
operation are a challenge [7]; for example, in Mexico only 34% of municipalities treat their
wastewater [8]. According to data from [9], worldwide, 54% of the wastewater produced is
treated, where developed countries treat above 90%. However, they require new treatment
plants and constantly promote stricter regulations [7].

Technical, social, economic, regulatory, environmental and spatial factors make the
process of selecting an appropriate wastewater treatment technology complex [2,6,10–12];
in addition, social and political interests and conflicts should also be considered [13]. This
requires extensive experience, knowledge and reliable studies [6], including the uncertainty
related to the origin of wastewater and operational conditions [14]. It is, therefore, of
paramount importance to adopt a rational decision-making procedure that selects the
appropriate technologies for wastewater treatment [13] and incorporates the uncertainty of
the factors involved.
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Decision-making methods can be identified as follows [15,16]: Life Cycle Assessment
(LCA), Cost-Benefit Analysis (CBA), Intelligent Systems, Multicriteria Decision Making
(MCDM) and Mathematical Models (MM). LCA and CBA provide a cost or environmental
impact, useful for projects with specific conditions, but their scope is restricted to finite
scenarios, so they are considered tools for decision-making processes [15]. Intelligent
systems emulate the human decision-making process, using a set of conditional rules or
automatic learning processes. Therefore, the time and resources required to develop these
systems are high, limiting their application [17].

Multicriteria decisions aim to order a set of alternatives under decision-maker (DM)
defined factors [7,18], giving some importance (weighting) to each decision criterion [15],
e.g., the analytical hierarchy process [19,20]. These methods are complemented by tools
such as fuzzy logic for considering uncertainty [21–23]; however, in the selection of wastew-
ater treatment technologies, the hierarchy of alternatives with regard to each criterion may
change depending on the design conditions of the plant, making it difficult to implement a
comprehensive system that values any case study in a single modelling.

The decision-making models (DMMs) based on MM represent a tool to gain a compre-
hensive understanding of the problem characteristics, as they do not require high costs for
implementation [16]. However, in multicriteria decisions, and with uncertainty, they may
require complex algorithms, making their implementation more difficult [24,25].

In this context, Bayesian networks are graphs where variables (nodes) and their depen-
dencies (arcs) are represented. In the nodes, the distributions of probability for each variable
are defined, and the dependencies are determined with range correlations or conditional
tables. They have been used in multicriteria decision-making (MCDM) to support decisions
in different contexts, because they address in a structured way the uncertainty of the criteria
and their interrelationships, due to the convenient use of conditional probabilities [26].
In addition, with observed values of some of the variables and with the dependencies
given by the arcs, all sources of uncertainty are propagated to obtain the new probability
distributions for the other variables [27].

As for the DMMs used in WWTPs, several applications have been developed, for
example, for designing, estimation of energy consumption, operational optimization, im-
provement of effluent quality, environmental impact, and health risks [2,16]. Nevertheless,
choosing an appropriate process is one of the most challenging steps [12] since environ-
mental, social and economic factors must be taken into account, as well as the quality and
quantity of wastewater [2,6,7,11]. Uncertainty is also part of all the above variables [14].
That is, both the inputs (characteristics of wastewater and its flow) and the outlets (removal
efficiencies, sludge production, by-products with value, costs, among others) are variables
that cannot be valued with enough certainty in a design process. In this way, Bayesian
networks are a suitable alternative to model such complex processes, with the advantage
of being able to integrate both quantitative and qualitative variables in the model [28].

The frequency of use of Bayesian networks in water modeling and management
has increased rapidly due to their powerful inference capacity, their convenient decision
support mechanisms, and their flexibility and applicability to factors that affect wastewater
treatment systems [29], in addition to their ability to provide a visual interpretation of the
structures of the model [28]. Wastewater engineers and decision makers can apply this
method in risk assessment and prediction applications [30].

Yu et al. [31] developed Bayesian networks to pre-evaluate and contrast the results of
prediction models applied to the long-term effect of iron on methane yield in an anaerobic
membrane bioreactor, obtaining differences of less than 0.5%. Li et al. [29] proposed a
method based on Bayesian networks to model and predict the behavior of a wastewater
treatment system based on a modified sequencing batch reactor. According to these
results, they concluded that Bayesian networks provide an effective approach to predictive
analysis in real time of wastewater treatment systems. Xu et al. [28] applied Bayesian
networks to conveniently model the complex processes between anthropogenic activities
and water quality. They showed that both quantitative (such as water quality and land
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use data) and qualitative variables (different seasonal scenarios) can be incorporated into a
model. Through the design of a Bayesian network, Herrera-Murillo et al. [32] estimated
the probabilities of complying with regulations in wastewater discharges under some
alternative scenarios of operation.

According to the aforementioned studies, the advantage of Bayesian networks lies in
their flexibility and reliability of application in factors of treatment systems, their visual
structure and their ability to evaluate different scenarios of wastewater conditions.

Within the entire process of municipal wastewater treatment, secondary treatment
consists of the removal of organic compounds. After primary treatment, this treatment
significantly reduces suspended solids and virtually all dissolved organic compounds from
the influents to meet a given standard [33].

In this work, it is proposed to develop a Bayesian network-based DMM for the selection
of secondary municipal wastewater treatment processes for initial implementation in a
Mexican context (based on data of 117 wastewater treatment plants) and, with appropriate
assessments, subsequently in a global context. Therefore, this kind of model could be
considered the first step in an adequate design process of the wastewater treatment type
selected. Furthermore, it would allow the depiction of the expert knowledge acquired
through empirical experience. Bayesian networks seen as an MM allow us to address
uncertainty in the variables involved [26,34]. Once the network is configured, it can be
used to explore different scenarios in the variables [35], and therefore different case studies.

2. Materials and Methods

The development of the DMM for the choice of the unitary process of secondary
wastewater treatment is proposed to be carried out in six stages (Figure 1). The first
three stages are focused on the selection of the adequate variables (stage 1), building an
appropriate and consistent Bayesian network in terms of element independence, direction
of dependencies (stage 2), and obtaining marginal probability distribution functions (PDF)
and range correlations (stage 3). The later stages address the model validation in the
Mexican geographical context. This is, stage 4 focuses on the data collection, depuration
and storage of information related to variables of WWTPs operation, such as inlet flow rate,
total suspended solids, etc. The validation of the model (stage 5) assesses the predictions
made by the model according to the database generated of WWTPs. The model is intended
to find both a more adequate process based on the initial conditions and also the most
suitable order of the different processes in view of some performance indicators.

Taking into account the WWTP design process, three types of elements are defined in
the model: input conditions (ICs) or decision constraints; possible secondary unit processes
to choose (UPs) or decision objects; performance indicators (PIs) representing the effects
provided by these processes under the above-mentioned ICs (stage 1).

