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Abstract: Due to large-scale geological deposition processes, slope structures are often stratified,
which means that the spatial distribution of the parameters involved in slope reliability evaluation is
statistically anisotropic. This paper studies the effect of the statistical anisotropy of undrained shear
strength on the probability of slope failure (pf) based on the Monte Carlo simulation. The results show
that for the horizontally layered slope, the larger the horizontal correlation scale of undrained shear
strength (λx) is, the larger pf is, especially when λx is smaller than the slope length; for the vertically
layered slope, the larger the vertical correlation scale (λy) is, the smaller pf is, especially when λy

is smaller than the slope height. Additionally, the mechanism of the above results is discussed by
analyzing the displacement distribution at different correlation scales. The findings indicate that in
the reliability evaluation of undrained slopes in stratified structures, either underestimation of λx or
overestimation of λy leads to an unconservative estimate of pf, resulting in an overestimation of the
slope stability.

Keywords: probability of slope failure; Monte Carlo simulation; undrained shear strength;
statistically anisotropic parameters; failure mechanism

1. Introduction

Due to complex geological, environmental and physical effects, the parameters in-
volved in slope stability assessments show spatial variability at multiple scales. Even in the
seemingly homogeneous site for laboratory-scale sampling and measurement, the saturated
hydraulic conductivity, shear strength and other parameter values of rock and soil also
show great spatial variability [1–3]. Spatial variability is an inherent property of rock and
soil materials.

In recent decades, the spatial variability of rock and soil parameters has been shown
by previous studies to be a factor that cannot be ignored in evaluating slope reliability.
For example, Cho [4] emphasized the importance of the spatial variability of soil mechanics
parameters in the evaluation of failure probability. Ji et al. [5] found that ignoring the
spatial variability of shear strength parameters would seriously overestimate the failure
probability of slopes. Griffiths et al. [6] and Jiang et al. [7] indicated that when the coefficient
of variation of the shear strength parameter is large and the factor of safety calculated by
the mean of the parameter is close to 1, ignoring the spatial variability of the shear strength
parameters could lead to an unconservative estimate of the probability of slope failure.
Cai et al. [8] indicated that it is important to describe the permeability coefficient and pore
water distribution in slope stability analysis using cross-correlation analysis between the
factor of safety and hydraulic parameters of an infinite slope. Qi and Li [9] studied the
typical failure mechanism of the critical slip surface of a heterogeneous slope and the results
show that local failure may occur in a statistically isotropic slope, which is not observed
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in the deterministic slope stability analysis. These studies all used probabilistic statistics
methods, which allows us to describe heterogeneity of geologic formations quantitatively.
Other probabilistic statistical methods, such as machine learning and artificial neural
networks, also appear widely in the application of geosciences [10–12].

Most of the aforementioned studies focused on statistically isotropic parameters. Due
to large-scale geological deposition processes, slope structures are often stratified, which
means that the spatial distribution of the parameters is statistically anisotropic. The statisti-
cal anisotropy of the parameters is mainly controlled by the continuity of the formation.
The more continuous the formation is along the layer direction, the more obvious the statis-
tical anisotropy of the parameters [13]. Ye et al. [14] conducted a hierarchical geostatistical
analysis to examine the large-scale geologic structure for the entire field site and then
investigated small-scale features within different layers. The ratio of horizontal to verti-
cal spreading at varying moisture contents suggests the statistical anisotropy in effective
unsaturated hydraulic conductivity, confirming existing stochastic theories. In addition,
the statistical anisotropy of geotechnical materials can be obtained using remote sensing
techniques [15–21].

Therefore, it is necessary to study the effect of statistically anisotropic parameters on
the probability of slope failure. In this paper, the effect of statistically anisotropic undrained
shear strength on the probability of slope failure is studied. The undrained shear strength
corresponds to the situation in which the geotechnical materials cannot be drained under
saturated conditions. For example, the amount of infiltration into the slope during heavy
rainfall is very high and it cannot be discharged in a short time. At this time, the stability of
the slope is mainly determined by the undrained shear strength of the soil.

