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Abstract: This review focuses on the use of Interpretable Artificial Intelligence (IAI) and eXplainable
Artificial Intelligence (XAI) models for data imputations and numerical or categorical hydroclimatic
predictions from nonlinearly combined multidimensional predictors. The AI models considered
in this paper involve Extreme Gradient Boosting, Light Gradient Boosting, Categorical Boosting,
Extremely Randomized Trees, and Random Forest. These AI models can transform into XAI models
when they are coupled with the explanatory methods such as the Shapley additive explanations and
local interpretable model-agnostic explanations. The review highlights that the IAI models are capable
of unveiling the rationale behind the predictions while XAI models are capable of discovering new
knowledge and justifying AI-based results, which are critical for enhanced accountability of AI-driven
predictions. The review also elaborates the importance of domain knowledge and interventional IAI
modeling, potential advantages and disadvantages of hybrid IAI and non-IAI predictive modeling,
unequivocal importance of balanced data in categorical decisions, and the choice and performance
of IAI versus physics-based modeling. The review concludes with a proposed XAI framework to
enhance the interpretability and explainability of AI models for hydroclimatic applications.

Keywords: explainable artificial intelligence; multidimensional data; nonlinearity; explanatory
methods; hydroclimatic applications

1. Introduction

Recent advancements in sensors, extended measurement networks, increasing use of
remote sensing products, improvements in accuracy and reliability of monitoring devices
with more frequent automated data acquisition capabilities, and enhanced storage and
communication technologies are generating unprecedented volumes of high dimensional
hydroclimatic data more than ever before [1–3]. At the same time, Artificial Intelligence (AI)
algorithms have emerged as versatile tools to unfold data-driven novel information from
the sheer volume of multidimensional data combined in nonlinear and highly interactive
ways, where such analyses were previously unimaginable using conventional time-series
or simple statistical techniques [4].

In this review, we focus on interpretable AI (IAI) and explainable AI (XAI) models for
supervised regression or categorical predictions in hydroclimatic domains. ‘Interpretability’
here refers to the ability of the AI models to unveil the nonlinear correlative effects between
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the predictors and predictands to a degree that humans can understand the rationale be-
hind the predictions [5,6]. ‘Explainability’ here refers to a collection of interpretations from
IAI models with further contextual information stemming from domain knowledge and
related analysis [7], which are used to justify decisions, enhance control, improve models,
and discover new knowledge [8]. The ability to understand the overall predictive behavior
by ranking predictors with respect to their importance in predictions and construction of
testable hypotheses to unveil critical conditions for the predicted conditions to occur proba-
bilistically are examples of explanability measures. Through the explanatory measures, the
users can peek into the internal logic and mechanics of an AI system. Thus, interpretability
is the prerequisite for explainability, and the explainability is essential for the scientific
value of the outcome [7].

The taxonomy of AI and the screening process used to select the papers for our
review is shown in Figure 1. The review specifically focuses on the interpretability and
explainability of tree-based ensemble AI models, based on the bagging and boosting
algorithms, which have been successfully implemented in recent years for data imputations,
inferences, and predictions in diverse hydroclimatic applications. A recent survey indicated
that tree-based model structures have been used as a base learner in ensemble AI models
in 42% of the models in hydrologic applications [9]. Although tree-based ensemble models
were considered as a black-box model by some scholars [10], we argue that these models are
amenable to be coupled with the explanatory methods such as SHaply Additive eXplanation
(SHAP) [11,12] and Local Interpretable Model-agnostic Explanations (LIME) [13] to achieve
enhanced interpretability and explanability of the AI-based predictions in diverse domains,
and hence, they are indeed not black-box models, as demonstrated in Refs. [14–23].

Figure 1. Taxonomy of AI and topical areas selected for this study. This study focuses on subject
matters that are embedded within the purple boxes.
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We focus on the following questions in reviewing recent IAI- and XAI-based analysis
in diverse hydroclimatic problems at different spatiotemporal scales, although not all
questions were answered in each reviewed paper:

• Which predictors and predictands are used in the IAI-based analysis? What is the
size, type (e.g., static or time-variant), and sampling interval of multidimensional
input data? Are the chosen predictors representative of the underlying physics of the
problem tackled? Is the use of surrogate variables in IAI-based analyses acceptable for
the regions with scarce data?

• Are the explanatory methods properly and effectively coupled with the AI models
(leading to XAI models) to assess the importance of the predictors in predictions,
explain the interdependencies and interrelations between the predictors in estimating
the predictands, justify the IAI-based decisions, and explore new knowledge?

• Are class imbalances properly addressed in categorical IAI and XAI modeling applications?
• Under what conditions could in-depth domain knowledge become critical? Would

domain knowledge allow flexibility for the choice of predictive variables in IAI/XAI-
based analyses?

• Should multiple IAI/XAI models be used independently or should the results from
multiple IAI/XAI models be a weighted-average? Can IAI/XAI and non-IAI models
be used in a hybrid form to enhance prediction accuracy? How do prediction perfor-
mances of IAI/XAI and non-IAI models compare in different domains with different
data types and sizes?

• Are there any attempts toward interventional XAI modeling in hydroclimatic applica-
tions to relax the nonstationary assumption in AI-based analyses?

• How do IAI/XAI models perform against physics-based models? Are there applica-
tions, in which IAI/XAI models fail to provide reliable results?

The paper is structured as follows: In Section 2, we provide the definition of IAI and
XAI models, and a brief discussion on the use of explanatory methods to transform AI
models to IAI and XAI models. In Section 3, we describe the tree-based ensemble IAI
models considered in this paper. Section 4 provides a review of recent studies on the use of
IAI and XAI models for data imputations, inferences, and predictions. The review focuses
on IAI and XAI models-based analyses in hydroclimatic applications for enhanced inference
and prediction of climatic features (evapotranspiration, precipitation), subsurface features
(soil moisture, groundwater potential and levels), surface water features (streamflow, water
levels in wetlands, lakes, and reservoirs), water quality features (water quality in surface
waters and aquifers), extreme climate events (flood hazard and drought risks), and climate
change impacts on the hydrological cycle.

2. IAI and XAI Models

There is no concrete mathematical definition, formality, or measured metric for inter-
pretability or explainability [8,24]. It was proposed that interpretability should be split into
two broad categories: the first one is related to transparency, seeking an answer to ‘how
does the model work?’, and the second one is related to post-hoc explanations, seeking an
answer to ’what else can the model tell?’ [25]. Some researchers argued that the notion
of interpretability often depends on the domain of application [26], therefore it cannot be
fitted into a tight definition. While interpretability was equated to explainability by some
researchers [6], interpretability was considered to be a broader term than explainability
by others [24]. In this review, the AI model is deemed to be interpretable if it is capable
of unveiling the rationale behind the predictions that is understandable by a human [6]
and is deemed to be explainable if it is capable of justifying the decision made, enhancing
control, improving the decision, and revealing new knowledge [8] from a collection of
interpretations from an IAI model coupled with contextual information [7].

Although tree-based ensemble models interfaced with the explanatory methods (e.g.,
SHAP) are interpretable and explainable [18], many accurate decision support systems
(e.g., Deep Learning (DL) models) have been constructed as black boxes, in which the
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systems hide their internal logic from the user [27]. This makes it harder to assign physical
meaning and interpretation to the features estimated by the AI model [28]. Conversely, the
explainability of AI-based decisions is linked to trust and user behaviors. Explanations of
why certain decisions are made help to build trust with users. Such trust is formed based
on the extent the users understand the explanations. XAI models help users understand
how forecasts arise and how they can be influenced or adjusted to arrive at workable
predictions [29], thereby bringing fairness and accountability into the AI-based decision-
making process [30]. Conversely, lack of explanation constitutes both a practical and
an ethical issue in regards to accountability and trustworthiness of the results, ’opaque’
decisions, and risks for inadvertently making the wrong decisions [10]. Required levels
of explanations are often dependent on the main objectives of the application. According
to the granularity of the analysis, strategies for XAI decisions typically focus on local
(understanding a single prediction) and global (understanding the entire model behavior)
explanations. Some researchers noted that omitting explainability in AI-based clinical
decision support systems poses a threat to core ethical values in medicine and may have
detrimental consequences for individual and public health [31]. This view was contended
by other researchers who argued that opaque decisions are common in medicine, where
explainability of the results would be less important than accuracy of the result if the
accuracy is verified indirectly or empirically [32]. We expect to see similar conflicting
arguments for the use of XAI models in hydroclimatic predictions in the near future.

The explanatory methods (e.g., SHaply Additive exPlanation (SHAP) [11,12] and
Local Interpretable Model-agnostic Explanations (LIME) [13]) have been implemented
only in a handful of hydroclimatic problems to date [17,18,20,33–35]. However, these
methods have been used in diverse domains to enhance the explainability of AI-based
decisions by unveiling the dependencies between the predictors and predictands, reducing
the dimensionality of the input space, identifying the inflection points above or below
which the predictands respond negatively or positively to the changes in the values of the
predictors, and setting up testable hypotheses to unveil critical conditions for the predicted
conditions to occur probabilistically [19,21,36,37].

3. Tree-Based Ensemble IAI Models Considered in This Review

Tree-based ensemble algorithms combine multiple simple decision tree models trained
by the same learning algorithms and use bagging, boosting, and stacking algorithms to
reduce variance and deviation [38]. In this review, we mainly focus on the implementation
of Extreme Gradient Boosting (XGBoost) [39], Light Gradient Boosting (LGBoost) [40],
Categorical Boosting (CatBoost) [41], Extremely Randomized Trees (ERT) [42], and Random
Forest (RF) [43] models in hydroclimatic applications. RF and ERT are bagging-based
algorithms while XGBoost, LGBoost, and CatBoost are boosting-based algorithms. In the
bagging algorithms, when the decision trees are built, the decision trees run in parallel
independently and do not interact with each other. In building decision trees, RF subsam-
ples the input data with replacement using the bootstrap method, whereas ERT uses the
entire original sample. Although RF chooses the local optimal split, the ERT chooses the
split randomly in making decisions. Once the split is chosen, both algorithms choose the
best one among all the subset of features. Gradient boosted trees are an ensemble of weak
classifiers or regressors (e.g., a decision tree model) where multiple weaker models are
combined to produce a stronger model. In the boosting algorithm, multiple trees are grown
sequentially using the information from the existing trees. A new decision tree is generated
by improving the performance of the tree generated in the previous iteration. Although
XGBoost splits the trees depth-wise or level-wise, LGBoost splits the trees leafwise. These
AI models are amenable to be fused with the explanatory methods, such as SHAP or LIME,
to form IAI and XAI models that are capable of providing enhanced interpretability and
explainability in AI-based decisions. Therefore, in light of the definitions in Section 2, these
AI models are indeed IAI models, which can be upgraded to XAI models if they can justify
the AI-based decisions and reveal new knowledge with the help of explanatory methods.
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4. IAI and XAI Applications in Hydroclimatic Domains

The review focuses on recent predictive IAI and XAI models published in and after
2018, except for a few noteworthy papers published earlier. The review considers IAI-based
supervised predictive analysis based on multidimensional nonlinearly related numerical or
categorical data. In these applications, the input dataset, including predictors and observed
predictands, is split into training and testing datasets typically at the ratio of 70:30 to 90:10.
After the IAI model is trained with the training data, its prediction accuracy is verified
using the test data unseen by the IAI model during model training. If the predicted target
variables computed from the predictors in the test data statistically agree with the observed
target variables in the test data (based on, for example, the coefficient of determination,
root-mean-square error), the IAI model can then be used as a predictive tool. The IAI
models are often optimized using grid search hyperparameter tuning to search for the
global optimal solution over a nonlinear solution space. In the applications discussed in
the subsequent sections, IAI and/or XAI models were used to enhance the interpretability
and explainability of the AI-based decisions.

For the categorical supervised IAI and XAI models, the confusion matrix or area
under receiver operating characteristics curve (AUROC) is commonly used to assess the
prediction accuracy of the models. For a two-class classification problem, the confusion
matrix reports true positives, true negatives, false positives, and false negatives. The
AUROC is constructed based on true positive and false positive rates. Prediction accuracy
of the model, however, is sensible when balanced classification data is used in model
training and testing.

4.1. Data Imputations Using IAI Models

Imputation is a process that replaces the missing data by reasonable values, and
AI algorithms have shown to handle missing data efficiently and accurately [18] while
avoiding assumptions about the statistical distribution of the data. The missing data can
be categorized as: (i) missing completely at random, in which the probability of missing
sample is independent of the observed and unobserved data; (ii) missing at random, in
which the incomplete data differ from the complete data, but the pattern of missingness is
predictable from the remaining dataset; and (iii) nonrandom missingness, where the pattern
of data is nonnegligible and is not predictable from the rest of the data [44]. Although
random or sequential missing data, as described above in (ii), are common in hydrological
models [45] and occur when no data value is stored during observation, large volume and
long stretches of missing data, outliers, or erroneously entered data are serious problems
in data quality and mining, which could adversely impact the AI-based prediction and
decision-making process.