As for the UPs, this research is limited to secondary treatments, and those which are
also conventional processes most commonly used for municipal wastewater in Mexico
(Table 1). Some types of processes, such as maturation lagoons, are excluded, as they
are tertiary or final processes. The most commonly used processes are aerobics, so septic
tanks and Imhoff tanks (anaerobic processes) can be omitted from the model. In addi-
tion, the main objective of conventional municipal plants is the reduction of suspended
solids, biodegradable organic matter, and fecal and total coliforms [36,37], so in the se-
lection it is possible to discard processes focused on nitrifier variants (e.g., nitrification
biological contactors).

Some criteria in the literature [36–38] suggest the representative variables to define the
ICs shown in Table 2. In the set of characteristics of wastewater, those that are not associated
with aerobic and conventional secondary unit processes, and which do not represent a
disjunction in the decision, are ruled out. A variable that does not generate a disjunction
must have values that can be treated in the same way by any process, or regulated, so
they impact the performance of the treatment in a non-significant way. Medina et al. [39]
describe the appropriate operating intervals of the ICs for each defined UP, which can
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determine the existence of the disjunction between the processes. Intervals allow UPs to be
located at an operation level according to the associated variable (Table 2, operation level).
As a result, if processes are able to handle the same level of an IC, there is no disjunction in
the decision, and they can be discarded from the model.

Figure 1. Methodology flow diagram for the development of the DMM.

Table 1. Secondary unit processes (UP) and their variants referred to this study.

Rotating Biological Contactors (RBC) Aerobic Lagoons (AEL)

a. Secondary
Low rate aerobic
High rate aerobic
Aerated lagoon

Trickling filter (TRF) Activated sludges (ASL)

a. Low rate
b. Intermediate rate
c. High rate
d. Super high rate
e. Roughing
f. Two stages

Conventional
Completely mixed
Step feed
Contact stabilization
High-purity oxygen
Oxidation ditch
Sequencing batch reactor
Deep shaft
Extended aeration

Own elaboration based on information in [33,36].
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Table 2. Identification of input conditions as candidates for model variables and the selected variables.

Representative Variables CT ST
Operation Level

DJ Comments
RBC TRF AEL ASL

WWC

Color and odor
√ √

C C C C X They are eliminated in the
same treatment processes

Suspended solids
√ √

A A A A X
In the influent of secondary
treatment, they are usually

very low

Temperature
√ √

B B C A–C
√ Model variable, temperature

(TMP)

Biodegradable
organic matter

√ √
B A B C

√ Model variable,
biodegradable organic

matter (BOM)

Fats and oils
√

X X They are removed in
preliminary processes

ROM X X X If a conventional treatment
is considered, they should be
low, because the treatment

does not eliminate them

CMTT X X X

DIS X X X

Nutrients
√ √

A A A A X

If they are very low, they are
fitted; if they are very high,
conventional treatment is

not suitable

pH
√ √

B B B B X It must be previously
regulated

Oxygen
√ √

A A A A X It is constantly added in the
treatment

Higher
organisms

√
X X They are removed in

pretreatment processes

Pathogenic
organisms

√
X X They are eradicated in

disinfection

Wastewater flow or design
flow

They do not
apply A B A C

√ Model variable; wastewater
flow (WWF)

Wastewater flow variation They do not
apply A A A A X Regulators mechanisms, as

tanks, are implemented

Closeness to the nearest home They do not
apply A–B B B A–B

√ Model variable; closeness
(CLS)

Construction land availability
and cost

They do not
apply A A B A

√
It is considered in WWF,

only the lagoons ought to
handle small flows to limit

the land costs

WWC: Wastewater characteristics; ROM: refractory organic matter; CMTT: carcinogens, mutagens, teratogens and
toxics; DIS: dissolved inorganic solids; CT: Is it associated with conventional treatment? ST: Is it associated with
secondary treatment? DJ: Does it generate a disjunction? A: level of parameter low values; B: level of parameter
intermediate values; C: level of parameter high values.

Other selection criteria applied by Adams et al. [36], Metcalf and Eddy [37] and
Rodgers et al. [38] are considered to determine the elements belonging to the PI group
(Table 3). These criteria are related to effluent quality, and monetary, social and environ-
mental impacts. However, the dimensioning of the model towards conventional processes
allows us to rule out any variable that represents the treatment of nutrients, refractory or-
ganic matter, carcinogens, mutagens, teratogens and toxics, and dissolved inorganic solids.
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Table 3. Performance indicators defined for the model.

Criterion Considered Variables

Process efficiency BOM removal efficiency (OMR)
TSS removal efficiency (SSR)Environmental constraints

Treatment wastes
Sludge production (SLD)

Sludge treatment

System stability Process stability (STY)

System complexity Process complexity (CPY)

Construction and operation cost
Construction cost (CCO)

Operation cost (OCO)

Energy consumption (ENC)

Environmental impact
Health impacts (considered in the variable CLS, Table 2)

Social impacts (considered in the variable CLS, Table 2)

Environmental impact (it is evaluated in SLD and ENC)

BOM: Biodegradable organic matter; TSS: total suspended solids; CLS: closeness.

Social impact variables and health effects are covered by the construction of WWTPs at
a certain distance from populations, therefore this factor is considered in the CLS variable
of ICs. The main environmental impacts that can be attributed to secondary treatment are
carbon-emissions, which are estimated implicitly by energy consumption (ENC) [2], and
sludge production (SLD) [40]: PIs previously defined.

The design of the Bayesian networks proposed for this research (stage 2) is based on
the determination of dependencies between variables, the type of variable (continuous or
discrete) for each element, as well as the estimation of nodes PDFs and the quantification of
dependency between variables [35]. Since the objective of the model is to choose the most
appropriate secondary unit process, its dependence on the choice of another is meaningless,
and therefore the UPs are considered independently of each other. A similar case occurs
with ICs, where their dependence is strongly linked to the origin of wastewater.

Unlike UPs and ICs, there are dependencies between some IPs that can be ignored,
for example, among OMR and CCO indicators, because in general the most efficient unit
processes in removal are the most expensive. However, that dependency is only “active”
if a value is set in the OMR variable or CCO (based on Díez-Vegas [41]), which implies a
preference of one UP over the others.

There are dependencies between some PIs and ICs; for example, TMP and BOM
influence OMR [12,36,42–44], but their dependencies are implicit in their PDFs, therefore
we do not need to assign dependency arcs between ICs and PIs.