An appropriate method for calculating the probability of failure of a heterogeneous
slope is the Monte Carlo simulation (MCS). MCS has been widely used in slope reliability
analysis [22–27]. The obvious advantage of an MCS is that it increases the accuracy and
reliability of the evaluation results through numerous repeated iterations. This operation
can overcome the impact of data collection and human factor errors [28]. Therefore, MCS
better reflects the real phenomenon traditional reliability analysis methods. In particular,
when using the finite element strength reduction method to calculate the factor of safety
of slope, there is no explicit analytical solution between the geotechnical parameters and
the factor of safety due to the complex non-linear relationship. Therefore, it is difficult to
calculate the probability of slope failure using traditional reliability analysis methods and
the use of MCS can bypass this problem.

This paper is organized as follows. First, the method for characterizing the heterogene-
ity of parameters is introduced and the characteristics of the distribution of statistically
anisotropic undrained shear strength are illustrated. Then, the effect of the different hor-
izontal and vertical correlation scales of undrained shear strength on the probability of
slope failure is investigated by the Monte Carlo simulation. Finally, based on the analysis
of the slope displacement of different correlation scales, the mechanism of the effect of the
correlation scales on the probability of failure is discussed.

2. Methodology
2.1. Stochastic Conceptualization of Heterogeneity

Random field theory has become popular in recent years to describe parameter het-
erogeneity [13,29,30]. Random field theory assumes that the parameters of each position
involved in the slope stability assessment (corresponding to each element) are random
variables and the whole slope becomes an ensemble of these random variables, namely,
a random field. This means that there are infinite possibilities of the distributions of pa-
rameters (realizations). As we take the undrained shear strength (cu) as a random field,
it can be described by a probability density function with a specific mean, variance and
autocorrelation function. The autocorrelation function represents the spatial structure of
soil properties and plays a significant role in random field analysis. In practice, geotechnical
materials are sampled to obtain their mechanical and hydraulic parameters. Statistical
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and variogram analysis of the parameter data gives the mean, variance and correlation
scales under the stochastic conceptualization. In this study, to avoid negative parameter
values during evaluation, an exponential 2D autocorrelation function is adopted with
different correlation scales in the horizontal and vertical directions. We assume that the
slope has n random variables and i and j = 1,2..., n; then, the autocorrelation function can
be expressed as:

ρij = exp

[
−2

(∣∣xi − xj
∣∣

λx
+

∣∣yi − yj
∣∣

λy

)]
(1)

where ρij is the autocorrelation coefficient between cu at location (xi, yi) and at location (xj, yj)
and λx and λy are the horizontal and vertical correlation scales, respectively. Physically,
the correlation scale describes the average dimensions (e.g., length and thickness) of
heterogeneity (e.g., layers or stratifications) within the domain [13].

When λx is equal to λy in a random field, it is called a statistical isotropic random field.
In Figure 1, λx is equal to λy, increasing successively to 0.5 m, 2 m and 5 m, respectively.
This parameter field corresponds to the condition that the slope is the accumulation of a
large number of spherical geological bodies (such as gravel beds or sandy soil beds), where
the average gravel or sand particle radius is approximately equal to the correlation scale λ.
Certainly, each globular body can be made up of different shapes and properties, as well as
the density of their distribution. The realizations are generated by a spectral method [31].