Precipitation (P) is a discontinuous hydroclimatic variable, especially in arid and
semi-arid regions. Conventional interpolation methods used for data imputation often
overestimate the number of rainy days and underestimate the extreme precipitation events,
and hence, do not preserve the probability distribution of P [46,47]. The RF model was
used to impute 64% of the missing daily P data over 15,219 days of the sampling period
across a network of 112 rain gauges covering an area of around 3000 km2 in Spain [48].
Use of the RF model also involved a binary categorical prediction for each day in the test
data whether the day was to be labeled as ‘rain day’ or ‘no-rain day’. Subsequently, the RF
model predicted daily P totals only for the days predicted to be rainy. In our opinion, using
another AI-based classifier to determine whether a specific day was rainy or non-rainy
was unnecessary, as the RF model can readily predict a time series of daily rainfall totals.
Nonetheless, the RF model was found to be more efficient for imputing random missing
data than sequentially missing data, but overestimated daily P as the number of rainy days
were over-predicted.

Multiple data types could have missing values at different lengths and frequencies at
some sites. AI-based ‘sequential transfer learning’ method was developed to impute long
stretches of missing data in multiple climate variables at one of the meteorological stations
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(labeled as SGD) in a semi-dry region in Texas, USA [18]. Twenty percent of the entire
climate dataset, including ∼336 days of consecutive measurements, in addition to 10%
solar radiation (Rs) data were missing. In the imputation method, the XGBoost model was
trained to learn the dynamic relationship between the non-missing air temperature (Ta) data
at the SGD and two other meteorological stations with nearly complete data. The trained
model was then used to predict missing Ta at SGD. Similar steps were taken to impute
the missing atmospheric pressure (Pa) in the SGD dataset. Next, the XGBoost model was
trained to learn the dynamic relationship between the non-missing relative humidity (RH),
Ta and Pa at SGD. Using the trained model, the missing RH were predicted from Ta and Pa
that were predicted in the previous steps. Then, the authors modeled the non-missing Rs
with respect to Ta, Pa, and RH at SGD, and subsequently predicted the missing Rs using
the predicted Ta, RH, and Pa. They modeled the non-missing wind velocity (u2) from Ta,
Pa, RH, Rs at SGD, and then predicted missing Uw using the predicted Ta, Pa, RH, and Rs.
In the end, the imputed data produced monthly reference crop evapotranspiration (ETo)
values that were trend-wise and magnitude-wise in agreement with the predicted ETo at
the neighboring stations with more complete data.

Streamflow (Qs) is a continuous variable for perennial streams, but a discontinuous
variable for ephemeral streams. Flow rates could be affected by natural hydroclimatic pro-
cesses under climate change, in addition to alterations by human activities, such as runoff
in urbanized regions, diversions for irrigation, dam construction, hydropower generation,
and changes in watershed characteristics, which could complicate data imputations. The
MissForest algorithm [49], extended from the RF model was used to impute daily Qs time
series at 122 gauges with the missing data <50% of the time from 1970 to 2016 in data-scarce
regions over multiple climate zones in Chile [50]. The RF model was trained using Qs data
from gauges with the least missing data, and then the trained model was used to infill
missing Qs data at other gauges with more missing data. We call their approach ‘transfer
learning’. The authors infilled the missing Qs data used for model training by setting them
to the average flow rates at that particular gauge. This approach, however, could introduce
errors, if the missing values—which were set to the average value—in the training data
occurred during extreme events. Additional errors could be introduced, if the hydrologic
characteristics of the streams used for model training and that of targeted streams with miss-
ing Qs data are not commensurable. For example, the RF model trained by the meandering
stream Qs data would not accurately represent the discharge-stage rating curve for faster
flowing streams, and hence, may not provide reliable infilled values for missing Qs data.
Nevertheless, using the imputed data, the authors reported that the predictive performance
of the MissForest algorithm for infilling missing values did not change significantly for
single missing data points or missing contiguous data points up to 60 days. They also
reported that their transfer learning approach yielded satisfactory-good performance in
imputing data for streams with natural flows, but the prediction performance decreased for
the streams with altered flow conditions by man-made structures, and failed at the extreme
case of hydropeaking. An important takeaway is that the IAI models could still achieve
accurate data imputation for missing Qs data in altered hydrologic conditions, which has
been frequently encountered in practice.

4.2. Hydroclimatic Predictions Using IAI and XAI Models

This section discusses IAI- and XAI-based predictions in diverse nonlinear hydro-
climatic processes from multidimensional predictors. A list of predictors and notations
used for each hydroclimatic application is summarized in a table in the same section. Only
repetitively used variables and notations, in addition to acronyms for the IAI and XAI
models are provided in the Abbreviation section.

4.2.1. Evapotranspiration Predictions

Evapotranspiration (ET) is a critical indicator of global climate change [51], and
its reliable prediction is imperative for irrigation, agriculture, and surface water and
groundwater management and planning [52]. ET is the sum of evaporation from soil and
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transpiration from vegetation. It is often reported as the reference crop evapotranspiration
(ETo), actual evapotranspiration (ETa), potential evapotranspiration from wet surfaces
(ETp), or surfaces covered by large volume of water, such as wetlands or lakes (Esw). ETo is
commonly predicted from a time series of meteorological predictors, including Rs, RH, Ta,
Uw, and Pa. ET from open water surfaces also include the surface water temperature (Tsw)
as a predictor. Terrestrial ETa requires information on vegetation cover.

The FAO56-Penman Monteith Equation (PME) [53] has been commonly used to predict
ETo from Rs, Ta, RH, Uw, and Pa; however, complete meteorologic data are not available
at some locations across the globe. Therefore, AI-based ETo predictions from incomplete
meteorological data have been examined in the literature. Performance of several tree-
based, kernel-based, and curve-based AI models were compared in predicting daily ETo
from daily minimum and maximum Ta (Ta,min, Ta,max), and P at 14 stations from 2001 to
2015 in different climate zones in China [54]. Use of P as a predictor for ETo, however, is
uncommon and inconsistent with the PME. The authors assumed that P would represent
RH especially in (sub)tropical-humid regions, which remains questionable. Based on
this assumption and using 70% of the data to train the models, the authors concluded
that Support Vector Machine (SVM) predicted daily ETo with the highest accuracy while
outperforming the XGBoost model. In a different study, prediction accuracy of the CatBoost,
RF, and Generalized Regression Neural Network models were compared in estimating
ETo in arid and semi-arid regions in China [55]. Eight different combinations of Ta,min,
Ta,max, Uw, RH, and Rs that were monitored from 1996 to 2015 at 15 stations were used as
predictors. The 1996–2009 records were used for training and the 2010–2015 for testing the
AI models. All the AI models performed well with incomplete data when only RH was not
included as a predictor. Therefore, the authors recommended these AI models to predict
ETo at the sites with missing meteorological data. Conversely, CatBoost exhibited the best
performance for all the combinations of data, and hence, was recommended for regions
with similar climates. In a similar study, the performance of the optimized CatBoost, RF, and
SVM models were compared in predicting daily ETo at 12 weather stations in a subtropical
region in China using different combinations of daily local meteorologic predictors of Rs,
RH, Ta,min, Ta,max, and Uw under presumably water-scarce conditions [56]. The data from
2001–2010 and 2011–2015 were used to train and test the AI models, respectively. The
authors concluded that all three AI models achieved satisfactory accuracy for ETo prediction
using either (Rs, Ta,min, Ta,max) or (Uw, RH, Ta,min,Ta,max), suggesting that either reduced
predictors set can be used in water-scarce subtropical regions to predict ETo. They also
noted that when Rs, RH, Ta,min,Ta,max, and Uw were available, CatBoost yielded the best
prediction accuracy. Conversely, SVM yielded the best prediction accuracy when some of
the climatic data types were missing. In brief, [55,56] indicated that SVM (a non-IAI model)
is a better predictor tool when some meteorologic data are missing, whereas CatBoost
(an IAI model) is a better predictor tool when complete meteorologic data is available for
AI-based ETo predictions.

To further evaluate the relative performance of the IAI and non-IAI models in predict-
ing ETo from a complete set of multi-dimensional meteorological data, predictive accuracy
of three optimized IAI models (XGBoost, RF, Linear Regression (LR)) and three optimized
non-IAI models (DL, SVM, Long short-term memory (LSTM)) were compared in estimating
daily ETo computed by FAO56-PME from structured tabular data, including Rs, RH, Ta,
Uw, and Pa over 4–5 years from multiple meteorological stations in a semi-arid region in
Texas, USA [18]. Using 90% of the data for model training, prediction accuracy of the AI
models was in the order of DL∼XGBoost>RF>LR∼SVM>LSTM. The authors concluded
that the top-performing IAI model (XGBoost) exhibited comparable performance to the
top performing non-IAI model (DL) in predicting daily ETo. They developed a XAI model
by coupling XGBoost with the SHAP method. The global SHAP analysis unveiled that
the relative importance of the meteorological variables in ETo prediction was in the order
of Rs > Ta > RH > Uw > Pa for the study area. Local SHAP and LIME analyses identified
the inflection point of each predictor above or below which ETo would increase. The
inflection points were subsequently used to set up testable hypotheses using conditional
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probabilities to justify the XAI predictions and seek new knowledge. Considering the
median observed ETo value as the threshold, the authors showed that Rs ≤ 17.16 kW/m2,
Ta ≤ 20.62 ◦C, and RH > 72.17% at one of the sites, then ETo would almost surely be below
the median ETo. To our knowledge, the XGBoost-SHAP-LIME model in this study was the
first XAI model accompanied with testable hypotheses used for enhanced interpretability
and explainability of daily ETo predictions. The authors concluded that the XGBoost-based
XAI framework displayed comparable performance to DL in predicting ETo while holding
physical interpretability of the predictors–predictand dynamics and unveiling the order
of importance of the predictors in ETo predictions. Unlike in [18], the feasibility of ETo
predictions from a single meteorological variable was investigated using the optimized
XGBoost, RF, and Deep Neural Network (DNN) models by comparing the results against
daily ETo estimates from 32 years of local meteorological data in California, USA, including
Rs, RHmin, RHmax, Ta,min, Ta,max, Tavg and Uw in [34]. Through the global Shapley and
Gini-based feature importance analyses implemented with the RF and XGBoost models
(led to XAI models), they concluded that Rs was the most influential predictor at three
sites with different climatic conditions, in agreement with the conclusions in [18]. Using
daily Rs as the sole predictor, daily FAO56-PME-computed ETo as the predictand, and
assigning 80% of the data to train the AI models, they concluded that DNN exhibited better
prediction accuracy than XGBoost and RF. Their approach is different in the sense that it
coupled the enhanced interpretability of the tree-based modeling and the high prediction
capability of a noninterpretable DNN modeling for ETo predictions.

A critical challenge with the earlier AI models was that the nonlinear relationship be-
tween climatic variables and the ET makes it difficult to account for inherent
uncertainties [57]. This challenge was addressed in [17] by formulating a novel prob-
abilistic IAI model, built on the hybrid XGBoost-NGBoost framework, to predict daily ETo,
ETa, and Esw using 3–5 years of daily meteorological data, including Ta, Pa, Rs, RH, Uw,
month, Tsw (for Esw prediction), and ETo (for ETa prediction) in south-central Texas, USA.
Different from the earlier AI models, the hybrid XGBoost-NGBoost was able to produce
not only point predictions, but also the probability distribution over the entire outcome
space to quantify uncertainties associated with ET predictions. Using 90% of the data for
model training, they demonstrated that probabilistic approach exhibited great potential to
overcome data uncertainties, in which 100% of the ETo, 89.9% of the Esw, and 93% of the
ETa test data at three watersheds were within the models’ 95% prediction intervals. Using
the XGBoost-SHAP (a XAI model) analysis, the authors identified the top three influential
features to be Ra, Ta, and RH for ETo; Tsw, RH, and month for Esw; and Rs, month, and RH
for ETa predictions at the semi-arid site.

4.2.2. Precipitation Predictions

The spatiotemporal variability and uncertainties in precipitation (P) measurements [58]
make it a difficult hydroclimatic variable to work with, although it is a critical predic-
tor for diverse hydroclimatic processes, such as surface runoff, flood, droughts, and
aquifer recharge.