The Bayesian network can work without arcs between the ICs, UPs and PIs themselves,
as well as arcs from ICs to PIs, allowing only UPs dependent on PIs and PIs dependent on
UPs (Figure 2a). In this way, different potential configurations of the Bayesian network
can be conceived considering discrete variables and UPs as states (Figure 2b), continuous-
discrete variables and separated UPs in continuous variables (Figure 2c), individual PIs for
each UP (Figure 2d), ICs displayed independently by UPs (Figure 2e): and inference of ICs
probabilities given the UPs (Figure 2f).
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Figure 2. Potential configurations of the Bayesian network for the model.

Marginal PDFs and range correlations (stage 3) associated with the most appropriate
Bayesian network of the model can be estimated from information found in databases;
however, structured expert judgements can become an alternative source of data, especially
to support uncertainty analysis [45].

For marginal PDFs of UPs to be defined as continuous variables, a score can be assigned
to them, useful for decision making, in a range of 0 to 10 (uniform density function).

The PDFs associated with the BOM variable (Table 4, column 4) can be obtained by
means of the reported efficiencies (column 3) in relation to some regulations, such as the
Mexican one (30 mg/L BOD5) [46]. For example, the average reported efficiency of an RBC
is 82.5% and the maximum 92.5%, so it is appropriate to manage BOD5 concentrations in the
range of 171.4 to 400 mg/L (or 300 mg/L, considering the concentration limit in municipal
wastewater). In the case of TMP, these data are obtained through expert judgement.



Water 2022, 14, 1231 8 of 27

Table 4. Procedure for determining the marginal distributions of the IC and their rank correlations with the UP. Normal distributions are assumed except for the
transformed ones.

IC UP Related to IC Source of Data Mean and SD
of PDF

Mean and SD
of Marginal
PDF by UP

Optimal Value
(Median)

Mean and SD of
Transformed

Marginal PDF

Mean and SD of
Transformed PDF CP R

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10}

BOM

RBC (1)

[33,36,47]

235.70 ± 37.10

200.50 ± 53.50

235.70 MMDOM1 ± SMDOM1 MMDO1 ± SMDO1 PMDO1 RMDO1

TRF (2) 119.80 ± 86.50 119.80 MMDOM2 ± SMDOM2 MMDO2 ± SMDO2 PMDO2 RMDO2

AEL (3) 225.00 ± 31.50 225.00 MMDOM3 ± SMDOM3 MMDO3 ± SMDO3 PMDO3 RMDO3

ASL (4) 241.90 ± 41.50 241.90 MMDOM4 ± SMDOM4 MMDO4 ± SMDO4 PMDO4 RMDO4

TMP

RBC (1)

Experts
Judgement

MTMP1 ± STMP1

MTMPM ±
STMPM

OTMP1 MTDOM1 ± STDOM1 MTDO1 ± STDO1 PTDO1 RTDO1

TRF (2) MTMP2 ± STMP2 OTMP2 MTDOM2 ± STDOM2 MTDO2 ± STDO2 PTDO2 RTDO2

AEL (3) MTMP3 ± STMP3 OTMP3 MTDOM3 ± STDOM3 MTDO3 ± STDO3 PTDO3 RTDO3

ASL (4) MTMP4 ± STMP4 OTMP4 MTDOM4 ± STDOM4 MTDO4 ± STDO4 PTDO4 RTDO4

WWF

RBC (1)

[48]

3.81 ± 7.23

9.16 ± 33.14 Not applies Not applies Not applies

0.22 −0.74

TRF (2) 5.52 ± 8.62 0.32 −0.47

AEL (3) 2.81 ± 12.70 0.31 −0.54

ASL (4) 24.89 ± 63.86 0.65 0.41

CLS

RBC (1)

[49] and Experts
Judgement

Not applies

p(state 1) = 0.78

Not applies Not applies Not applies

PCLS1 RCLS1

TRF (2) PCLS2 RCLS2

AEL (3)
p(state 2) = 0.22

PCLS3 RCLS3

ASL (4) PCLS4 RCLS4

SD: standard deviation; CP: conditional probability; R: rank correlation.
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As normal distributions, synthetic random samples are generated [25,50] to obtain
the parameters of the marginal PDFs (Table 4, column 5) with the set of four samples of
each variable.

The above conception of BOM and TMP variables, although correct, is incomplete
because it can lead to inconsistencies for the model. That is, the high range correlations
(r > 0.8) obtained between the BOM or TMP with each UP can underestimate the other
variables. To solve this inconsistency, the BOM variable can be conceived as the “biodegrad-
able organic matter difference with the optimal one for each process” (MDO). The optimal
biodegradable O. M. is the median of each process, assuming that moving away from
it implies that the process decreases its probability of treating that O. M., and another
process increases its probability of treating it. Therefore, the term “optimal” does not refer
to the best performance of the process, but to the maximum eligibility of the process. In
the case of TMP, the performance of a process does not depend on its operation at a high
or low temperature of wastewater, but on how much its average operating temperature
moves away from the optimal operating temperature of each process. Therefore, the TMP
variable can be adjusted as “difference in wastewater temperature with optimal process
operating temperature”, which is hereinafter referred to as “temperature difference with
optimal” (TDO).

Examining the meanings of the optimal values, it follows that they are in the center
of the PDFs of each UP (Table 4, column 6), providing four transformed marginal PDFs
(column 7). The optimal value of each UP (e.g., BOMUPi-optimal) is located in the marginal
(original) distribution of MOB or TMP (Figure 3a). Therefore, the probability of having a
difference (e.g., biodegradable O. M.), or lower, with the optimal value, are the cumulative
probabilities on both the left and right. In this way, a cumulative probability distribution is
defined based on different increments of the variables.

Figure 3. Determination of (a) marginal PDF transformed and (b) PDF transformed of BOM by UP.

Similarly, the transformed PDFs of each UP (Table 4, column 8) are obtained by means
of the optimal values (Figure 3b), which correspond to the median of the PDFs. The new
distributions of each UP are useful for estimating the range correlations between the MDO
and TDO variables with their respective UP.
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CONAGUA (National Water Commission) [48] provides the implemented processes
and design flows (installed capacity) of each plant registered in Mexico. Assuming a normal
distribution of values, with the PDFs of WWF estimated of each UP (Table 4, column 4),
a synthetic random sample is constructed per process, and, with the four joint synthetic
samples, the marginal PDF is obtained (column 5).