Water 2022, 14, x FOR PEER REVIEW 3 of 11 
 

 

properties and plays a significant role in random field analysis. In practice, geotechnical 
materials are sampled to obtain their mechanical and hydraulic parameters. Statistical and 
variogram analysis of the parameter data gives the mean, variance and correlation scales 
under the stochastic conceptualization. In this study, to avoid negative parameter values 
during evaluation, an exponential 2D autocorrelation function is adopted with different 
correlation scales in the horizontal and vertical directions. We assume that the slope has 
n random variables and i and j = 1,2..., n; then, the autocorrelation function can be ex-
pressed as: 𝜌௜௝ = exp ቈെ2ቆห𝑥௜ െ 𝑥௝ห𝜆௫ ൅ ห𝑦௜ െ 𝑦௝ห𝜆௬ ቇ቉ (1) 

where ρij is the autocorrelation coefficient between cu at location (xi, yi) and at location (xj, 
yj) and λx and λy are the horizontal and vertical correlation scales, respectively. Physically, 
the correlation scale describes the average dimensions (e.g., length and thickness) of het-
erogeneity (e.g., layers or stratifications) within the domain [13]. 

When λx is equal to λy in a random field, it is called a statistical isotropic random 
field. In Figure 1, λx is equal to λy, increasing successively to 0.5 m, 2 m and 5 m, respec-
tively. This parameter field corresponds to the condition that the slope is the accumulation 
of a large number of spherical geological bodies (such as gravel beds or sandy soil beds), 
where the average gravel or sand particle radius is approximately equal to the correlation 
scale λ. Certainly, each globular body can be made up of different shapes and properties, 
as well as the density of their distribution. The realizations are generated by a spectral 
method [31]. 

  
(a) (b) 

 
(c) 

Figure 1. Numerically generated statistically isotropic undrained shear strength fields: (a) λx = λy = 
0.5 m, (b) λx = λy = 2 m and (c) λx = λy = 5 m. 

Statistical anisotropic random fields refer to the fact that correlation scales are not 
equal in each direction (i.e., λx is not equal to λy). Statistical anisotropy is a normal and 
inevitable feature of heterogeneous geological structures because of the layered distribu-
tion caused by large-scale geological sedimentary processes. Figure 2 displays three dif-
ferent realizations of statistical anisotropic random fields where λy is equal to 0.5 m and 
λx is equal to 2 m, 5 m and 25 m. The random seeds, means and variances of these three 
realizations are the same as those in Figure 1. Compared with the statistical isotropic 

Figure 1. Numerically generated statistically isotropic undrained shear strength fields: (a) λx = λy = 0.5 m,
(b) λx = λy = 2 m and (c) λx = λy = 5 m.

Statistical anisotropic random fields refer to the fact that correlation scales are not equal
in each direction (i.e., λx is not equal to λy). Statistical anisotropy is a normal and inevitable
feature of heterogeneous geological structures because of the layered distribution caused by
large-scale geological sedimentary processes. Figure 2 displays three different realizations
of statistical anisotropic random fields where λy is equal to 0.5 m and λx is equal to 2 m, 5 m
and 25 m. The random seeds, means and variances of these three realizations are the same
as those in Figure 1. Compared with the statistical isotropic parameter field in Figure 1,
the distribution of their high and low values is the same, but the strong zone and weak
zone in Figure 2 have better horizontal extensiveness. With the increase in λx, strong and
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weak zones are increasingly connected in the horizontal direction. Some geological tectonic
movements (e.g., folds) may cause the strata to rotate or even stand upright. Therefore,
vertical layered slopes are also a common geological phenomenon [32,33]. It can correspond
to the statistical anisotropy random field in the vertical direction shown in Figure 3, where
λx is equal to 0.5 m and λy is equal to 2 m, 5 m and 25 m. The random seeds are different as
before, but the means and variances are the same as before. As shown in Figure 3, similar
to the anisotropic random field in the horizontal direction, the strong zone and weak zone
are increasingly connected in the vertical direction with increasing λy.
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2.2. Monte Carlo Simulation and Probability of Failure

In this paper, the Monte Carlo simulation (MCS) is adopted to study the effect of the
statistical anisotropy of undrained shear strength on pf. With the given mean, variance and
correlation scales, numerous realizations of the spatial distributions of undrained shear
strength can be generated using a spectral method [31].