Stable isotopes of hydrogen and oxygen (δ2H and δ18O) have been used as natural
tracers to improve our understanding of hydrological and meteorological processes, in-
cluding precipitation formation mechanisms [59]. An XGBoost model was recently used
to explore interannual and longterm variability in monthly δ2H and δ18O time series of P
using location and climate data [60]. The location data included the latitude (Lat), longitude
(Lon), and altitude (AL) of the data site. The climate data included local climate data (e.g., P,
Ta, Rs, Us, vapor pressure (Vp)) and climate indices associated with large-scale atmospheric
circulation (e.g., North Atlantic Oscillation index, the Scandinavian pattern) from a large
number of gridded and time-series European data sources. In addition to the location and
climate data, the month and season of the year and Köppen climate regions were used as
predictors in the IAI model. The authors used 32,191 monthly observations of at least 1
stable isotope value from 270 stations for the period from 1960 to 2018, in which ∼20%
of the data was used for model testing. They developed three independent IAI models
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using XGBoost, each for δ2H, δ18O, and deuterium-excess (d-excess). They implemented
three modeling steps: First, they ran these IAI models with the complete set of predictors.
Next, they ran the models with the most important predictors only. Finally, each IAI model
with the reduced predictors list also used the predicted predictands from the other two
IAI models as the additional predictors. The overall IAI model was named Piso-AI, which
is suitable to produce point and gridded monthly δ2H and δ18O of P on demand, as the
predictors are regularly updated. The model is useful to provide isotope input variables
for ecological and hydrological application and paleoclimate proxy calibration. Prediction
accuracy of the Piso-AI was reported to be better than the other predictive tools when
the interannual variations were important. In our opinion, when/if the Piso-AI model is
coupled with the explanatory methods such as SHAP, it could provide enhanced insights
into predictors-predictands dynamics and overall results.

In hydroclimatic applications, gridded P data at coarser spatial scales can be used
for local P estimates after downscaling, if they are shown to be representative of local
climatic conditions. A RF model was used to assess the similarity of gridded monthly P
and Ta data from external sources and locally observed data [61]. The suitability of seven
external gridded P and five gridded Ta datasets with the spatial resolution of 0.25–0.50◦

was evaluated and ranked with respect to monthly observed local time-series data at
57 stations in Egypt for the period 1979–2014. Four grid points surrounding a station were
interpolated to the station location using a inverse distance weighting method to generate
time series of observed and gridded external data pairs at each station. The similarity index
was defined as the number of times that the observed and gridded data at the particular
station took the same path and placed in the same terminal node of the same tree in the
RF model. Different from other IAI model applications, the entire data were used to train
the IAI model. Using the RF model, the authors identified the most representative external
climate datasets that agree with monthly local P and Ta at each station as well as their
spatial variations. Because P influences many hydroclimatic processes and decisions, such
IAI-based similarity assessments between remotely-sensed data with local measurements
are indispensable in the development of local or regional water management decisions,
especially when locally-measured P datasets are scarce or precarious.

The effect of P zoning on the accuracy of IAI-based downscaling of gridded P data
from remote sensing precipitation products with a spatial resolution of 0.25◦ to ground-
based P data with a spatial resolution of 1-km was investigated in [62]. Such P zoning
was implemented to identify the predominant regional patterns of P variability. The study
was conducted across the Lancang–Mekong River basin, which has a total area of about
795,000 km2 covering parts of Southwest China, Myanmar, Laos, Cambodia, Thailand, and
Vietnam and spans over multiple climate zones. The monthly satellite-based P data and
ground-based P data from 29 meteorological stations and 261 rain gauge stations from 2000
to 2014 were used in the IAI analysis. Twelve meteorological stations and 229 rain gauges in
2001 (wet year), 200 rain gauges in 2005 (normal year), and 24 rain gauges in 2009 (dry year)
were used for model validation. The authors used the iterative rotated empirical orthogonal
function analysis of ground- and satellite-based P observations to delineate 6–7 P zones.
They considered two cases: the first one did not involve discrete P zones and RF was used
for the entire study area; in the second case, the study area was divided into different P
zones and RF was applied independently to each zone. The authors implemented the RF
model for downscaling, in which the latitude (Lat), longitude (Lon), altitude/elevation
(AL), slope (SL), and normalized difference vegetation impacts (NDVI) were used as
predictors and satellite-based P was used as the predictand. RF was trained and validated
over the 0.25°- resolution data (coarser resolution). The validated RF was then used with a
1 km resolution data (Lat, Lon, AL, SL) to predict P at a 1 km resolution (finer resolution).
The author concluded that zoning-based downscaling outperformed non-zoning-based
downscaling in terms of the prediction accuracy. A permutation test implemented to
assess the importance measure of the predictors revealed different importance rankings
of the predictors responsible for P distributions at different spatial scales (e.g., at each P
zone scale vs. at the entire study area scale). Thus, the spatial scale dependency of the
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predictors–predictand relation in this case could raise concern about the suitability of the
RF model to predict P at finer resolutions, after being trained with data at coarser spatial
resolutions without implementing proper scale-dependent error corrections, as discussed
in [35].

4.2.3. Soil Moisture Predictions

Soil moisture (SM) is a spatially heterogeneous variable that affects surface runoff,
base flow, aquifer recharge, and vegetation cover [63], and hence, it is a critical measure in
hydrologic modeling and water and irrigation management decisions. Although remote
sensing data have been commonly used to derive local-scale SM data, a mismatch between
them is a challenge to overcome. Predictors used for IAI-based SM predictions in recent
studies are summarized in Table 1.

Table 1. Factors and predictors used in IAI-based soil moisture predictions.

Factors Predictors

Meteorologic Precipitation (P), Temperature (Ta), Solar radiation (Rs), Wind speed (Uw),
Relative humidity (RH), Sun hours (SH)

Hydro-climatic Evapotranspiration (ETo)

Topographic Digital elevation model/Elevation (DEM), Slope (SL), Northness (Nt)

Land Surface Land surface temperature (LST), Surface albedo (ALB)

Soil Topographic wetness index (TWI), Column-average soil texture (ST)

Vegetation/Biophysical Normalized difference vegetation index (NDVI), Surface albedo (ALB),
Leaf area index (LAI), Crop type (CT), Location with respect to the canopy (LCON)

Similar to P data, gridded data at coarser-spatial scales are commonly used to predict
local-scale SM. The RF model was used to downscale SM data (at tens of km-scale) from
passive microwave surface SM products, including the soil moisture active passive (SMAP)
and soil moisture and ocean salinity satellite (SMOS) products to obtain more accurate SM
data over an area of 2452 km2 in China at finer spatial resolution (at 1 km-scale) [35]. The
authors attempted to predict local SM data—after being downscaled from SMAP/SMOS
using RF—from a set of predictor variables at finer resolution, involving vegetation (NDVI,
ALB, LAI), land surface (LST), hydro-climatic (ETo), and topographic (DEM, and SL)
features. Their approach involved three main steps: (i) resample predictors to coarser
resolution of the SMAP and SMOS data and establish a regression relation between the
upscaled predictor variables and SMAP/SMOS SM data at coarser resolution; (ii) resample
the residuals at the coarse resolution and RF-predicted SM data to finer resolution (1-km
scale); and (iii) predict SM at finer resolution from predicted variables at finer resolution
using the RF regression developed in step (i) and add the residuals computed in (ii) to the
predicted SM data at finer resolution to determine local-scale SM. The authors concluded
that RF-downscaled SMAP data performed better than SMOS data. RF-SHAP (a XAI
model) analysis unveiled that ETo, DEM, and ALB were the most influential features for
SMAP-RF while ETo, NDVI, and LAI were the most critical features for SMOS-RF. This
study introduced a new practical approach for XAI-based local scale SM predictions. It
would be beneficial to look into if prediction accuracy of the proposed downscaling method
could further improve, if different IAI models other than RF are used.

Remote sensing techniques, however, capture only near-surface SM features and
storage [64], which could differ from SM at deeper depths in trends and magnitudes.
Therefore, in situ SM measurements were combined with remotely sensed terrain attributes
to predict soil-water storage at uninstrumented regions in a basin in California, USA [65].
The authors used the RF model to predict daily inter- and intra-annual SM storage at
10-, 30-, 60-, and 90-cm depths for 6 years, using soil (ST), topographic (TWI, Nt, DEM),
and vegetation (LCON) features as the predictors. Based on this IAI-modeling set-up,
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the authors concluded that different predictors were more influential in different periods
such as wet-up, snow cover, recession, and dry periods. For example, although ST was
consistently a critical feature in all periods, Nt peaked during the wet-up period while
DEM and TWI peaked during the recession and dry periods. However, the chosen five
predictors were static variables without temporal components, which were used to predict
temporal variations in SM at different depths. Inclusion of other time-variant predictors
such as P, snow-pack depth, ET in the IAI model could have captured temporal variations
in SM predictions more accurately.

Moreover, root zone soil moisture (RZSM) is a critical variable for agricultural pro-
ductivity, crop water stress, and drought monitoring. Accuracy of the optimized RF and
physics-based (HYDRUS 1D [66] with data assimilation) models was evaluated for inter-
polation (for data imputation) and extrapolation (for predictions using testing data) of
daily RZSM from a list of predictors, including meteorological (P, Tmin, Tmax, Uw, Rs, RH,
ET) and vegetation (LAI, CT) features, SM at 5 cm-depth at 15 locations over∼32 month,
lagged values of the SM and meteorological variables, in addition to day of the year [67].
The data length was relatively short, yet 50% of the data was allocated to train the RF
model. The authors assessed the importance of the variables using the permutation method,
which revealed that surface soil moisture, soil properties, and land cover types have larger
impacts on RZSM than meteorological variables. Different from earlier IAI-based analyses,
the authors compared the performance of the IAI models over the entire period as well as
for the extreme dry and wet conditions. They concluded that RF interpolations for RZSM
have higher accuracy than RF extrapolations. Moreover, RF interpolations exhibited better
prediction accuracy than HYDRUS 1D simulations, but RF extrapolations were comparable
to HYDRUS 1D simulations. However, RF overestimated extreme dry conditions, but un-
derestimated extreme wet conditions. This could be due to the relatively short time period
used in the analysis, which possibly did not provide enough data to train the model for
the extreme conditions properly. Nevertheless, the study demonstrated that the RF model
emerged as a computationally efficient prediction tool as an alternative to the Hydrus 1D
model to predict RZSM.

4.2.4. Groundwater Potential Predictions

Assessment of groundwater potential (GWP) is critical for conservation, sustainable
water management, and drought mitigation strategies [68,69]. GWP has been predicted
in data-scarce regions using AI models trained by groundwater level, spring inventory,
meteorologic, topographic, geologic, soil and surface water data at nearby sites. Predictors
used for IAI-based GWP predictions in aquifer data-scarce regions in recent studies are
summarized in Table 2.

Information from a limited number of groundwater well locations has been used in
recent studies to predict regional-scale GWP in data-scarce regions. The RF and GBoost
models were used to predict GWP categorically over a 3339 km2 region in India using
meteorologic (Ta and P), topographic (AL, SA, SD, PlC, PrC), soil (TWI, NDVI, ST,
LCLU), distance (DisR, DisRd), and geologic (LG) features as the predictors [70]. The IAI
models were trained and tested using target data from an equal number of groundwater
wells and non-groundwater locations. By allocating 80% of the data for model training, the
IAI models produced sensible predictions, where GBoost outperformed RF, and PrC, DisR,
NDVI, and TWI emerged as the most critical features based on the Gini index analysis.
In a similar study, the RF, GBoost, and XGBoost model were implemented using geologic,
hydrologic, topographic, and land cover features to predict categorically GWP at sites
with no wells in an attempt to generate regional GWP maps over an area of 747 km2 in
South Korea [71]. Information from an equal number of groundwater well locations and
non-groundwater locations were used to train and test the IAI models, in which 70% of
the data was used for training. The authors implemented the elastic net method a priori
to eliminate insignificant features to GWP predictions. As a result, they only considered
topographic (AL, SD, SA), surface water (DD), soil (TWI), distance (DistR, DisL, DisF),
geologic (LG), and soil (LCLU, TWI) features as the predictors in the IAI models. Thus,
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different from [70], the refined predictor list did not include meteorologic variables and
ST. The reduced number of predictors used in all three IAI models produced reliable GWP
maps for the study area, where XGBoost performed better than GBoost (the second best)
and RF. Better performance of XGBoost over GBoost was attributed to (i) implementation of
the second-order derivatives in XGBoost—as opposed to first-order derivatives in GBoost—
to minimize the loss function and obtain more accurate tree and (ii) regularization features
implemented in XGBoost to avoid overfitting.

Table 2. Factors and predictors used in IAI-based groundwater potential predictions.