Due to the lack of data that allow us to correlate the ICs with the proposed score for the
UP, in this study, it is proposed to obtain the range correlations of the variables MDO, TDO
and WWF with the UPs by conditional probabilities [51] but replacing the probabilities
given by the experts with probabilities obtained through PDFs of each process and the
medians of the marginal PDFs. For example, to determine the correlation between the
WWF variable and the TRF variable, it must be obtained from the experts: the probability
that the WWF is greater than 9.2 m3/d if the TRF score is greater than 5.0. Assuming that a
score greater than 5.0 results in the process being tempted and chances of being chosen, a
judgement may now be required of the experts: the probability that the WWF is greater
than 9.2 m3/d if TRF is eligible. The fact that TRF is eligible means that, there are flow
rates that it can handle. Additionally, these flows, defined by the PDF, can be taken into
account to determine the probability. Therefore, with the marginal distribution of WWF
(Figure 4a; Table 4, column 5) the median is located, and with the flow rates distribution of
TRF (WWFTRF; column4) is calculated the probability of surplus (conditional probability,
column 9), to calculate the range correlation (column 10) using the method described by
Morales et al. [51].

Figure 4. Conditional probabilities determination by (a) PDF and by (b) cumulative PDF.

Finally, similar to the WWF variable, from the median given by the cumulative
marginal PDF of MDO (or TDO) associated with an UP (Fmarginal(MDOUPi)) (Figure 4b;
Table 4, column 7) and with the cumulative PDF of the MDO of the same process (F(MDOUPi))
(column 8), the probability of surplus (column 9) required to determine the range correlation
(column 10) between MDOUPi and UPi is calculated.
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Some variables, such as CLS, can be defined as a continuous–discrete variable with
two states, in this case including processes that can be close to populations (up to 200 m)
and those that must be away from them (at more than 1000 m) [52]. It can be assumed
that in a rural town, where the population centers are distant, land is available far enough
from the population to opt for any process without undesirable effects on society. In the
case of an urban population, it is likely that only land close to the population is available,
and processes that have fewer undesirable effects should be opted for. Therefore, it is
assumed that the probability of building a plant at less than 1000 m (near, state 1) is
equal to the probability of having an urban population, and the probability of building
it at more than 1000 m (away, state 2) is equal to the probability of existence of a rural
population. For example, in Mexico 77.6% of the population is urban and 22.4% of the
population is rural [49], percentages that can define the probability distribution of the CLS
variable (Table 4, column 5). Range correlations (column 10) are calculated directly from
the conditional probabilities (column 9) provided by experts, for example, the probability
of placing the plant at 1000 m away if AEL is chosen.

The marginal distributions of the OMR, SSR and SLD variables dependent on each
of the UPs can be determined with the interval values reported in the literature, e.g.,
the removal efficiency of O. M. in terms of BOD5 from a trickling filter is between 45%
and 81% [36,47]. Marginal PDFs resulting from each variable and process are proposed
to estimate with synthetic samples based on information provided by Asano et al. [5],
César-Valdez & Vázquez-González [33], Adams et al. [36] and Wang et al. [47]

As for STY, three classes can be distinguished depending on the biological process.
The lagoons are a very stable process due to the volume of the reactor, as even the same
lagoon is considered as the regulation of the treatment plant [47]. Trickling filters can be
considered stable because they have no significant variations in O. M. removal efficiencies,
even with fluctuations in hydraulic and organic wastewater loads [53,54]. Activated sludge
is an unstable process because it requires the control of variables such as feed/biomass
ratio, hydraulic retention time, and amount of aeration, and it is susceptible to bulking
(elevation of sludge volume in secondary settler) [47]. With these considerations, it can be
established that AELs have stability 3; CBRs and TRFs, stability 2; and ASLs, stability 1.
Such stability may vary depending on the process variants, but, as at this stage (research)
the effects of the variants are not analyzed, these values will be constant for each process.
This results in no correlation between STY and UP scoring, so they cannot be established as
Bayesian network nodes, but only as variables displayed in decision support.

The CPY values of each UP can also be considered as constant values, so similar to
STY, they are displayed only as a support for the decision: ASL with a complexity of 20;
RBC, complexity of 11; TRF, 10; and AEL, 5 [55].

Chhipi-Shrestha et al. [2] provide approximations for estimating the construction cost,
operation cost and energy consumption of different treatment processes depending on the
operating flow rate. From these, unit values, relative to the flow rate, CCO, OCO and ENC
of each UP (Table 5) can be estimated (at increments of 4000 m3/d). These values determine
the marginal PDFs of the variables for each UP.

To determine the range correlations between PIs and UPs, three statements derived
from PI characteristics are taken into account:

• The higher rated (higher score) a process to treat certain wastewater is, the higher the
chances of obtaining high O. M. and TSS removal increase.

• The lower graded (lower score) a process is, the higher the chances that sludge pro-
duction and costs (monetary and environmental) increase.

• Because PIs are measured directly from and characterized by UP, there is a strong
correlation between the UP and its PIs.



Water 2022, 14, 1231 12 of 27

Table 5. Total and unitary CCO, OCO and ENC of the UP, own elaboration based on [2].

Process RBC TRF AEL ASL RBC TRF AEL ASL

Flow (m3/d) CCO (US$) CCO (US₡/m3)

1000 0.60 0.57 0.01 0.96 8.23 7.78 0.01 13.08

4000 1.21 1.15 0.01 2.62 4.15 3.95 0.01 8.96

40,000 6.38 5.99 26.18 17.44 2.18 2.05 8.96 5.97

400,000 48.21 44.44 296.90 155.90 1.65 1.52 10.16 5.34

440,000 52.65 48.51 326.78 171.76 1.64 1.51 10.17 5.34

Mean 1.90 1.76 9.62 5.58

Standard deviation 2.91 3.03 5.17 1.23

Flow (m3/d) OCO (million US$/year) OCO (US$/m3)

1000 14.10 13.00 0.02 19.80 38.70 35.60 0.04 54.26

4000 56.50 52.00 0.04 79.20 38.69 35.58 0.03 54.25

40,000 564.70 519.40 0.23 791.80 38.68 35.57 0.02 54.24

400,000 5646.50 5192.90 1.64 7917.60 38.67 35.57 0.01 54.23

440,000 6211.10 5712.20 1.79 8709.30 38.67 35.57 0.01 54.23

Mean 38.68 35.57 0.013 54.23

Standard deviation 6.56 3.45 32.11 22.11

Flow (m3/d) ENC (kWh/d) ENC (Wh/m3)

1000 6.00 40.00 225.00 1506.00 5.92 40.29 225.00 1506.20

4000 12.00 80.00 425.00 1990.00 2.96 20.12 106.13 497.38

40,000 83.00 563.00 2819.00 7789.00 2.07 14.07 70.46 194.73

400,000 792.00 5387.00 26,759.00 65,785.00 1.98 13.47 66.90 164.46

440,000 871.00 5923.00 29,419.00 72,229.00 1.98 13.46 66.86 164.16

Mean 2.05 13.98 69.94 190.36

Standard deviation 67.03 55.17 15.64 178.61

The first two statements imply the signs of range correlations, positive for removal
efficiencies, and negative for sludge production and costs. As for the magnitude, a value of
0.9 is proposed, according to [56–58], as a strong correlation.