A synthetic slope model for MCS is created, which is discretized into 1520 square
elements with the side equal to 0.5 m (Figure 1), height H = 10 m and slope inclination
β = 26.6◦. The left-side and right-side boundaries are assigned no horizontal displacement
conditions and the bottom boundary is assigned no displacement conditions. The soils are
assumed to follow the Mohr–Coulomb constitutive models. Additionally, the undrained
friction angle ϕu = 0 and the unit weight γ = 20 kN/m3. The mean of cu is 34 kN/m2,
according to Griffiths and Fenton [22] and the standard deviation of cu is 17. The slope
is only subjected to gravity loads. Once these parameters are set up, the corresponding
factor of safety for the slope can be evaluated based on the finite element strength reduction
method [34]. For example, the factor of safety of Figure 1a as the input cu is 1.05.

Subsequently, pf can be calculated according to the following formula:

p f =
NFS<1

Nr
(2)

where Nr is the number of realizations generated during MCS; in this study, Nr = 500. NFS<1
is the number of times when the factor of safety is less than 1. When the mean, variance
and correlation scales of cu were obtained, 500 realizations could be generated by using the
random field generator mentioned above. For example, when λx = 0.5 m and λy = 0.5 m,
the pf evaluated by MCS was 0.470.

3. Results

In this section, the behaviors of the probability of failure (pf) with the change in
correlation scales in different directions are investigated. In this paper, λx and λy are 0.5, 1,
2, 5, 10, 25, 50 and 100 m, respectively. That is, the factors of safety of 32,000 realizations
need to be evaluated, which requires considerable computing.

First, the effect of the correlation scale (Λ = λx = λy) on pf with a statistically isotropic
cu was discussed. Figure 4 shows the relationship between pf and correlation scale Λ.
When Λ is less than 1 m, pf increases with increasing Λ (e.g., Λ = 0.5 m, pf = 0.470; Λ = 1 m,
pf = 0.639). Then, when Λ > 1 m, pf gradually stabilizes to 0.651. It can also be concluded
from Figure 1 that when Λ > 1 m, the influence of correlation scales on the distribution
of cu is gradually reduced so that pf is eventually constant, which is consistent with the
conclusion by Griffiths and Fenton [22].
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Then, the results of pf with the statistically anisotropic (λx > λy) cu are discussed.
Figure 5 shows the change in pf with different λy as λx increases. It appears that with
increasing λx, pf has a gradually increasing trend. When λx is less than the overall length of
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the slope (the slope length in this study is 20 m), pf increases rapidly. In the case of λy = 1 m,
when λx = 0.5 m, pf = 0.639 and when λx = 10 m, pf increases to 0.833, increasing by 0.194.
When λx is larger than the slope length, the increase in pf becomes less obvious. In the case
of λy = 1 m, when λx = 25 m, pf = 0.882 and when λx = 50 m, pf only increases by 0.044 to
0.926. Moreover, for different λy (which means different layer thicknesses), the pattern, i.e.,
the larger λx is, the higher pf is, is the same.
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Figure 6 shows the relationship between pf and λy with different λx, where λy is
greater than λx. Contrary to the pattern of λx on pf, with the increase in λy, pf decreases
under the same λx. When λy was less than the slope height (H = 10 m), pf decreased rapidly
and when λy was greater than the slope height, pf decreased slowly.
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In addition, compared with the condition of statistically isotropic cu, when cu is
statistically anisotropic, the variation of λ has a significant effect on the stability of the slope,
especially when λx is smaller than the slope length and λy is smaller than the slope height.

According to the above results, it can be easily concluded that in the reliability evalu-
ation of undrained slopes in stratified structures, either the underestimation of λx or the
overestimation of λy leads to an unconservative estimate of pf, resulting in an overestima-
tion of the slope stability. This is a more detailed result than previous studies which only
considered statistical isotropy and concluded that ignoring the spatial variability of the
shear strength parameters could lead to an unconservative estimate of the probability of
slope failure.