Factors Predictors

Meteorologic Temperature (Ta), Precipitation (P)

Topographic

Altitude (AL), Slope aspect (SA), Slope degree (SD), Slope length (SL)
Convergence index (CI), Plan curvature (PlC), Profile curvature (PrC),
Relative slope positioning (RSP), Vertical distance to channel (VDC),
Terrain ruggedness index (TRI), Melton ruggedness number (MRN),
Multi-resolution ridge top flatness (MRRTF),
Multi-resolution valley bottom flatness (MRVBF)

Geologic Lithology/geology (LG), Fault density (FD), Lineaments density (LD)

Surface water Drainage/river density (DD)

Soil moisture, Surface
Soil texture (ST), Stream power index (SPI), Topographic wetness index
(TWI), Normalized difference vegetation index (NDVI),
Land cover/use (LCLU)

Distance from man-made
or geologic structures

Distance from river/drainage (DisR), Distance from lineament (DisL),
Distance from road (DisRd), Distance from fault (DisF)

In the absence of detailed aquifer and groundwater level data, spring data have been
used as a surrogate predictand to estimate GWP. The optimized parallel RF (PRF) and
XGBoost were used to determine GWP categorically in data-scarce regions in Iran on the
basis of spring data using only DEM-derived spring associated factors (DEM-SDF) [72].
These factors included topographic (AL, SA, SD, SL, CI, PlC, PrC, RSP, VDC), surface
water (DD), soil/surface (SPI, TWI), and distance (DistR) features, which were used
as predictors. The authors used 944 springs locations and randomly generated 944 non-
spring locations over an area of 1676 km2 as the target data. Based on the 70:30 split
ratio for the training and testing datasets, the authors reported that PRF and XGBoost
predictions showed∼80% similarity and predicted high GWP regions closely. Different
from the conclusion in [70], Gini impurity revealed that CI, TWI, RD, and AL are the most
indispensable features in GWP predictions based on spring data and DEM-SDF.

Similarly, an AI-driven regional GWP map was developed based on the spring
data [73]. The authors used the optimized RF, LR, Decision Trees (DT), Artificial Neu-
ral Networks (ANN), and their combinations (i.e., additional 11 AI models) to predict GWP
categorically over a karstic aquifer in a mountainous region in Morocco using the spring
inventory as the target variable, and meteorologic (P), topographic (AL, SA, SD, SL, CI,
PlC, PrC, TWI, TRI, MRN, MRRTF, MRVBF), soil/surface (SPI), geologic (LG, LD, FD),
distance (DisF, DisL, DisR), surface water (DD), surface and soil moisture-related (NDVI,
LCLU) features as the predictors. The spring inventory data included 347 spring locations
and 1124 randomly chosen non-spring locations. They allocated 75% of the data to train
the models. Prior to AI analysis, they performed multicollinearity analysis to determine
linear dependency among the predictors to avoid redundancy, and computed informa-
tion gain (IG) to identify the predictors positively associated with the enhanced GWP to
reduce the number of predictors. However, multicollinearity analysis is not required for
IAI modeling, as the models can handle redundant predictors. Besides, RF-SHAP (a XAI
model) can unveil more effectively and accurately the order of importance of the predictors
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and the inflection point of each predictor above/below which the predictor would result
in enhanced or reduced GWP. Nonetheless, based on multicollinearity and IG analyses,
the authors retained all the predictors in the AI analysis. Based on RF-driven ranking, LG
(lithologic), FD, DF (tectonic), P (meteorologic) were identified to be the most important
predictors. Different from the analysis in [72], the authors tested the predictive accuracy of
the weighted-aggregation of RF, LR, DT, and ANN to estimate GWP, where the weights
were set to the area under the success rate curve from each AI model. They concluded that
weighted-average RF-DT and RF-LR-DT (IAI models) yielded the best prediction accuracy
for GWP prediction for the semi-arid karstic mountainous region.

The results from the studies discussed above are based on different sets of mostly static
region-specific predictors. Therefore, it is difficult to make generalizations over relative
predictive accuracy of the IAI models used. The IAI-based predictions discussed above
require a priori domain knowledge of the variables and system, as the AI predictions
based on DEM-SDF would be applicable only to basins where GWP is expected to be
controlled largely by topographic features. Conversely, the topographic watersheds of
karst catchments have little significance for their aquifers [74], therefore such IAI models
may not be applicable to estimate GWP in karstic aquifers. The predictors in the studies
discussed above did not include geospatial information about aquifer characteristics such
as aquifer type, aquifer thickness, depth to water table, and aquifer parameters (e.g., trans-
missivity or storativity) in predicting regional GWP due to scarcity of data, although these
features strongly determine GWP and productivity of aquifers. Furthermore, although
well-balanced datasets were used in [70–72], an imbalanced dataset (1:3 ratio) was used
in [73]. Imbalanced datasets in model training, however, could cause bias towards the
minority class, and hence, impair the prediction accuracy of the model.

4.2.5. Groundwater Level Predictions

Groundwater levels (GWL) could be affected by climate factors, land use, pumping,
and hydraulic interaction with surface and other subsurface waters. Short-term GWL
predictions could be imperative for landslide prone areas [75], in agricultural regions for
scheduling irrigation [76] and in regions that experience sudden increase in groundwa-
ter withdrawals or extreme climate events (e.g., heatwaves). Long-term GWL predictions
under future climate scenarios are critical for development of sustainable groundwater man-
agement plans [18] and sustainability of agricultural production systems [77]. Predictors
used for IAI-based GWL predictions in recent studies are summarized in Table 3.

Table 3. Factors and predictors used in IAI-based groundwater level predictions.

Factors Predictors

Meteorologic Precipitation (P), Temperature (Ta), Solar radiation (Rs)
Hydrologic Lagged GWL, Terrestrial water storage (TWS)

Using meteorological data, the optimized XGBoost, RF, and SVM models, and their
hybrid versions were implemented with or without wavelet transforms (WT) for short-term
monthly GWL (1–3 months ahead) predictions in Kumamoto City, one of the regions with
the highest groundwater use in Japan [78]. The authors used monthly time-lagged GWL,
monthly-average Ta, average monthly total P, and cumulative monthly P as the predictors.
WT was used to extract time-variant information such as trends and periodicity in the AI
modeling. However, such time-variant domain knowledge can alternatively be incorpo-
rated using day, month, or year as the engineered features in the AI modeling. The authors
used 442 records, and implemented a 85:15 ratio for the training and testing datasets. They
concluded that SVM outperformed XGBoost and RF, when the WT is not included. When
the AI models were coupled with the WT, however, SVM and XGBoost exhibited compa-
rable predictive accuracy while outperforming RF. WT-AI coupling apparently enhanced
the prediction by 3–5%, which was more beneficial for 2–3 months ahead predictions. The
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authors adopted minimal-redundancy-maximal-relevance to rank the order of importance
of the predictors.

The effectiveness of an optimized hybrid K-Nearest Neighbors (KNN)-RF model (a
coupled non-IAI and IAI models) for short-term prediction (2 weeks to 3 months ahead) of
daily GWL in a near-surface aquifer in a data-scarce region in Rwanda [79] was analyzed.
The authors used GWL measurements from a single borehole after removing anomalies via
a time-series filtering method prior to their use in the AI analysis. GWL was related to T, P,
Rs, and their 1–4 days lagged values. The AI analyses were performed using ∼2 years of
daily data with 759 records. The authors implemented a ‘walk-forward’ approach to predict
GWL from the input data while implementing 88:12 ratio for the initial split for the training
and testing datasets. KNN-RF consistently exhibited better prediction accuracy at 15, 30, 60,
and 90 days predictions than RF, KNN, SVM, and ANN. Using the KNN-RF model with
different combinations of the predictors, the authors concluded that Rs, T, and GWL time-
lags in addition to the first lag P were the most influential predictors on short-term GWL
forecasts. This could have been more effectively analyzed using RF-SHAP (a XAI model),
instead of multiple KNN-RF model runs with different combinations of the predictors.
These IAI, non-IAI, and hybrid IAI and non-IAI modeling studies sought to predict short-
term GWL based on local meteorologic and hydrologic data. Inclusion of groundwater
withdrawals, aquifer parameters, and aquifer recharge in AI-based GWL forecast analysis
could increase their wider acceptance by the water resources and hydrology community.

Different from the applications above, the XGBoost, multivariate LR, RF, multilayer
perceptron neural network (MLP), and SVR were used for image (map)-based prediction
of monthly GWL in the southern regions of the African continent at the pixel-level from
monthly terrestrial water storage (TWS) maps, the coordinates of the pixels on TWS maps,
and monthly time-stamp [80]. After imputing 10% of the missing monthly images, the
authors generated 161 sequences of 12 consecutive images for the period of 2002 and 2019,
in which the first 149 images were used for model training and the rest for model testing.
The sample size to train the AI models was low in this application. Nonetheless, XGBoost
with the gain matrix determined that TWS pixel information from 12-, 11-, and 1 preceding
months were the most influential predictors to estimate GWL in the current month. Among
the AI models used, SVR reportedly yielded the best prediction accuracy in predicting
GWL. In this application, XGBoost (an IAI model) provided the information on the feature
importance and selection, and SVR (a non-IAI model) yielded overall better prediction
accuracy, similar to the implementation of hybrid IAI and non-IAI models in [34,81]. The
use of additional information on spatiotemporal variations in groundwater withdrawals,
however, could have improved the accuracy of GWL predictions.

4.2.6. Streamflow Predictions

Streamflow (Qs) is impacted by climate change and human activities, such as dam
construction, changing environment, and increased surface water diversions to meet the
consumptive water demands in areas with increasing populations [82]. Predictors used for
IAI-based Qs predictions in recent studies are summarized in Table 4.

Table 4. Factors and predictors used in IAI-based streamflow predictions.

Factors Predictors

Meteorologic Precipitation (P), Temperature (Ta)
Hydrologic Lagged Qs
Hydro-climatic and soil-associated Pan evaporation (Ep), Evapotranspiration (ET)
Surface Vegetation Effective vegetation index (EVI)

Changing climate and intensified human activities could make the relation between
Qs and predictors non-stationary, which was referred to as the concept drift in [83]. Because
new climate change and human impacts on Qs are not captured in historical data used
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for model training, the AI model would not be informed about such gradual or abrupt
unprecedented changes that would violate the stationarity assumption, unless the AI model
is ‘intervened’ and informed of them. The performance of XGBoost with concept drift
detection (CDD) was compared against XGBoost without CDD, RF, SVM, and DTR in
predicting one-month ahead Qs at the Qingliu river catchment in China using meteorologic
(P, Ta), hydroclimatic (Ep), soil (EVI), and hydrologic (past Qs) features [83]. In this study,
CDD operates based on presumably normally-distributed historical error rate. In XGBoost-
CDD modeling, when unprecedented Qs rates were detected, XGBoost was re-trained with
the existing data; otherwise, it was incrementally trained. Using monthly data from 1989 to
2010 and assigning 70% of the initial data for model training, XGBoost-CDD outperformed
the prediction accuracy of XGBoost, RF, SVM, and DT, as XGBoost-CDD detected the
abrupt change in Qs in 2003 due to the rapid development of society and economy, quick
population growth, and dramatic changes in land cover and use in the region, which
required for XGBoost-CDD to be re-trained. In our opinion, the IAI-framework in [83] sets
the stage for interventional IAI in hydrologic applications, as hydrological settings would
likely expose to unprecedented consequences of human activity and changing climate on
Qs more often in the future.

The optimized XGBoost-Extreme Learning Machine (ELM) model was used to predict
one-month ahead monthly Qs in the Göksu-Himmeti catchment area in Turkey from
hydrologic (multi-lagged Qs), meteorologic (P, Ta), and hydroclimatic (ET) data from 1973
to 2010, in which 75% of the data was used for model training. In this study, XGBoost was
used as the feature selection tool and ELM as the predictor tool. The authors used ‘gain
score’ in splitting a leaf into two leaves in XGBoost to determine the most influential lags
among 30 lags for each predictor. After testing XGBoost with different combinations of
multi-lagged predictors, Qs, P, and Ta were reported to be the most critical features for
one-month ahead Qs prediction for the study area. The feature importance ranking was
used to select the features for ELM. The authors concluded that XGBoost-ELM (a hybrid
IAI and non-IAI model) provided higher predictive accuracy than XGBoost alone. Similar
to [34], the advantages of the IAI and non-IAI models were combined in [81] to achieve
higher predictive precision of Qs.

In addition to IAI-based predictions of Qs from meteorologic, lagged hydrologic,
hydro-climatic, soil-associated, and land surface features, IAI-based models were used to
predict Qs from its spectral and frequency components. For example, singular spectrum
analysis (SSA) and LGBoost were integrated to predict real-time urban runoff in Yuelai
New City in China [84]. The authors used 39 rainfall events in this study, in which 33 of
them were used for model training and 6 of them for testing. After extracting the trend,
fluctuation, and noise components from the runoff time series using SSA, they reconstructed
the series using LGBoost. The motivation was that the data pre-processed with the SSA,
or other decomposition methods, could significantly improve the AI performance. The
authors noted that SSA-LGBoost predicted runoff with higher accuracy and peak error
<18%, outperforming LGBoost and LSTM models. On the other hand, using the Fourier
Transform (FT) to decompose 10-day inflow time series, the performance of XGBoost and
SVR was tested to forecast the decomposed components, based on frequency domain
analysis, with each component comprising contiguous frequencies and exhibiting a clear
physical meaning [85]. The authors used the Three Gorges Dam inflow series in China.
The 10-day records from 1990 to 2009 were used for training and 2010 to 2015 for testing.
Three decomposition strategies were tested: The centered 10-day inflow time series (only
one decomposed component) and decomposition into four and seven components. Their
results showed that FT-SRV almost perfectly derived the 10-day streamflow forecast with
7 components and outperformed the other decomposition approaches. In addition, their
analysis showed that the FT-XGBoost presented a worse performance than the FT-SRV.