Although the Bayesian network integrates the main part of the model, it is necessary
to define the decision mechanisms. Under this decision model, it is possible to provide two
results: the score of the UP and the probability of a favorable event in the PIs determining
the ICs. When a user sets values in ICs, useful probability distributions to determine the
probabilities of meeting selection criteria are provided. For example, what is the most
appropriate process according to ICs? (higher score), which process is most likely to
exceed an O. M.? What process is most likely to be below a certain cost? In order to
perform these comparisons, the scores and probabilities of getting a favorable event in a
PI are displayed per process on a single web chart. This chart will allow the user to easily
decide which variables have the highest weight, according to the criterion, and choose the
process. In addition, it allows us to observe quantitatively and globally the advantages and
disadvantages presented by the processes.

To evaluate the model, it is necessary to collect information about WWTPs (stage 4).
In Mexico, CONAGUA [48] has registered 888 wastewater treatment plants (Figure 5),
with the processes of this study. The database has information about the flows and the
type of process that was implemented, but information about TSS, the biodegradable
O. M., wastewater temperature and proximity to homes, are required. This information
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can be obtained through operation reports, project proposals, technical reports and local
climate reports. Therefore, a necessary database for validation is built upon the complete
information about 117 treatment plants.

Figure 5. Wastewater treatment plants registered in México, own elaboration based on [48].

The performance of a statistical prediction model (stage 5) can be evaluated by mea-
suring the correspondence or agreement between predicted and observed values [59],
condensed into an array of hits and errors [60,61]. Valuations provide a number of pa-
rameters to measure model performance and a ROC chart that allows to visualize its
performance [61].

The user can determine the relevance between the PIs and the score of the UPs to make
their choice. In the case of validation, rules are proposed to simulate reality and eliminate
the triviality of the set of model choices [61]. In this way, only the score of the UP, OMR,
SLD, CCO, OCO and ENC are used for validation. Moreover, because in reality only one
unit process is chosen for the project, it is determined that the process that on the radial
chart had three or more criteria in its favor was chosen. If three processes are tied with two
criteria, the chosen one must be the process with the highest score, since this criterion is
derived from the ICs.

In addition to the results of the Bayesian network, the model must be supported under
three important conditions. If the amount of TSS is less than 25 mg/L and biodegradable
O. M. is less than 50 mg/L BOD5 in the secondary treatment influent, it is recommended to
increase the efficiency of the primary settler to meet the limit of the regulations (40 mg/L
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TSS, 30 mg/L BOD5) [46] without a secondary treatment. On the contrary, if the 275 mg/L
TSS and 300 mg/L BOD5 are exceeded, a process for high concentrations should be chosen:
ASL. The third condition is based on wastewater flow. AEL and RBC typically handle lower
flow rates than TRFs, and TRFs in turn handle flows lower than ASL, so above the TRF limit
(1600 L/s, maximum found in the CONAGUA [48] database), only ASL can be chosen.

3. Results

According to the observed arguments in stage 2 of the methodology, the configuration
of the selected Bayesian network was the one corresponding to the separated UPs with
their own variables (i.e., UP exclusionary) with the direction of the influences (arcs) of the
UPs towards the ICs (Figure 6). Although the direction of relationships in this configuration
could be considered non-causal, from a mathematical or abstract point of view, Bayesian
networks do not impose the direction of the causal arc [62]. In this configuration the MDO
and TDO variables have a different marginal distribution in the Bayesian network of each
process; WWF and CLS have a single duplicate marginal in each process; and each process
has its own PIs and its marginals.

For the rest of the possible configurations (Figure 2) it can be mentioned that discrete
Bayesian networks (Figure 2b) allow consideration of the exclusionary nature of UPs;
however, the other variables (ICs and PIs) are continuous, the accuracy of which would
mean excessive network complexity, making its modeling costly [63]. This study applied
continuous-discrete non-parametric Bayesian (NPBN) networks, whose configuration is
reduced to the quantification of a marginal distribution per variable and to one (conditional)
dependency parameter per arc [35].

The discrete nature of UPs could be treated in an NPBN, defining them in separate
variables (Figure 2c). Nevertheless, the results and demands (PIs) of each UP are also
excluding; hence, they are derived from a single process. Thus, each process has PIs
associated with the same parameters, but in different variables (Figure 2d).

This could be considered as the most appropriate configuration, but there can be
“indirect” dependency between UPs when connected by an IC, which is not consistent with
the selection process. Although this is solved by properly configuring the rank correlation
matrix, or, when instantiating ICs, because communication between UP is closed [41], it is
preferable to represent the phenomenon with UPs that depend on their own ICs (Figure 2e).

The fourth configuration suggested complete independence between UPs but required
obtaining range correlations of up to three conditions (Table 6, column A), which generated
inconsistencies such as the overvaluation of some ICs when determined by expert judge-
ment. The Bayesian network, whose arcs are directed from the PIs to the ICs (Figure 2f),
is required to calculate only unconditional correlations (Table 6, column B). On one hand,
from the literature data on the TSS, MDO, and WWF variables in relation to UPs (Table 6,
column C), two rank correlations were obtained (r UPi,MDO, r UPi,WWF). On the other hand, a
structured expert judgment was carried out to obtain PDFs and remaining rank correlations
from stage 3 (Table 7).

In this expert judgement, the values obtained for the temperature variable in RBC
and TRF are equal, as it is expected. From Table 2, these two processes show the same
operation level with respect to temperature, i.e., both processes work with the same type of
microorganisms, attached biofilm and have natural (not forced) aeration. Therefore, their
appropriate operating temperatures must be similar.

A reliable expert judgment requires calibration questions to assess the performance of
the experts and give them a weight in the combination of their opinions (decision maker).
Therefore, a questionnaire involving all the ICs was elaborated to determine the marginal
distributions of the TDO variable and the rank correlations of the CLS variable with the UPs.
The variables TSS, BOM and WWF depicted the calibration questions (see Appendix A,
Table A1).

From the data of the structured expert judgment treated with the Excalibur v1.0
program [64], the weight of the results was determined: expert 3, 30.69%; and expert 4,
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69.31% (Table A2). Such results, where one or two experts get all the weight of the DM are
not erroneous or atypical results [65], as in the Colson and Cooke [66] study, where two
experts out of nine take virtually all the weight of the information. According to [65], each
expert can access different information or can interpret it differently, so there is no logical
reason why all experts must have the same state of knowledge.