To ensure that the results of MCS with different correlation scales are representative,
the mean of pf during MCS is examined. Figure 7 shows that the mean of pf changes
with the increase in the number of realizations for four combinations of correlation scales
(λx = 25 m, λy = 1 m; λx = 1 m, λy =25 m; λx = 10 m, λy = 2 m; λx = 2 m, λy =10 m). It is
accepted that within 200 realizations, the fluctuation of the mean value of pf is large and
after approximately 300 realizations, the mean value of pf becomes stable.
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4. Mechanism Analysis

According to the results in the previous section, the longer the horizontal correlation
scale is, the higher the probability of failure and the longer the vertical correlation scale is,
the lower the probability of failure. The mechanism of this pattern is now investigated based
on the displacement distribution of horizontal and vertical layered slopes under gravity.

Figure 8a is the contour map of displacement (u) corresponding to the parameters in
Figure 2a (λx = 2 m, λy = 0.5 m), which has a FS of 1.03 and the displacement contour in
Figure 8b corresponds to Figure 2b (λx = 10 m, λy = 0.5 m) with a FS of 0.98. The random
seeds of these two realizations are the same; again, the distributions of the strong zone
and weak zone are the same, but the degree of connectivity is different. Since the mean
and standard deviation of cu of these two realizations are the same, the magnitude of their
displacement is similar in the range. However, under these two sets of correlation scales,
pf calculated by MCS is quite different, when λx = 2 m and λy = 0.5 m, pf is 0.788, when
λx = 10 m and λy = 0.5 m, pf is 0.896.
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Figure 8 shows that the contour line of the slope displacement distribution is not
smooth locally, which is caused by the heterogeneity of the parameter and the slope
displacement at the same position is larger when λx is larger. Comparison of Figure 8a
with Figure 8b shows that the area where the slope is significantly displaced becomes
longer in the horizontal direction since the weak zone is more connected in the horizontal
direction. For example, when λx = 2 m, λy = 0.5 m, near y = 8 m, the area of maximum
displacement extends no more than 5 m in the horizontal direction (Figure 8a), while when
λx = 10 m, λy = 0.5 m, at the same elevation, the maximum displacement width exceeds
5 m (Figure 8b). On the other hand, the yellow area in Figure 8a extends longer in the
sliding direction than the red area in Figure 8b. It is suggested that a more connected strong
zone prevents the development of local displacements as a wall.

However, as the slope is only subject to gravity and the sliding direction is point-
ing out of the slope, the more connected horizontal weak zone makes the displacement
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development more unconstrained when λx is greater than λy, resulting in greater slope
displacement and, consequently, greater pf.

The displacement contour for the case where λx is less than λy is shown in Figure 9,
where Figure 9a corresponds to the parameters in Figure 3a (λx = 0.5 m, λy = 2.0 m), which
has a FS of 1.04 and Figure 9b corresponds to Figure 3b (λx = 0.5 m, λy = 10.0 m) with a FS
of 1.07.
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As can be seen in Figure 9, the magnitude of displacement is smaller when λx is
smaller than λy, ranging from 0.01 m to 0.11 m, compared to the case where λx is greater
than λy. Additionally, the contour line of the slope displacement distribution is also not
smooth locally because of spatial variability of the parameter. Moreover, in the case of 9a,
a discontinuity of the displacement distribution occurs at X = 9 m and Y = 10 m due to
the existence of a strong zone such as an anti-slip pile. Additionally, as λy becomes larger,
the blocking effect of the strong zone becomes more obvious, such that the red area in
Figure 9b is smaller than the red area in Figure 9a and a new displacement discontinuity
appears near X = 6 m, Y = 23 m. Therefore, in the case where λx is less than λy, when λy
is greater, the strong zone, such as an anti-slip pile, is more continuous, providing more
anti-slip action and increasing the stability of the slope, the displacement decreases and pf
is consequently smaller.