4.2.7. Water Level Predictions in Reservoirs, Lakes, and Delineation of Wetlands

Lakes and reservoirs are important fresh water sources for domestic, industrial, agri-
cultural, and recreational water uses, regional flood control, and aquaculture [86]. Water
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level (WL) is an important physical indicator of lakes, and its fluctuations may impact
the sustainability of lake ecosystems [87], and consumptive water uses under current
and future climate conditions and human activities [88]. Similarly, wetlands are a critical
component of a hydrologic system for maintaining hydroecology, flood control, providing
nutrients, and controlling WL in surface water systems [89]. Predictors used for IAI-based
predictions of WL in reservoirs, lakes, and for delineation of wetlands in recent studies are
summarized in Table 5.

Table 5. Factors and predictors used in IAI-based water level predictions.

Factors Predictors

Meteorologic Precipitation (P), Temperature (Ta), Wind speed (Uw)
Standardized precipitation index (SPI)

Topographic Digital elevation model (DEM), Slope (SL)

Geologic Lithology/geology (LG)

Hydrologic Lagged WL, Downstream releases (QDR), Water table (WT),
Aquifer permeability (Ks)

Soil, Surface
Soil texture/type (ST), Topographic wetness index
(TWI), Normalized difference vegetation index (NDVI),
Flow accumulation factor (FAP)

Site Specific Water levels at the embankment, Drainage pump station,
Surface water abstraction (QSW)

In regards to WL predictions in reservoirs, the optimized Boosting, RF, Bayesian Linear
(BL) and Neural Network (NN) model were used to predict a day- or week-ahead WL in
the Keymir reservoir in Malaysia, operated for hydropower generation [90]. Two scenarios
with a small number of predictors were considered. In the first scenario, daily P and WL
from 1985 to 2019 were used as the predictors to estimate WT. In the second scenario, daily
QDR from 2010 to 2019 was also used as the predictor. Using 80% of historical data to train
the AI models, the authors achieved higher prediction precision for a day- or week-ahead
reservoir WL when they included QDR, where the prediction accuracy of the AI models
ranked in the order of Boosting > RF > BL > NN. In this study, IAI models performed better
than non-IAI models in predicting short-term WL in a reservoir. The authors performed
sensitivity analysis to assess prediction uncertainties. This could have been alternatively
achieved by combining the Boosting model with the NGBoost as in [17]. If additional
predictors (e.g., ET, more lags in WL, P) are used in such analysis, SHAP analysis can be
used to identify the most influential predictors to reduce the input dataset for the IAI and
XAI modeling.

Aside from WL predictions in reservoirs and lakes, the optimized RF model was
used to infer the importance of climatic and abstraction features on WL fluctuations in
Lake Bracciano in central Italy, which is designated as an emergency water source to be
used in severe droughts [91]. The authors resorted to the IAI modeling, as they did not
have sufficient data on water exchange rates between groundwater and lake to construct
a lake water-balance equation or use physics-based models. They analyzed the influence
of short-term (e.g., run-off) and long-term (e.g., groundwater dynamics) effect of the
monthly P using SPI at different time scales (1–24 months), ETo, Ta, QSW , and month of
the year on WL for the period of 1955–2019. Using 50% of the data for model training and
implementing computationally-expensive drop-column feature importance approach, they
concluded that SPI24, QSW month of the year, SPI12, SPI13, SPI6, and Ta were the most
critical features. This suggests that P associated with the groundwater dynamics and water
abstraction were the most influential process while Ta was the least critical variable. Using
the RF model, the importance of QSW with respect to long-term P variability was shown to
increase by 15% after 1985. The authors noted that the importance of a month index needs
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to be analyzed in combination with the associated time scale of the P anomaly. This and
the feature importance analysis can be done effectively using the local and global SHAP
analysis. The SHAP analysis can also reveal the effect of percentage increases or decreases
in the predictors’ values (e.g., SPI24 and QSW ) on WL fluctuations, which are imperative
to assess the potential impacts of changing climate and water abstraction policies on WL.

As for WL predictions in wetlands, RF, DT, SVM, and ANN were used to predict
daily WL in Upo wetland in South Korea, which is a large inland wetland with high
biodiversity [92]. The predictions were based on 1–3 days lags of minimum, maximum,
and average Ta, P, maximum and minimum Uw, and WL at the nearby embankment and
drainage pump station. Using the measurements from 2009 to 2015 and keeping the data
from the last two years for the model testing, the authors concluded that RF outperformed
DT, SWM, and ANN in predicting the overall trend, peak values, and peak occurrence times
of WL. They also noted the need for further improvements in peak value predictions and
peak delay error reductions, which could be achieved by accommodating the information
on soil characteristics, GWL, and backflow during rainy seasons if/when such data are
available. Through the degree of increases in the node purity in the RF-based modeling,
the authors identified 1–3 days lags in WL at the nearby embankment, 1-day lag in P and
in WL at the drainage pump stations were the most critical features in predicting WL at
the wetland. Alternatively, RF-SHAP (a XAI model) could have been used for the feature
importance ranking.

In addition to the use of individual AI models, multilayer pattern recognition tools
based on multiple supervised AI models have been developed to construct predictive maps
based on point-source observations. As such, MLMapper is a AI-based predictive map
development tool that performs predictive analyses using 20 different AI models (including
IAI and non-IAI models) and site-specific predictors. MLMapper was used to delineate
the surface area of groundwater-dependent ecologically-sensitive wetland areas in central
Spain, using information on geologic (LG), hydrologic (WT, Ks), topographic (DEM, SL),
and soil (NDVI, FAP, TWI, ST) features [93]. The data size, however, was low for a typical
AI modeling, which consisted of 75 known wetland points and 75 non-wetland points.
The authors varied the split ratio for the training and testing data from 50:50 to 80:20.
They concluded that tree-based models (ERT, RF) outperformed most other supervised
classifiers in terms of raw test score, surface area, and number of explanatory variables
required for mapping. Trained AI models predicted larger wetland surface areas than
the natural inventory, suggesting that a combination of the features identified additional
wetland areas not captured in field surveys. Although MLMapper reportedly performs
a collinearity test to identify and eliminate redundant features, this is not a requirement
for tree-based IAI models. Weighing and permutation importance methods used with the
ERT and RF revealed that DEM, LG, WT, and Ks were the most influential features in
determining the spatial extent of wetlands. However, ERT-SHAP or RF-SHAP (XAI models)
could have been used instead to rank the most influential features without resorting to
the recursive feature elimination methods implemented with MLMapper. Moreover, local
SHAP analysis could have been used to determine the inflection points above or below
which the predicted wetland surface area (represented as a binary variable) may increase
or decrease with changes in predictors’ values. Therefore, we expect to see the use of the
local and global SHAP analyses in such automated AI-based predictive map construction
tools in the near future.

4.2.8. Water Quality Predictions

Prediction of salinity and pollution levels of surface water and groundwater, and
identification of the most critical physicochemical parameters affecting local and regional
water quality are imperative for their sustainable operations and well-being of aquatic
ecology [94]. Predictors used for IAI-based water quality predictions in previous studies
are summarized in Table 6.
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Table 6. Factors and predictors used in IAI-based water quality predictions.

Factors Predictors

Physicochemical

pH, Total dissolved solids (TDS), Total hardness (TH), Cations, Anions,
Total phosphorus (TP), Nitrate concentration (CNO3 ), Nitrite concentration(CNO2 ),
Pesticide concentration (CP), Biochemical oxygen demand (BOD),
Chemical oxygen demand (COD), Electrical conductivity (EC),
Nitrate-Nitrogen (NO3 − N), Nitrite-Nitrogen (NO2 − N),
Phosphate (PO3−

4 ), Surface water temperature (Tsw), Turbidity (NTU),
Dissolved oxygen (DO)

Meteorologic Precipitation (P), Temperature (Ta)

Hydro-climatic Evaporation (ET)

Hydrogeologic

Aquifer type, Aquifer transmissivity (Tr), Horizontal hydraulic conductivity (Kh),
Vertical hydraulic conductivity (Kv), Aquifer thickness (At),
Aquitard thickness (Aqt ), Depth to water table (DWT),
Groundwater level (GWL), Depth to screen well (DSW),
Pumping capacity (Qp,max), Well density (WD), Pumping density (QP,d),
Operation time-length of wells (OW), Aquifer recharge (AR), Soil type (ST)

Hydrologic Streamflow (Qs) , Stream length (STL)

Topographic Altitude/elevation (AL), Land surface slope (SL)

Land use Crop type, forest, urban residential land, pasture land

Site and problem-specific Presence of streams, distance from sea (DisS), Population density (PD),
Distance to saline sources (DisSS), Distance to fault (DF)

The water quality index (WQI), which integrates several physical and chemical factors
into a single parameter, has been commonly used to evaluate or categorize the quality of
groundwater and surface waters [95]. The predictive performance of the optimized RF,
XGBoost, ANN and DL models was analyzed in determining entropy weight-based ground-
water quality index (EWQI) in the Mahanadi basin in India from a set of physicochemical
parameters, involving pH, TDS, TH, Ca2+, Mg2+, Na+, K+, HCO−

3 , Cl−, SO2−
4 , NO−

3 ,
F−, and PO3−

4 [96]. The authors applied the AI models with the data from 226 locations.
They varied the split ratio for the training and test data from 75:25 to 85:15 to seek the
best prediction accuracy. Although the authors noted that data normalization should
be performed prior to these AI models, data normalization is not required for RF and
XGBoost. The predictive performance of the AI models were reported to be in the order
of DL > XGBoost > ANN > RF, in which DL (a non-IAI model) yielded better predictive
accuracy than XGBoost (an IAI model), yet it was unable to unveil the reasoning behind
the predictions. Therefore, the authors resorted to inter-criteria correlation to determine
the order of importance of the predictors. However, this could have been accomplished
by XGBoost-SHAP (a XAI model), which can also provide inflection point values for each
predictor above or below which EWQI would increase or decrease.

Groundwater salinity is a critical water quality measure that could affect sustainable
use of inland or coastal aquifers. The optimized XGBoost, multiple linear regression
(MLR), and DNN models were used to map spatial distribution of groundwater salinity,
described in terms of EC, in a coastal aquifer of the Caspian Sea in Iran using data from
140 piezometric wells [97]. The authors used a 75:25 split ratio for the training and test
data. Hydrogeologic (Tr, DWT), site-specific (DisS), meteorologic (mean annual P), hydro-
climatic (ET), topographic (AL, SL) features were initially considered as the predictors.
The authors used the MLR model to identify the contribution of each predictor to EC in a
stepwise manner by adding and removing each predictor to MLR until they reached the
maximum predictive accuracy on the test data. Based on the MLR analysis, ET and SL were
removed from the predictors list due to their negligible contributions to EC. However, use
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of a linear model to rank the importance of the predictors and remove the least important
ones from the AI models for a nonlinear problem is questionable. XGBoost-SHAP (a
XAI model) would have been an accurate and robust choice to rank the importance of
the predictors for such nonlinear problems. Nonetheless, their analysis unveiled that the
predictive performance of the AI models was in the order of XGBoost>DNN>MLR on the
test data, indicating that XGBoost (an IAI model) exhibited higher prediction accuracy than
DNN (a non-IAI model) in groundwater salinity predictions in a coastal aquifer.

The optimized CatBoost, XGBoost, LGBoost, and RF models were used to predict
groundwater salinity in a multilayer coastal aquifer over an area of 3312 km2 in the Mekong
Delta, Vietnam [98]. Using 216 groundwater samples taken in rainy and dry seasons
from 2013 and 2018 with the influencing factors, including site-specific (DisSS, DF, DisS)
and hydrogeologic (DSW, GWL, Kh, Kv, Aqt, Qp,max, WD, OW, QP,d, ST) features, and
assigning 70% of the data for model training, they concluded that the predictive accuracy of
the AI models was in the order of CatBoost > XGBoost > RF > LGBoost. Importance of the
predictors was determined using the CatBoost ranking. As a result, ST, QP,d, and DisS were
removed from the predictors list. The reduced input set enhanced the prediction accuracy
of CatBoost slightly. Although the authors normalized the predictors prior to AI analysis,
such normalization is not required for these IAI models. Using the CatBoost model, the
authors constructed a regional groundwater salinity map based on the predicted chloride
concentrations, which unveiled that paleo-saline groundwater salinization is the main
process for increased salinity in the study area and identified salinity-affected populations.
Thus, the IAI modeling in this study raveled information not only about salinity intrusion
mechanism, but also on its social dimension.