Figure 6. Resulting Bayesian network.
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Table 6. Rank correlation sorts of two Bayesian network configurations.

UP Dependent on IC ICs Dependent on UP Available Data

{A} {B} {C}

Rank correlation Correlation sort Rank correlation Correlation sort Correlated variables Obtained objective

UPi, TSS Cal. in E. J.

r UPi,MDO Unconditional r UPi,MDO Unconditional UPi, MDO Cal. in E. J. and r UPi,MDO

r UPi,TDO|MDO Conditional r UPi,TDO Unconditional

r UPi,WWF|MDO,TDO Conditional r UPi,WWF Unconditional UPi, WWF Cal. in E. J. and r UPi,WWF

r UPi,CLS|MDO,TDO,WWF Conditional r UPi,CLS Unconditional

r UPi,MDO: Rank correlation of UPi and MDO; r UPi,TDO|MDO: Rank correlation of UPi and TDO given MDO;
r UPi,WWF|MDO,TDO: Rank correlation of UPi and WWF given MDO and TDO; r UPi,CLS|MDO,TDO,WWF: Rank
correlation of UPi and CLS given MDO, TDO and WWF; r UPi,TDO: Rank correlation of UPi and TDO; r UPi,WWF:
Rank correlation of UPi and WWF; r UPi,CLS: Rank correlation of UPi and CLS; Cal. in E. J.: calibration in
experts judgment.

Table 7. Resolution of the marginal distributions of the IC and their rank correlations with the UP.

IC
UP

Related to
IC

Source of
Data

Mean and SD
of PDF

Mean and SD of
Marginal PDF

by UP

Optimal
Value

(Median)

Mean and SD
of

Transformed
Marginal PDF

Mean and SD
of

Transformed
PDF

CP R

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10}

BOM

RBC (1)

[33,36,47]

235.70 ± 37.10

200.50 ± 53.50

235.7 49.60 ± 36.60 29.90 ± 22.40 0.26 −0.68

TRF (2) 119.80 ± 86.50 119.8 88.20 ± 49.00 68.50 ± 50.60 0.32 −0.51

AEL (3) 225.00 ± 31.50 225.0 45.70 ± 34.20 25.40 ± 19.00 0.22 −0.75

ASL (4) 241.90 ± 41.50 241.9 52.40 ± 38.20 33.40 ± 25.00 0.28 −0.62

TMP

RBC (1)

Experts
Judgement

22.50 ± 6.150

24.80 ± 6.05

22.5 5.20 ± 3.89 4.90 ± 3.70 0.48 −0.07

TRF (2) 22.50 ± 6.15 22.5 5.20 ± 3.89 4.93 ± 3.70 0.48 −0.07

AEL (3) 29.30 ± 5.65 29.3 6.12 ± 4.41 4.53 ± 3.40 0.35 −0.44

ASL (4) 25.00 ± 6.00 25.0 4.85 ± 3.65 4.81 ± 3.61 0.50 −0.01

WWF

RBC (1)

[48]

3.81 ± 7.23

9.16 ± 33.14 Not applies Not applies Not applies

0.22 −0.74

TRF (2) 5.52 ± 8.62 0.32 −0.47

AEL (3) 2.81 ± 12.70 0.31 −0.54

ASL (4) 24.89 ± 63.86 0.65 0.41

CLS

RBC (1)
[49] and
Experts

Judgement
Not applies

p (state 1) = 0.776

Not applies Not applies Not applies

0.50 −0.01

TRF (2) 0.73 0.64

AEL (3)
p (state 2) = 0.224

0.87 0.91

ASL (4) 0.61 0.32

SD: standard deviation; CP: conditional probability; R: rank correlation.

DM reliability (22.82%; calibration score) resulted above the recommended limit
(5%) [67], and the DM information score (0.7786) was only three times less than the greatest
score provided by expert 2 (2.309). Due to the proper calibration score and admissible
information score obtained, it was not necessary to interview more experts to get the
necessary values (Table 8). This means that experts 3 and 4 are highly informative and
provide the required data.

With the model developed and the database generated (stage 4), the selection of the
treatment was carried out by the plant. For example, Table 9 shows data from four strategic
WWTPs: one with successful selection, one with incorrect selection, and two belong to a
group of 40 plants in the database whose type of processing was assumed to be the least
appropriate. Four MDO and TDO values can be seen because these are obtained in return
to the optimal value of each process, and only one for WWF and CLS value.
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Table 8. Values obtained from expert judgment.

IC UP

Quantile (%) Normal Distribution Parameters

5 50 95 Mean Standard
Deviation

Temperature
(◦C)

RBC 5.46 22.50 39.54 22.50 5.68

TRF 5.46 22.50 39.54 22.50 5.68

AEL 18.83 30.81 39.77 29.30 3.49

ASL 6.79 25.00 43.21 25.00 6.07

IC UP Quantile (%) p (CLS < 1000) p (CLS > 1000)

CLS

RBC 11.18 54.70 89.06 0.50 0.50

TRF 5.60 21.11 49.18 0.27 0.73

AEL 1.29 13.02 24.74 0.13 0.87

ASL 10.51 36.14 68.14 0.39 0.61

Table 9. Input data examples of some cases for the model.

Characteristic or
Parameter

Unit
Plant (#)

001 002 010 098

Case of study

Implemented process ASL ASL TRF ASL

Total suspended solids (mg/L TSS) 376.01 32.00 184.60 261.00

Biodegradable O. M. (mg/L BOD5) 393.54 55.90 369.00 334.00

WW temperature (◦C) 23.64 19.45 23.20 27.72

Wastewater flow (L/s) 100.00 200.00 237.50 171.00

Closeness to homes close close close close

Bayesian
network

MDO RBC

(mg/L BOD5)

29.94 * 197.97 13.38 10.25

MDO TRF 145.84 82.07 129.28 105.65

MDO AEL 40.64 187.27 24.08 0.45

MDO ASL 23.74 * 204.17 7.18 16.45

TDO RBC

(◦C)

1.14 3.06 0.70 5.22

TDO TRF 1.14 3.06 0.70 5.22

TDO AEL 5.66 9.86 6.10 1.58

TDO ASL 1.36 5.56 1.80 2.72

WWF (m3/d) * 1000 8.64 * 17.28 20.52 14.77

CLS (state) 1 1 1 1

Process chosen by the model ASL TRF ASL AEL

* Values used in the example in Figure 7.