As a summary, an inaccurate assessment of the spatial correlation scales of param-
eters in slope stability analysis can increase the uncertainty in the calculation of pf and
local displacement.

5. Discussion

The accurate description of parameter heterogeneity affects the uncertainty of the slope
reliability evaluation. Additionally, the correlation scales reflect the spatial structure of the
strata in the slope as an important indicator of the random field theory that quantitatively
describes the heterogeneity of the parameters. Due to geological processes, the spatial
structure of geotechnical materials is mostly stratified, that is, the correlation scales are not
uniform in different directions, also known as statistical anisotropy. However, the effect
of correlation scales on the reliability of heterogeneous slopes has rarely been reported in
previous studies, which is the reason why this paper investigates the effect of statistical
anisotropy of cu on slope reliability.

According to the results of this study, inaccurate statistical anisotropy does lead to
significant uncertainty in the slope reliability evaluation, especially underestimating the
horizontal correlation scale, which can underestimate the probability of slope failure. There-
fore, in practical work on slope reliability evaluation, when the strata are shown to be
horizontally stratified through field survey data, the value of cu input to the calculation
model needs to be taken very carefully and the use of more complex and detailed ge-
ometric models is recommended, especially not to simplify the parameter distribution
to homogeneous.
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Although this study is limited to synthetic numerical models, it does provide insight
into the effect of statistical anisotropy of cu on slope reliability evaluation and demonstrates
the importance of the accurate description of the correlation scale for assessment of the
probability of failure.

Furthermore, it should be noted that while our discussions focus on the statistical
anisotropy of cu, the same stochastic tools can be applied to the analysis of spatial variability
of any other parameters and boundary conditions. This refinement is left to future studies.
On the other hand, in order to highlight the effect of statistical anisotropy on slope stability,
this study conducted a synthetic numerical experiment using unconditional Monte Carlo
simulations. If sampling data are available, conditional MCS, which creates realizations
that preserve measurements of the primary information at the sampling locations, can be
performed to further reduce uncertainty in the slope reliability evaluation and lead to a
more accurate probability of failure.

6. Conclusions

This paper introduces the stochastic conceptualization of heterogeneity, which is that
the spatial distribution of the parameters can be described with mean, variance and correla-
tion scales. The correlation scales characterize the spatial structure of the strata and when
λx is equal to λy, it is called statistical isotropy; otherwise, it is called statistical anisotropy.

Additionally, the effect of statistical anisotropy of undrained shear strength on pf is
investigated based on the Monte Carlo simulation. The results show that λx and λy of cu
have significant effects on pf. On the one hand, when λx is greater than λy, the larger λx
is, the larger pf is, especially when λx is smaller than the slope length, pf increases more
significantly. On the other hand, when λy is greater than λx, the larger λy is, the smaller pf
is, especially when λy is smaller than the slope height, pf decreases more significantly.

Then, we conduct the displacement analysis of slopes to study the mechanism of
the effect of statistical anisotropy on pf. It can be concluded that when λx is greater
than λy, the weak zone has a more important influence than the strong zone on slope
stability, that is, with λx increasing, the more connected horizontal weak zone makes the
displacement development more unconstrained resulting in greater slope displacement
and, consequently, greater pf. When λy is greater than λx, the strong zone has a more
important influence, that is, with λy increasing, the strong zone, such as an anti-slip pile, is
more continuous, providing more anti-slip action and increasing the stability of the slope,
the displacement decreases and pf is consequently smaller.

Lastly, it is crucial to accurately estimate correlation scales for the slope stability
evaluation, as either the underestimation of λx or the overestimation of λy will result in an
underestimation of pf. Therefore, when dealing with horizontally stratified slopes, accurate
input parameters and detailed geometric models are recommended.
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