Vulnerability maps have been used to identify areas most vulnerable to water quality
deterioration. Index-based techniques have been widely used for preparation of ground-
water vulnerability assessments maps due to their computational simplicity and less data
demand compared to statistical or process-based simulation techniques [99]. GALDIT is
an index-based method to assess groundwater vulnerability to saltwater intrusion using
information on hydrogeologic (aquifer type, At Kh, DWT), site-specific (DisSS) features,
and impact of existing seawater intrusion status. The main drawback of such index-based
methods is the subjectivity of each variable’s rating and weight in estimating the vul-
nerability index. The optimized XGBoost, LGBoost, Adaptive Boosting of Decision Trees
(AdaBoost), CatBoost, and RF were used to overcome the subjectivity of the weights and rat-
ings assigned to the variables in the GALDIT framework when calculating a groundwater
vulnerability index over 500 km2 area in the Lake Urmia catchment area in Iran [100]. The
authors implemented boosting aggregation (bagging) and disjoint aggregation (dagging)
sampling methods to increase the data size and reduce the prediction variance in this study
area with the initially small data size. The GALDIT indices, after being adjusted using TDS
measurements, were used as the predictand. Using 70% of the data to train the AI models,
the authors concluded that the precision accuracy of the models was in the order of XGBoost
> AdaBoost > RF > CatBoost > LGBoost when a bagging or dagging resampling method
was not implemented. Although these IAI models improved the prediction accuracy of
groundwater vulnerability by ∼15% in comparison to standard GALDIT framework, and
additional precision enhancement of ∼5% was achieved using bagging-XGBoost, the final
prediction accuracy was however not statistically significant. The authors noted that the
six predictors implemented in the GALDIT framework may not be sufficient to determine
groundwater vulnerability. They also noted that the AI models chosen in their study cannot
suggest a new weight or rating score for each variable because the IAI models are ‘black
box’ models. This statement is, however, questionable. Although ensembling can make
AI model interpretability and explainability harder, the boosting and bagging AI models
are not black-box models, as they can readily be coupled with the explanatory methods
for enhanced interpretability (IAI models) and explanability (XAI models), as discussed
in Section 2. In fact, information on new weights and ratings to enhance the groundwater
vulnerability index can be obtained by coupling the bagging and boosting AI models with
the SHAP method, as in [18].
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Chemicals used on farmlands pose risks on the water quality and human health,
and environmental and ecological well-being. The optimized XGBoost, ANN, and SVM
were implemented to predict nitrate and pesticide concentrations in groundwater (regres-
sion problem) and associated risk (classification problem) using hydrogeologic features
(e.g., aquifer type and properties), land use features (e.g., nearby croplands, forest areas,
primary water uses), and water quality measures (CNO3 , CP), and other physicochemi-
cal parameters [33]. The analysis was conducted in a data-scarce region, involving 303
sampling wells from 12 midcontinental states in the USA, and 80% of the data was used
for model training. The authors analyzed imbalanced classes using ‘confusion matrices’
in classification problems and implemented oversampling and cost-sensitive learning to
address the problem of imbalanced classes. They noted that ANN performed better than
XGBoost for the regression task, but XGBoost produced a majority of the best predictions
among all three models. In addition, unlike the ANN and SVM models, XGBoost-SHAP (a
XAI model) identified the order of importance of the predictors influencing the nitrate and
pesticide concentrations and associated risk classifications and concluded that both nitrate
and pesticide were the most important predictors of each other. In another study, the RF
and MLR models were used to explain groundwater CNO3 contamination at the African
continent-scale in relation to land use, soil type, hydrogeology (aquifer type, K, DWT, AR),
topography, climatology (climate and rainfall class), nitrogen fertilizer application rate, and
PD in the absence of a systematic groundwater monitoring program [101]. The analysis fo-
cused on spatially-variant mean CNO3 without addressing their temporal variability. Using
80% of the data for model training, the authors concluded that RF outperformed MLR in
predicting CNO3 . The main advantage of RF (an IAI model) over MLR (a statistical model) is
that RF is (i) a non-parametric model, i.e., the model structure does not need to be specified
a priori, (ii) more efficient in determining nonlinear relationships and patterns between
target and multidimensional predictors without relying on restrictive assumptions such as
particular statistical distribution for residuals, non-collinearity among the predictors, (iii)
as interpretable as MLR yet provide better predictive accuracy, and (iv) a robust model for
outliers. These advantages are equally applicable to other tree-based ensemble AI models.

As mentioned above, WQI has also been used to assess water quality in stream
waters. The ERT, DT, and SVM models were used to predict WQI at the Lam Tsuen River
in Hong Kong from a set of physicochemical features [102]. Monthly physicochemical
features included pH, BOD, COD, DO, EC, NO3 − N, NO2 − N, PO3−

4 , Tsw, NTU from
1998 to 2017. The author noted that when these 10 features were used as the predictors,
the prediction performance of the AI models was in the order of ERT > SVM > DT. By
trying different combination of the predictors, ERT (an IAI model) with the reduced list
of predictors, including only BOD, PO3−

4 , and NTU achieved the second best prediction
accuracy. Thus, in the absence of a full set of physicochemical data, ERT with BOD, PO3−

4 ,
and NTU could still provide a good estimate for WQI for surface waters. However, instead
of manually trying different (and gradually reduced) combinations of predictors in search
of high WQI precision, ERT-SHAP (a XIA model) can be used to identify high fidelity ERT
models with the least number of predictors.

Hybrid physics-based and AI models have also been used to predict water quality
measures. The XGBoost model was combined with the Soil and Water Assessment Tool
(SWAT) [103] to estimate TDS and better understand water salinity river in a semi-arid
agricultural Rio Grande Watershed in Texas [104]. XGBoost was trained with water quantity
and quality data that were monitored in nine locations. The predictors used in their study
were physicochemical (CNO2 , CN , TP), meteorologic (P), topographic (AL), and hydrologic
(Qs, STL, dominant ST). Results from calibrated the SWAT model were used as inputs to
XGBoost to predict TDS. However, the SWAT model could not be properly calibrated for
all studied locations due to a lack of data. In addition, the insufficient data compromised
XGBoost training and caused overfitting. These conclusions highlight the importance of
high-quality and sufficient data for proper analysis with AI. The authors also argued that if
additional water quality parameters are monitored, more predictors could be used and the
results would be more accurate. Despite the insufficient data, the AI modeling approach
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showed to be advantageous over simple SWAT modeling as it improved the bias and
variance of TDS estimates.

In addition to physicochemical parameters, water surface temperature (Tsw) is an
influential factor for water ecosystems and, hence, for successful water management plans.
The performance of five AI models were compared to predict Tsw of 25 lakes in Poland [105].
The analyzed models were ERT, multivariate adaptive regression splines (MARS), M5
Model tree (M5Tree), RF, and MLP. Although AI models have been successfully used in
broad hydroclimatic applications, none of the AI models in [105] were able to outperform
prediction accuracy of the physics-based ‘air2stream’ model [106]. The authors suggested
including more predictors to potentially improve the prediction accuracy of the AI Models.

As for potential future directions, IAI and XAI can be used to examine how DO, Tsw,
total and reactive iron (Fe), redox potential, and sulfate (SO−2

4 ) and associated biogeochem-
ical processes [107,108] in freshwater environments could vary with the depth in response
to changing hydroclimatic conditions under future climates. This could be useful to predict
the depths at which aerobic and anaerobic processes prevail, which would have direct
impacts on future aquatic ecology and consumptive water use. In addition, infiltration
of micro and nanoplastics into freshwater environments is becoming a growing concern
worldwide [109,110]. When more regional and global data become available, IAI and XAI
models could be useful to analyze the relative importance, interdependency, and interaction
of environmental factors (e.g., minerals, pH, natural and dissolved organic matter, ionic
strength, net surface charge of plastics [111]) on the the fate and transport of micro and
nonoplastics in aquatic environments and consequently their ecological impacts under
different hydroclimatic conditions.

4.2.9. Flood Hazard Risks Prediction

Floods are caused by heavy rainfall over lowlands with gentle slope and low water
infiltration capacities that can be accompanied by debris flow and landslides. Floods
often cause many casualties and property losses. Such extreme events are expected to
occur at higher frequencies in a globally warming climate and due to intensified human
activities [112]. Flood risk assessments are important for flood insurance, floodplain man-
agement, and disaster warning systems. AI-based flood predictions and risk assessments
so far typically focus on passive predictions without considering adaptation measures and
resilience of social and economic dimensions. The predictors used in recent IAI-based flood
forecast analysis are summarized in Table 7.

Hydrodynamic models are commonly used for the flood managements. These models
solve complex physical equations to estimate floodplains, which makes them computa-
tionally inefficient, especially two-dimensional (2D) models. This drawback prevents the
application of such models to a large-scale domain, and AI can be an alternative. For exam-
ple, the RF and MLP models were combined for fast water depths predictions [113]. RF was
applied to identify wet (flooded) and dry cells using flow and the domain coordinates as
inputs. Then, MLP used RF’s output to compute river depths in the wet nodes. The authors
used the International River Interface Cooperative software (iRIC) model with FaSTMECH
(Flow and Sediment Transport with Morphological Evolution of Channel) solver [114] for
hydrodynamic modeling, which was calibrated and used to train the AI models. Seven
events with different flow magnitudes (10, 50, 95, 120,150, 300, and 400 m3/s) were used
for training and five events with different flow magnitudes (20, 30, 45, 225, and 350 m3/s)
were used for testing. This approach was evaluated in Green River in Utah, USA and was
able to reduce the simulation time by 60 times with satisfactory prediction performance.
However, the method was tested for a single location, and its prediction capabilities to
other reaches still need to be evaluated. Generalization to different areas is essential for the
applicability of such models to large-scale domains.
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Table 7. Factors and predictors used in IAI-based flood hazard risk predictions.

Factors Predictors

Disaster-inducing factors

Maximum 3 day precipitation (M3DP), Maximum 3 h precipitation (M3HP),
Maximum 1 day precipitation (M1DP), Annual P,
Days with precipitation exceeding 25 mm (DPE25),
Precipitation of the wettest month (Pwm),
Precipitation of the driest month (Pdm),
Precipitation seasonality (Ps), Precipitation of the wettest quarter (Pwetq),
Precipitation of the driest quarter (Pdryq),
Precipitation of the warmest quarter (Pwq),
Precipitation of the coldest quarter (Pcq),
Percentage of the catchment area affected by rain (PAA),
Typhoon frequency (TF), Streamflow (Qs), Runoff depth (RD)

Disaster-breeding
environmental factors

Slope (SL), Digital elevation map (DEM), Altitude (AL),
Distance to river (DisR), Land use patterns (LUP),
Normalized difference vegetation index (NDVI),
Road density (RD), Soil texture (ST), Soil depth (SDep),
Soil moisture (SM), Topographic wetness index (TWI), Curve number (CN),
Stream power index (SPI), Vegetation coverage (VC), Lithology/geology (LG),
Distance from road (DisRd), Profile curvature (PrC), Plan curvature (PlC),
Hillshade (HS), Flow accumulation (QACC),
Slope aspect (SA), Vertical flow distance (VFD)

Disaster-bearing
body factors

Population (POP), Population density (PD), Gross domestic product (GDP),
Gross domestic product density (GDPD)

The performance of RF to predict runoff discharge was compared against the ‘hydro-
mad’ hydrological model [115] for 95 basins in the USA and Canada [116]. In this study,
P, Tmax, Tmin and SM were used as the predictors. In addition, the effects of catchment
characteristics were also evaluated by including additional predictor variables, such as
the standard deviations of P, Tmax and Tmin within the catchments and PAA. Their results
showed that climate conditions and elevation could affect the RF performance. Although
the authors noted that RF can be an alternative to traditional hydrological models, they
highlighted that RF failed to predict high magnitude flows. In addition, RF only provided
robust results for catchments with a warmer climate and lower altitudes. Further research
was suggested to increase its accuracy for larger magnitude events and to improve RF pre-
diction capabilities in more heterogeneous catchments. In colder catchments, for instance,
the authors suggested including snow and soil moisture as predictors. In semi-arid regions,
lack of flood training data compromised the model performance. Their results shows this
type of AI is suitable for use in large-scale basins and can improve flood risk assessments
at a national or continental scale.