The values were entered on the ICs nodes (Figure 7a), and as a result updated marginal
PDFs were generated in the nodes of the UP scores (Figure 7b). In the example, it is observed
that ASL is the most appropriate process, by the average scoring values, which are derived
from the ICs. This result already represents a trend in the decision, but it is desirable to
assess PIs to strengthen the selection. With marginal PDFs of PIs derived from the score
(Figure 7c), it was possible to determine useful probabilities for decision-making, e.g., the
probability of exceeding, with one process, the O. M. removal efficiency required to comply
with a standard (or a proposed efficiency value) or the probability of having, with the
process, a lower cost than the average of the four processes (or a required cost). To assist in
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comparing the four scores and the four probabilities obtained from each PI, it was proposed
to place the values on a web chart (Figure 7d) that shows which processes are most favored
according to PIs.

Figure 7. Construction process of the web graph for selection.

For stage 5, all 117 case studies were rated. However, as a comparison, in the case
of Plant 001, it can be observed that the process chosen by score (Figure 8) matches that
implemented (ASL) and shows three processes with two favorable indicators. The choice
of model and case will be corroborated when analyzing the input values: high values of
biodegradable O. M., a temperature close to the optimal of ASL and location close to the
population. Perhaps the only inconvenience to choose ASL is a relatively low flow, so RBC
is approaching similar values in scoring and could be contemplated.

The input data for Plant 002 (from Table 9) indicate that the process to be chosen
was a TRF, as suggested by the model (it has three PIs in its favor; Figure 8). The values
of biodegradable O. M. are so low that they support the decision to choose TRF, and the
temperature of the WW approaches its optimal value (22.5 ◦C) and there is a favorable flow
for the process. Therefore, because an ASL was implemented, this case, along with similar
ones, are considered to have an unsuitable process.
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Figure 8. Web graphs of selected case studies.

An opposite case is observed at the Plant 010 where a TRF is implemented, and the
model chooses ASL. It is observed that the biodegradable O. M. that enters has a very
high concentration for a TRF. Although, it is possible to treat these concentrations with the
implemented process, it is necessary to raise the costs of construction and operation, which
leads to analyzing a balance between cost and efficiency obtained. In this way, the choice is
between an expensive TRF with less chance of obtaining efficiencies or an ASL, which is
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also expensive, with a high chance of efficiencies. With this approach, this case study and
similar ones that were found, were considered as unsuitable processes.

In the last example, the model chose AEL, but ASL was implemented. It was con-
sidered an incorrect choice because the plant is close to a population center, which can
definitely eliminate this option, and also the magnitude of the flow exceeds what it (AEL)
can conventionally treat. On the other hand, the tendency of the model to choose AEL is
justified by having a process-friendly temperature and biodegradable O. M.: 27.7 ◦C with
an optimal process temperature of 29.3 ◦C; and 225 mg/L BOD5 in the secondary treatment
influent with optimal BOM of the same value.

For validation, the valuation parameters by UP and globally were calculated (Table 10)
according to the equations shown by Fielding and Bell [61].

Table 10. Successes and errors accounting of the case studies and values of the useful parameters for
the validation of the model.

Parameter RBC TRF AEL ASL Global

T+ 1 6 0 59 66

F+ 0 7 5 1 13

F− 0 1 0 13 14

V− 76 63 72 4 215

F+R 0.000 0.100 0.065 0.200 0.057

T+R 1.000 0.857 – 0.819 0.825

PP+ 1.000 0.462 0.000 0.983 0.835

PP− 1.000 0.984 1.000 0.235 0.939

Kappa 1.000 0.546 0.000 0.293 0.771

+CP 0.013 0.091 0.000 0.935 0.260

Sensitivity 1.000 0.857 – 0.819 0.825
T+: true positives; F+: false positives; F−: false negatives; T−: true negatives; F+R: false positive rate; T+R: true
positives rate; PP+: positive predictive power; PP−: negative predictive power; +CP: positive cases prevalence.

According to its location on the ROC chart (Figure 9), the model meets the established
criterion (exceed 90% of the unit area); the PP+ of the model achieves a good percentage
of positive predictions, 83.5%; the PP− (93.9%) influences the validation of the model
to a lesser extent, since, for each case study, three processes are not observed; and, an
excellent Kappa (0.77 > 0.75) is achieved [68]. UP predictions are also well positioned
(above criterion) for RBC, TRF, and ASL processes (Figure 9). Only AEL predictions
showed very low performance. This may be due to the fact that when choosing this process,
the availability of the land for designers is decisive. Nevertheless, the model takes into
account three other factors (MOB, TMP, WWF) and decides the availability of the land
according to the CLS. This suggests adding a criterion to this variable, discarding the
process when the plant is nearby, or giving it greater precision.

The case studies with unsuitable processes found in the database reflect a problem
that exists in Mexico and probably in other regions, justifying the implementation of a
methodology for choosing the wastewater treatment process. However, about 50% of the
information to build the Bayesian network was obtained from American literature, so it is
possible that the model can be implemented in the U.S.A. if validation is performed with
data from the region. In this way, it can be generalized that the model can be useful for
any region by validating it with endemic data and, if required, adjusting it with data from
the region under study. One objective that is visualized is to achieve the development of a
comprehensive model that can be implemented in any region, or even, achieving greater
dissemination of the model, standardizing decision trends globally.
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Figure 9. ROC graph showing where the model choice validity is located.

Due to the flexibility of the latest model configuration and because any process can
be evaluated based on its inputs (ICs) and outputs (PIs), the model can be adjusted for
other types of treatment and/or variables can be added to the Bayesian network. With
the structure where the IC and PI distributions depend on the evaluation (distribution)
of the UP it is possible to define a set of processes of similar type, and according to the
characteristics of the set add the variables that would be involved in the decision of that
set. In addition, because of that flexibility, any model could be easily improved by adding
(or modifying) the necessary variables. For example, the model of this research can be
improved by adding the nitrogen (or phosphorus) removal variable, for which, due to the
last direction of arcs between IC and UP, it is only necessary to investigate the data of each
process linked to this parameter. An unconventional treatment, such as membranes, can
even be added, or process variants can be separated, requiring data according to the ICs and
PIs that were defined in this study and structuring the process with their own variables.

Once the model is considered suitable for use in Mexico, or in later regions, it is
important to use and broadcast the software, with an interface that takes the input data
(ICs) of the design and deployment, in the proposed web graph, and the results (PIs). The
Uninet software, with which the Bayesian network of this research was modeled, has a
library (UninetEngine) for programming in several languages (C++, Delphi, Matlab, among
others). This library requires the acquisition of a license. The Netica API is also available for
discrete, free-distribution networks, for use in Java or C++, and has functions to emulate
continuous variables, which are possible to use if conditional arrays are a bit complex or
have dependencies on a single variable, as in the case of this investigation.
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4. Conclusions

A statistical model based on Bayesian networks has been generated that underpins
the choice of the optimal process of secondary municipal wastewater treatment, based
on statistical data and mathematical justifications. According to the results of the valida-
tion, it provides an acceptable level of certainty based on technical, economic, social and
environmental performance, so the methods carried out are supported. As this Bayesian
Network-based model showed satisfactory results for aerobic wastewater treatment, it
could be expanded to the selection of other types of processes, such as anaerobics or
membranes, so their inclusion in later versions are suggested.