In some other applications, data-driven AI models were used as a sole predictor for
flood risk. Current and future flood risk in the Kalvan watershed in Iran was evaluated
with AI [117]. The future conditions were evaluated for 2050, with the projected changes
in climate and land use. The authors used conditional inference random forest (CIRF),
GBoost, and XGBoost to model the flood risk. In addition, a combined prediction with
these three approaches was also evaluated. Twenty predictors were used to build the
models, including those associated with the disaster-inducing factors (annual P, Pwetm,
Pdrym, Ps, Pwetq, Pdryq, Pwq, Pcq) and disaster-breeding environmental factors (SL, DEM, AL,
DTR, ST, LG, DRd, LUP, PrC, PlC, SPI, TWI). The results indicated that the combined
approach had the highest accuracy, followed by GBM, XGBoost, and CIRF. In general,
all models attained a satisfactory performance and are suitable for flood risk mapping.
Similarly, LGBoost and CatBoost were used to determine flash flood susceptibility and
compared their performance with RF [118]. The authors used over 400 flood maps to train
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and test the models, split in 70% for training and 30% to testing. A total of 14 controlling
factors were selected, which included those associated with the disaster-inducing factors (P)
and disaster-breeding environmental factors (DEM, SL, PlC, HS, SA, QACC, DTR, VFD,
LUP, LG, TWI, STI, NDVI). All three IAI models attained accurate results to generate
flash flood susceptibility maps. However, LGBoost outperformed RF and CatBoost. In a
similar work, 13 controlling factors, including a disaster-inducing factor (P) and disaster-
breeding environmental factors (AL, SL, SA, PlC, PrC, DisR, DisRd, LUP, LG, SDep, SPI,
TWI) were used to identify areas prone to flash flooding using ERT and different variants
of RF [119]. Using 256 flood susceptibility points and 256 randomly chosen points in a
watershed, and allocating 70% of the data to model training, the authors concluded that ERT
showed better prediction accuracy than RF. Although the authors performed collinearity
analysis to determine linear dependency among the predictors to avoid redundancy, such
analysis is not required for ERT and RF. The authors concluded that topographical and
hydrological features are the most critical features in flood flash predictions. Such feature
importance analyses can alternatively be performed using SHAP analysis, which can also
unfold interrelations and interdependencies among the predictors.

AI models have also been used for regional-scale flood hazard risks. The RF model
was used for regional-scale categorical flood hazard risk assessments over 27,363 km2

with 5000 sample points in the Dongjiang River Basin in China [120]. The predictors
included disaster-inducing factors (M3DP, TF, RD) and disaster-breeding environmental
factors (SL, DEM, DTR, NDVI, LUP, ST, TWI, SPI). The authors considered four risk
levels, including highest (with the shortest recurrence interval), high, low, and lowest
(with the longest recurrence interval) based on historical flood data. They compared
predictive accuracy of RF against SVM and noted that both models identified regions with
different flood risks reasonably well. Moreover, based on the Gini index, M3PD, RD, TF,
DEM, and TWI were the most critical factors to assess flood hazard risks. Similarly, the
optimized GBoost, XGBoost, RF, SVM, MLP, and Convolutional Neural Network (CNN)
were used to develop a flood risk map to identify regions with low, moderate, high, and
highest risk in the Pearl River Delta in China, based on information obtained from flood
risk inventory maps [121]. Different from [120,121] also included disaster-bearing body
factors in the AI-based decisions. Using GBoost, XGBoost, RF, SVM, MLP, and CNN, the
authors evaluated flood risk using disaster-inducing factors (M3HP, M1DP, DPE25, TF),
disaster-breeding environmental factors (DEM, SL, DTR, RD, TWI, CN), and disaster-
bearing body factors (PD, GDPD). They used the split ratio of 70:30 for the training
and test datasets. Predictive accuracy of the AI models was reported to be in the order
of GBoost > XGBoost > RF∼CNN > MLP > SVM, in which, flood risk prediction accuracy
of GBoost, XGBoost, and RF (IAI models) outperformed CNN, MLP, and SVM (non-IAI
models). Based on the Gini index analysis of the GBoost predictions, the authors concluded
that DEM, M1DP, RD, DPE25, and M3HP were the most critical predictors in the order
of importance for flood risk assessments. Validation of these findings and their extension to
urban, rural, and coastal areas under different climate zones using XAI models using SHAP
analysis are worth investigating further in follow-up studies. As for the flash flood risk
assessments, the XGBoost and Least Square Support Vector Machine (LLSVM) models were
used to develop flash flood risk maps for the 390,000 km2 study area in China [122]. The
authors assessed the flood risks based on information on disaster-inducing factors (annual
M3HP and M31D, annual P), disaster-breeding environmental factors (DEM, SL, RD, VC,
CN, TWI, SM), disaster-bearing body factors (POP, GDP), and flash flood prediction
efforts. Their training data included both flash-flooded and randomly selected non-flooded
sites, and allocated 70% of the data for model training. They concluded that XGBoost
(an IAI model) outperformed LLSVM (a non-IAI model) in predicting the flash flood risk.
Although the authors noted that XGBoost cannot provide factor importance analysis after
model development, XGBoost can indeed perform such analysis when it is coupled with
the SHAP method, as demonstrated in [17,18].

As originally noted in [120], neither of these AI-based flood prediction models can
address the influence of hydraulic mitigation structures (e.g., dikes, levees, reservoirs) that
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play an important role in flood control and reduce the associated risk. Interventional AI
modeling could be the proper method for such analysis in the near future.

4.2.10. Drought Predictions

Integration of drought predictions into societal decision-making processes are critical
for sustainable and climate-resilience water, irrigation, and ecohydrology managements [123].
Predictors used for IAI-based drought predictions in recent studies are summarized in
Table 8.

Table 8. Factors and predictors used in IAI-based drought predictions.

Factors Predictors

Meteorologic
Precipitation (P), Temperature (Ta), Minimum temperature (Tmin),
Maximum temperature (Tmax), Relative humidity (RH),
Wind speed (Uw), Atmospheric pressure (Pa)

Climatic
Pacific decadal oscillation (PDO), Southern oscillation index (SOI),
Interdecadal Pacific oscillation (IDO), Atlantic multidecadal oscillation
(ADO), North Atlantic oscillation (NOA), and Oceanic Niño index (ONI)

Hydro-climatic and
soil-associated

Actual evapotranspiration (ETa), Normalized difference vegetation index
(NDVI), Land surface temperature (LST), Soil moisture (SM)

Surface water Surface water discharge (Qs), Surface water temperature (TSW),
Surface water level (SWL)

The performance of optimized Decision Trees, AdaBoost, RF, and ERT was compared
against the MLR in predicting hydrological droughts in ungauged areas in two watersheds
in South Korea using remotely sensed data from six other watersheds [124]. The authors
used 16 years of monthly data acquired multiple locations from 2002 to 2017 and allo-
cated ∼70% of the data to model training. Drought severity was expressed at the 3-, 6-,
9-, and 12-month time scales in terms of monthly streamflow percentiles and related to
meteorologic (monthly P) and hydroclimatic and soil-associated (ETa, NDVI, LST, SM)
factors, in addition to the month of the year. The study concluded that AdaBoost (with
the best prediction accuracy), RF, and ERT (IAI models) successfully detected observed
hydrological droughts. The authors used permutation importance scores to identify the
order of importance of the predictors. The analysis revealed that P, followed by SM (at
the 3-month time scale) or NDVI (at longer time scales) are the most critical predictors
in forecasting hydrological droughts. As the authors noted, this IAI framework can be
used to predict hydrological droughts in ungauged watersheds, if the ungauged basin
characteristics are similar to gauged basins used in model training, suggesting that such
applications require a priori domain knowledge.

The XGBoost and ANN models were used for drought forecasts based on the Standard-
ized Precipitation Evapotranspiration Index (SPEI) 1–6 months in advance. The authors
used AI models to predict SPEI in a study area in the northwest part of China from monthly-
averaged meteorological and climatic variables, their lagged relationships including SPEI,
and month of the year [125]. The meteorological variables included Pa, Ta, Tmin,Tmax, RH,
Uw, P, and sunshine duration using data from 32 stations during 1961 to 2016. They
computed the ETo through the PME. Climate predictors involved PDO, SOI, IDO, ADO,
NOA, and ONI. They used sunshine duration as a surrogate variable for Ra, as Rs mea-
surements were not available at the stations. They concluded that XGBoost (an IAI model)
outperformed ANN (a non-IAI model) for overall droughts and drought categories. The
author used a distributed lag nonlinear model to select the optimal predictors and their
lag time; however, they did not disclose the order of importance of the predictors and
their dependency relations, which could have been revealed by XGBoost-SHAP (a XAI
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model). The authors used linear booster with the XGBoost model, and noted that prediction
accuracy could have improved if tree-booster was implemented instead.

Different from index-based drought predictions, the performance of the optimized
RF, DT, and LSTM models were compared in predicting SWL, Qs, TSW , and GWL in low
flow periods, corresponding to drought events, as well as for the entire monitoring period
across the Netherlands [126]. The predictors included daily P, ET, Qs associated with the
main rivers feeding the river system of the country, sea level, and their first three lags
with or without water management decisions during previous droughts, accounted for
by reconstructed historical Qs of the main water infrastructures. Using 60% of the data
acquired from ∼4000 stations between 1980 and 2019 for model training, RF provided
the best overall accuracy. The AI models reportedly resulted in acceptable predictions for
Qs, SWL, and TSW , but relatively less prediction accuracy for GWL. Although predictors
associated with the water management decisions did not improve prediction accuracy
more than 9%, they appeared to be critical features at some locations. The authors tried
to predict SWL and Qs in low flow periods, at which RF and LSTM performed better,
yet the predicted SWL and Qs were 15–20% and 5–12% lower than observed values and
did not reliably capture the prolonged 2018 drought. Although the authors called the
AI models in their study the black-box models, the DT and RF models are not black-box
models [10], as these model are amenable to coupled with the SHAP and LIME methods
(forming XAI models) that can unveil the interpretable relationships between predictors
and predictand, explainable model decisions, and seek new knowledge, as discussed in
Section 2. Moreover, the authors used model coefficients from statistical models (e.g.,
LASSO) to determine which predictors have an inverse relationship with the predictors.
However, such information can be readily and accurately be obtained using RF-SHAP (a
XAI model) without resorting to statistical models [17,18].

4.2.11. Climate Change Impacts Modeling

Global circulation models (GCMs) that simulate physical processes in the atmosphere,
ocean, cryosphere, and land surface are the primary tools to generate climate forecasts.
When compared with surface observations, these models, however, suffer from biases and
are unable to provide ready-to-use information at the regional spatial scales. Therefore,
downscaling methods are commonly used to link the coarse-resolution global simulated
predictors to the local observed predictand over the area of interest [127]. IAI and XAI
models have been recently used to develop procedures for multi-model ensemble climate
simulations and forecasting hydroclimatic variables under future climate scenarios.

An optimized RF model was used to develop a procedure for multi-model ensemble
climate simulations from 24 Coupled Model Intercomparison Project Phase 6 (CMIP6)
models to capture the characteristics of the spatially varying observed climatic data across
China [128]. Each CMIP6 model was treated as a feature in the RF framework. The split
ratio for the training and testing data was ∼60:40, and the length of the training data was
31,552. The predictors of the IAI model included Ta, annual Tmax, annual Tmin, total P in
wet days, annual maximum consecutive 5-day P amount, and annual total P for events
exceeding the 95th percentile. The authors reported that RF exhibited higher predictive
accuracy than LR and simple arithmetic mean. They subsequently used the trained RF
model to predict the regional projection of future climate for 1.5 ◦C, 2 ◦C and 3 ◦C global
warming targets, relative to preindustrial levels, under the SSP5 emission scenario. SSP5 is
the worst-case climate scenario, in which the future presumably heavily relies on intense use
of fossil fuels without implementing sound adaptation and mitigation strategies. Although
CMIP6 models were used as features in their RF model, the relative conformity (ranking) of
the CMIP6 models to the observed data was not disclosed. This could have been effectively
implemented with an RF-SHAP approach (an XAI model). We expect that the order of
conformity of the CMIP6 models would vary with geographic regions and climatic zones.
Therefore, it would be useful to know which CMIP6 models would be more representative
for certain geographic regions and climatic zones across the globe.
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As for predicting hydroclimatic variables under potential future climates, the op-
timized RF model was used to predict potential changes in water regime types in the
northwest of the European part of Russia for the period of 2087–2099 using projected
monthly runoff data from GCMs [129]. The authors divided the study area into uniform
grids with the spatial resolution of 0.5◦× 0.5◦. They reanalyzed and computed historical
monthly runoffs using the GR4J hydrological model [130] at each grid cell, which furnish
the predictors for the IAI model. The RF model was trained using historical data, including
the categorical water regime types as the predicant and monthly runoffs as the predictors.
The authors used four GCMs, including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR,
and MIROC5, with three representative concentration pathways (RCP)- RCP 2.6, RCP
6.0, and RCP 8.5, to estimate future projected monthly runoffs. Here, RCP 2.6 represents
the future with widely used renewable green energy, while RCP 8.5 represents the future
with intense uses of oil and gas for energy production. RF was used to predict the spatial
distribution of water regime types across the study area using monthly runoff computed
by the GR4J model using projected climate data from the GCM models under different
RCP scenarios. The analysis suggested that water regimes types could alter over 73.6%
and 99% of the study area under the RCP 2.6 and RCP 8.5 scenarios, respectively during
the 2087–2099 period. Moreover, the summer and winter flows could be less stable and
spring flow peaks could be lower while shifting to earlier times. Although the authors used
historical and projected climate data in calculating monthly runoff using the hydrological
model, climate variables could have been also used as predictors in the IAI model. In this
case, interdependencies and the importance of the predictors as well as their critical values
responsible for changes in water regime types could have been determined by using the
RF-SHAP model (i.e., XAI model).

Moreover, a novel optimized XGBoost-based XAI framework to predict long-term
GWL and decadal hydrological droughts in an ecologically fragile groundwater-dependent
semi-arid region in south-central Texas, USA under projected future climate scenarios
from 2021 to 2100 was presented in [20]. The severity of future hydrological droughts was
assessed based on mandated groundwater pumping reductions, if the tiered critical period
management pumping restriction plan as part of the current habitat conservation measures
at the site, would have been implemented during the seven years-long worst drought that
the study region experienced in 1950s. Groundwater pumping reductions in this plan hinge
on GWL at an index well. The authors set-up the XAI model first to predict weekly GWL
from a set of weekly features, including historical lagged GWL, lagged and current P, and
current Tmin and Tmax. They used the recorded weekly climate data from 1950 to 2005 to
train the XGBoost model. When combined with the SHAP method, the trained XGBoost
model revealed that the first lag of GWL and P, in addition to Tmax were the most decisive
features to predict GWL. The trained XAI predicted GWL from 2006 to 2020 with high
accuracy when historical climate data or Coupled Model Intercomparison Project Phase 5
(CMIP5) data under the RCP 4.5 and 8.5 scenarios were used as input. In their study, CMIP5
data were downscaled using the Multivariate Adaptive Constructed Analogs (MACA) [131].
Subsequently, the validated XGBoost model was used with the CMIP5-MACA projected
Tmax and P to forecast weekly GWL and decadal hydrological droughts from 2021 to 2100
under the RCP 4.5 and 8.5 scenarios. The XAI model additionally revealed that despite an
increasing precipitation trend, compound effects of increased evapotranspiration, lower soil
moisture, and reduced diffuse recharge due to warmer temperatures could amplify severe
hydrological droughts that lower groundwater levels, if regional-scale climate adaptation
and mitigation strategies are not implemented.

5. Discussion and Conclusions

The review identified several important implications that need to be considered in
IAI/XAI models:

Explainability of the IAI-predicted results: Explanatory methods such as SHAP and
LIME could enhance the accountability and trustworthiness of the IAI-based inferences and
decisions in practice. IAI models can be trusted and used more often, if they (i) can explain
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the reasoning behind the AI-based decisions, (ii) unveil how the decision can be further
enhanced using information on the order of importance of features while considering their
complex and nonlinear interdependencies and interrelations, and (iii) are amenable to
set up testable hypotheses and probabilistic analysis to unveil favorable conditions for
enhanced targeted decisions, as demonstrated in Ref [18].

Multiple IAI/XAI models in decision-making: The Rashomon set argument [132]
implies that if the data permits a large set of reasonably accurate AI models to exist, this
large set of accurate models often contains at least one AI model that is interpretable
(IAI). This model is thus both interpretable and accurate [26], which is imperative for the
explainability and scientific value of the outcome [7]. Moreover, diverse IAI/XAI models
could perform differently on distinct hydroclimatic problems, as well as on the same type
of problems but with different sets of site-specific predictors of distinct lengths and types.
Therefore, multiple IAI/XAI models should be used in practice to identify the problem-
and site-specific best-performing IAI/XAI model(s) with the highest prediction precision
while bounding prediction uncertainties.

Spatial Scale in IAI/XAI-based analysis: IAI models have been used to analyze and
predict hydroclimatic processes from a watershed-scale [96] to a continent-scale [101], as
long as sufficient, high quality data are available to train the models. Advances in remote
sensing, data acquisition, and data analysis tools allow multiscale applications of the
IAI/XAI modeling.

Domain knowledge: Prediction of certain hydroclimatic processes using data-driven
IAI/XAI modeling at particular sites with scarce measurements would require strong
domain knowledge. For example, information about aquifer properties and groundwater
levels could be scarce, yet the knowledge on groundwater potential could be imperative
for further development and management of water resources at particular sites. In such
circumstances, if the groundwater potential is known to be controlled by easy-to-access
topographic and geologic features and/or related to springs inventory, groundwater poten-
tial could still be predicted using IAI models even in the absence of detailed hydrogeologic
data, as shown in Refs. [72,73].

Balanced data in categorical decisions: Imbalanced classes in categorical IAI/XAI
analysis (e.g., identifying severe flood-risk regions, high groundwater potential sites) need
a comprehensive analysis using confusion matrices (unveiling false positive and false
negative) and it may require one to balance the imbalance classes, as in [33] for more
accurate and robust predictions. Unbalanced data could result in biased and unreliable
predictions.

Hybrid IAI/XAI and non-IAI modeling: Several recent studies (e.g., Refs. [34,81]) used
IAI and non-IAI models to enhance the accuracy in AI-based decisions. In such hybrid
modeling, the IAI model is commonly used to identify the most influential predictors on the
decision and unveil the nonlinear correlative effect between the predictors and predictands.
This information is then fed into the non-IAI model, which is ultimately used as a predictive
tool. This approach, however, could induce a risk for proper training of a non-IAI model
as it uses a reduced predictor list determined by the IAI model. This could diminish the
predictive accuracy of the non-IAI model, as the underlying algorithms, mechanisms, and
assumptions of the IAI and non-IAI models are different.

Interventional modeling: The IAI/XAI models make predictions based on historical
events and data. These models will not be able to predict unprecedented events, as they
would not have any a priori knowledge about such events and the associated nonlinear
correlative relations between the predictors and predictands. This implies that traditional
non-interventional IAI/XAI modeling hinges on stationary assumption, in which the
historical statistical predictors–predictands relations would presumably be valid in the
future. However, such stationary assumptions may not be valid in hydroclimatic domains
under intensifying human inferences and future climates. Therefore, when the IAI model
is used for prediction and if an unprecedented event were to occur during the prediction
interval, the IAI model analysis can be intervened and the IAI model is re-trained using
the new information about the first-time occurring event, as is implemented in [83]. We
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envision that the interventional AI modeling will be useful in practice, as hydroclimatic
systems continue to be altered by human impacts [133] and climate change [134], which
have been already affecting the frequency, intensity, and magnitude of the extreme events.

IAI/XAI modeling vs. physics-based modeling: IAI/XAI models have emerged as a
reliable simulator and predictive tool as an alternative or complementary to physics-based
models. Unlike the latter, the IAI models do not require any assumptions on the system
dynamics or a set of governing equations to accurately represent the types of physical
mechanisms (e.g., flow) in different parts of the domain. They can be applied using easy-to-
access meteorologic, topographic, and satellite-derived data for hydroclimatic predictions
over spatially-heterogeneous sites, as shown in Refs. [67,70,72]. In some problems, the IAI
models exhibited better or comparable performance to physics-based models [67,104]. In
other problems, physics-based and IAI models were coupled to enhance the prediction
accuracy [113]. At sites with limited time-variant data, physics-based models have been
used to generate additional synthetic data to train AI models [17,18].

IAI/XAI modeling in citizen science projects based on crowdsourcing: Crowd-
sourced distributed hydrologic measurements contributed by the public (e.g., using a
smartphone app) have been considered as a potential supplement for data networks in
hydrological research [135]. Although this could help fill the data gap, uncertainty and error
in citizen science measurements are a primary concern for the scientific community [136].
Thus, a decision tree model was recently used as a quality control filter to flag potentially
erroneous data points in citizen science data of the stream stage [137]. The decision tree
model can also be used with different sources of datasets (e.g., precipitation, water quality)
to determine the ruleset for the incorrect and atypical values. We expect to see the use of
IAI/XAI models in establishing various problem-specific data quality controls in nonsys-
tematically acquired large citizen science measurements to flag suspicious data in an effort
to reduce false positives and false negatives in confusion matrices.

XAI modeling and decisions on the fly: Big data and predictive analytics can po-
tentially provide accurate, real-time or near real-time analytics and insights in real-life
hydroclimatic applications involving prediction of recurrence and impacts of natural haz-
ards such as floods, droughts, soil erosion, and development of mitigation measures to
reduce their adverse impacts [3]. In the near future, we expect to see that XAI models
with new online tools would be used to make prediction or decisions on the fly as new
data are streamed in. In such applications, explainability of the underlying reasoning of
AI-based decision would be paramount for the stakeholders for the enhanced reliability,
trustworthiness, accountability of the decisions, and development of timely and effective
mitigation and adaptation measures.

Automated XAI modeling: MLMapper, which operates with 20 supervised AI models,
was recently used to map the surface area of wetlands from geological, geomorphological,
hydrogeological, and biological data [93]. In the near future, we expect that an automated
XAI modeling framework involving multiple AI methods be widely used for prediction
and future projection of hydroclimatic processes. Such an encapsulated framework would
automatically deploy AI models from a suite of AI models and select the AI models with
the highest prediction accuracy on the test data. The framework would call the explanatory
methods (e.g., SHAP and LIME methods) to determine local and global analyses to identify
the most critical features by considering interdependencies and interrelations among the
predictors, remove the least critical features from the predictor list, and re-engineer, op-
timize, and transfer the selected IAI model to XAI models with enhanced accountability.
Those XAI models would then be used for scenario-based future projections and construc-
tion of testable hypotheses to identify the conditions at which the projected predictand
could further be enhanced, based on a specific combination of predictors. Such frameworks
would increase the trustworthiness and fidelity of the IAI/XAI models.

A generalized XAI framework for a hydroclimatic application is shown in Figure 2.
In this framework, Step (I) involves data acquisition, quality checks, curation, and data
imputation when necessary. The data could include static, time-series, numerical, cate-
gorical, point, and gridded data. The data may also include externally-acquired projected
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predictors (e.g., future climate variables downscaled from global circulation models) if the
goal is to project future target variables. In Steps (II) and (III), grid search hyperparameter
optimization could be implemented to determine the optimal set of parameters for the
chosen AI models using the training data. Multi-fold cross-validation techniques are typi-
cally used to tune the models and determine the predictive accuracy of the AI model on
the unseen test data. If the prediction performance of the model is found to be statistically
significant, the optimized AI model can then be used as a predictor tool in Step IV. At this
point, the AI model can be used to predict future values of predictands (e.g., groundwater
levels, hydrologic droughts).

Figure 2. A generalized framework of an XAI model. Basic steps include: (I) collection and curation
of hydroclimatic data sets to be used to train the AI model and test its prediction performance;
(II) grid search hyperparameter optimization using multi-fold cross validations to find the best set of
parameters for AI model runs, (III) AI model training and determination of its prediction accuracy
on test data based on statistical measures; (IV) prediction/projection of hydroclimatic variables
using the validated AI model; and (V) determination of the rank of the most influential predictors
in predicting target variables based on global SHAP analyses (left panel), and determination of the
inflection point of the predictors (where the SHAP values on the y-axis change signs), based on the
local SHAP analysis, above or below which the value of the predictand would increase or decrease
(right panel). The predictive AI model is transitioned into the IAI and XAI models in (V).
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The tree-based ensemble AI models are interpretable AI models as they are amenable
to be fused with the explanatory methods to unveil the nonlinear correlative relations
between the predictors and predictands in model outputs in Step (IV). The AI model turns
into an explainable model in Step (V) when it is combined with explanatory methods (e.g.,
SHAP). The global SHAP analysis in Step (V) identifies the order of importance of the
predictors by explicitly accounting for their interrelations and interdependencies. At this
point, the user can implement ‘feature engineering’ to reduce the size of the input data set
(i.e, number of predictors) by selecting only the topmost influential features and repeat the
Steps (III) and (IV). The local SHAP analysis in Step (V) identifies the inflection points of
predictors above and below which the predictands would further increase and decrease.
This step is critical to unveil new information (e.g., a critical Ta above which soil moisture
and diffused recharge diminish) and establish testable hypotheses how the predictand may
vary probabilistically if the related hydrologic conditions vary under future conditions,
as shown in Refs. [17,18,20]. These are key analyses to peek into the internal logic of the
AI modeling and enhance the accountability and trustworthiness of AI-based decisions
in practice.
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Abbreviations
Commonly used abbreviations in the paper for Artificial Intelligence models and key variables:

Artificial Intelligence Models:
AdaBoost Adaptive Boosting
ANN Artificial Neural Networks
CNN Convolutional Neural Network
DL Deep Learning
DT Decision Trees
GBoost Gradient Boosting
IAI Interpretable Artificial Intelligence
LIME Local Interpretable Model-agnostic Explanations
LSTM Long Short Term Memory
LR Linear Regression
AI Artificial Intelligence
MLP Multi-layer Perceptron
XGBoost Natural Gradient Boosting
RF Random forest
SHAP SHaply Additive Explanation
SVM Support Vector Machine
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SVR Support Vector Regression
XGBoost Extreme Gradient Boosting
XAI Explainable Artificial Intelligence
Key Variables:
ET Evapotranspiration
ETa Actual evapotranspiration
ETo Reference crop evapotranspiration
GWL Groundwater level
GWP Groundwater potential
P Precipitation
Pa Atmospheric pressure
Qs Streamflow
Rs Shortwave solar radiation
SM Soil moisture
Ta Air temperature
Tsw Water surface temperature
Uw Wind speed
WL Water level
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