In the methodology of the model, it was important, in addition to determining the
parameters associated with the variables, to define the appropriate conception of the
variables and their relationship with the UPs to define the adequate marginal PDFs and
range correlations, avoiding inconsistencies in the model. As for the PDFs of each process
and range correlations that could not be obtained through databases, expert judgment was
successfully used in obtaining this information. Some Bayesian network correlations were
successfully estimated by conditional probabilities obtained from the PDFs of each process
associated with the parameter of a variable and the medians of marginal PDFs associated
with the same variable.

Unlike other tools for WWTPs, this model is a support mechanism prior to the design
of the treatment train, which provides results based on data and the experience of experts,
with no need of dimensioning the treatment train. Therefore, in addition to the known
advantages, such as addressing uncertainty, an easy-to-view structure, and the evaluation
of different scenarios with a single model, this model acquires significance because it
provides objective and comparable information on four types of secondary treatment for a
decision-making process of selection.

The criteria for choosing conventional secondary wastewater treatment were related to
model variables, variable type, model type, and output type. The appropriate variable type
for unit processes was the discrete variable; input variables and performance indicators
could be better visualized and processed as continuous variables. The most suitable
type of networks for the variables involved were continuous-discrete, non-parametric
Bayesian networks, structured in different Bayesian networks by unit processes. It was
useful for the choice to visualize the score value of the UP and the probabilities of meeting
design demands.

Because positive predictive power and negative predictive power exceeded the re-
quired value, the Kappa parameter indicated a satisfactory valuation, and the location of
validity on the ROC chart surpassed the criterion line, the model is considered valid to
support the choice of secondary wastewater treatment in Mexico.

The model’s adaptability to obtaining information in an elementary way, i.e., by
parameters or variables seen in isolation, allows the development methodology to be easily
extended to other types of treatments of wastewater, that is, it can be used for any type of
wastewater treatment plant, and also allows the model to be expanded and improved for
application in other regions.

Supplementary Materials: The following supporting information can be downloaded at: http://iitca.
uaemex.mx/cira/vinculacion/decision-support-wastewater-treatment (accessed on 7 April 2022),
softDSSWT.zip with the functions conforming the informatics tool (Medina, E.; Fonseca, C.R.).
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AEL AErobic Lagoons
ASL Activated Sludges
BOD Biochemical Oxygen Demand
BOM Biodegradable Organic Matter
BN Bayesian network
CBA Cost Benefit Analysis
CCO Construction Cost
CLS CLoSeness to households
CONAGUA National Water Comission
CPY process ComPlexitY
DM Decision Maker
DMM Decision Making Model
ENC ENergy Consumption
IC Input Condition
LCA Life Cycle Assessment
NPBN continuous-discrete No Parametric Bayesian Network
MCDM MultiCriteria Decision Making
MDO biodegradable organic Matter Difference with Optimal
MM Mathematical Model
O. M. Organic Matter
OCO Operation COst
OMR biodegradable Organic Matter Removal efficiency
PDF Probability Distribution Function
PI Performance Indicator
RBC Rotating Biological Contactors
ROC Receiver Operating Characteristic
SLD SLuDge production
TSS Total Suspended Solids
SSR total Suspended Solids Removal efficiency
STY process STabilitY
TMP TeMPerature
TDO Total Suspended Solids
TRF TRickling Filter
TSS Total Suspended Solids
UP Unitary Process
WW WasteWater
WWF WasteWater Flow
WWTP WasteWater Treatment Plant
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Appendix A. Structured Experts Judgement

Table A1. Data obtained from experts for the determination of marginal PDFs of the TDO variable
and range correlations of UP and CLS.

IC UP ID

Expert

R
1 2 3 4

Quantile (%)

5 50 95 5 50 95 5 50 95 5 50 95

TSS

CBR 6.1 175 212.5 250 250 325 400 50 250 450 100 225 350 381

FPR 7.1 200 250 300 200 275 350 50 125 200 100 150 200 160

LAE 8.1 800 1150 1500 250 325 400 100 300 500 100 300 500 500

LAS 9.1 700 850 1000 300 400 500 100 275 450 100 300 500 458

BOM

CBR 6.2 100 125 150 300 500 700 100 275 450 100 225 350 286

FPR 7.2 80 100 120 400 575 750 50 150 250 100 225 350 120

LAE 8.2 500 700 900 500 625 750 100 275 450 100 300 500 375

LAS 9.2 300 500 700 400 550 700 150 325 500 100 300 500 344

TDO

CBR 6.3 15 20 25 10 15 20 10 22.5 35 5 22.5 40 E

FPR 7.3 15 20 25 10 12.5 15 10 22.5 35 5 22.5 40 E

LAE 8.3 12 20 28 15 20 25 18 26.5 35 25 32.5 40 E

LAS 9.3 15 21.5 28 15 20 25 5 25 45 10 25 40 E

WWF

CBR 6.4 60,000 90,000 120,000 40 50 60 20 5010 10,000 50 225 400 3812

FPR 7.4 100,000 150,000 200,000 60 70 80 20 10,010 20,000 400 1200 2000 5523

LAE 8.4 40,000 60,000 80,000 40 50 60 20 1010 2000 20 1010 2000 2809

LAS 9.4 100,000 150,000 200,000 40 50 60 20,000 110,000 200,000 2000 51,000 100,000 9267

CLS

CBR 6.5 5 7.5 10 1 1.5 2 40 60 80 10 50 90 E

FPR 7.5 5 12.5 20 1 1.5 2 5 12.5 20 10 30 50 E

LAE 8.5 20 35 50 1 1.5 2 10 17.5 25 1 10.5 20 E

LAS 9.5 70 80 90 1 1.5 2 30 50 70 10 30 50 E

Combining each IC with a UP (IC, UP): IC values that can successfully handle by a PU in the quantiles (5, 50, and
95%). For example, (TSS, TRF): The amount of TSS that TRF can properly treat in those quantiles. R: realization,
the actual value of the calibration question; E: Information sought from the experts; ID: The ID of the question.

Table A2. Expert calibration and information.

Expert 1 2 3 4 DM

Calibration score 0.000002 0.000001 0.061 0.124 0.228

Information score 1.026 2.231 0.822 0.909 0.779

Weigh 0.001 0.002 30.690 69.310
DM: Decision maker.
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