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Abstract: Boron is a special pollutant. Because of its relatively small molecular weight, it can freely
penetrate the reverse osmosis membrane in the same way that water molecules can in reverse osmosis
during seawater desalination, which affects the effluent quality of desalinated seawater. In this
study, a new magnetic adsorption material, MNP-NMDG, was synthesized by combining magnetic
nanoparticles (MNPs) of Fe3O4 with N-methyl-D-glucamine with a high selectivity to boron, and
MNP-NMDG was characterized by scanning electron microscopy (SEM), Fourier transform infrared
spectroscopy (FT-IR), and X-ray diffraction (XRD). The adsorption properties of the MNP-NMDG for
boron during seawater desalination under static and dynamic conditions was studied from the aspects
of pH, adsorbent dosage, adsorption kinetics, and isotherms. The results showed that according to
the breakthrough curve of dynamic adsorption, MNP-NMDG had a high boron-adsorption capacity,
and the static adsorption capacity was 9.21 mg/g. The adsorption performance was the best at
pH = 9, and the adsorption equilibrium was achieved within 40 min. Boron adsorption conformed to
the Freundlich adsorption isotherm and to the pseudo-second-order kinetic model. This composite
material not only provides an effective and rapid way to remove boron from desalinated seawater, but
also has a shorter removal time and makes it more easily separated using the external magnetic field.

Keywords: desalinated seawater; boron; N-methyl-D-glucamine; magnetic separation; adsorbent

1. Introduction

Water resources account for about three-quarters of the earth’s surface, but there is
a serious shortage of drinking water in many countries around the world [1,2], mainly in
developing countries and countries in the Middle East [3]. The reason for this situation
is that seawater and bitter brine account for 97.5% of the total water resources on the
Earth, while freshwater accounts for only 2.5% of the total water resources on the Earth,
of which 80% are distributed in the form of ice in the Arctic and in Antarctica, and on
mountains [4,5]. In the face of increasing water demands and a diminishing freshwater
supply [6], desalination has become the key to helping meet the growing demand for
water [7,8], especially in water-deficient countries, where the supply of desalinated seawater
far exceeds the supply of natural freshwater [9]. With changes in the sea area and season,
seawater usually contains 4–6 mg/L boron, and there is still a small amount of boron that
exceeds the recommended standard in desalinated seawater. Boron plays an irreplaceable
role in the growth and development of humans and animals [10]. However, excessive boron
intake can cause a series of adverse reactions and even boron poisoning. Among seawater
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desalination technologies, reverse osmosis (RO) is becoming more and more popular
because of its convenient operation and low cost. In China, 68.7% of seawater desalination
projects adopt reverse osmosis (RO). Although the desalination rate of seawater desalination
processes has reached more than 99%, the removal of boron ions is not ideal [11]. The boron
removal rate of reverse osmosis in conventional seawater is only 60–80% [12]. The boron
concentration in the produced water seriously exceeds standards, and the boron content
in desalinated seawater is 0.5–2.5 mg/L [13], which exceeds the amount of 0.5 mg/L that
has been specified in the hygienic standards for drinking water (GB5749–2006) [14]. In
2017 and after several revisions, the World Health Organization set the limit for boron in
drinking water to 2.4 mg/L [15]. Many countries and organizations have also developed
corresponding standards. In the United States, the boron content limits in drinking water
are generally 0.5 mg/L–0.9 mg/L [16]; in California, Britain, Israel, and Japan, the limit is
1.0 mg/L [17–19]; in New Zealand and New Jersey, the limit is 1.4 mg/L [20]; and the upper
recommended limit for European drinking water is 1.5 mg/L [21]. Saudi Arabia follows
the WHO drinking water standard, and Australia and Canada have higher boron content
limits for drinking water, 4.0 mg/L and 5.0 mg/L, respectively [22,23]. Although various
countries are different in terms of the limits of boron content in desalinated seawater,
boron removal technology for seawater desalination is still an essential part of the whole
desalination process.

At present, many studies have discussed how to remove high levels of boron from
wastewater, including adsorption methods, chemical precipitation, the reverse osmosis
method [24], extraction methods, and electrocoagulation methods [25]. Yet, most con-
ventional boron removal methods do not meet the process requirements for seawater
desalination. The main methods for boron removal during seawater desalination are elec-
trodialysis [26], ion exchange resins [27], as well as the combination of various methods
for desalination and boron removal [28]. So far, the most effective adsorbent to remove
boron from an aqueous medium is boron-specific resin, which usually has a N-methyl-D-
glucamine functional group (NMDG) [29]. Hydroxyl functional groups (NMDG) can form
selective complexes with boron in the presence of many ions to achieve boron removal.
However, NMDG has a small molecular weight and is easily soluble in water, so it is neces-
sary to develop insoluble NMDG derivatives. In this study, a new magnetic adsorption
material was synthesized successfully by combining Fe3O4 magnetic nanoparticles (MNPs)
with N-methyl-D-glucamine (NMDG) with high selectivity to boron. Fe3O4 nanoparticles
were insoluble in water and had magnetism, which was convenient in regard to separation
and recovery from water. Hydroxyl functional groups (NMDG) can selectively complex
with boron in the presence of many ions to achieve the purpose of removing boron. The
preparation method for this adsorbent includes three steps: the preparation of magnetic
nanoparticles (MNPs) of Fe3O4, the encapsulation of the magnetic nanoparticles in SiO2,
and the creation of the composite with N-methylglucosamine. This new adsorbent is
suitable for removing boron from desalinated seawater. Compared to the traditional boron-
selective adsorbent, the combination of functional groups and magnetic nanoparticles
is not only suitable for water with a low boron concentration, but it is also convenient
for recycling.

2. Materials and Methods
2.1. Experimental Materials

Iron trichloride hexahydrate, iron sulfate heptahydrate, sodium metasilicate nonahy-
drate, and sodium hydroxide were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Nitric acid (65–68%) was provided by Laiyang Kangde Chemical Co.,
Ltd. (Laiyang, China). N-methyl-D-glucamine (99%), N-Hydroxysuccinimide (NHS), and
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) were provided by
Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China). All of the reactants
were of analytical grade.
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2.2. Synthesis of Sorbent
2.2.1. Synthesis of Fe3O4 Nanoparticles

The Fe3O4 nanoparticles were prepared by means of the co-precipitation method. The
specific steps were as follows: an amount of 1.623 g FeCl3·6H2O and 1.082 g FeSO4·7H2O
were dissolved in deionized water to prepare a solution containing 0.30 mol/L iron salt
(the concentration ratio of Fe2+ to Fe3+ is 1.00:1.50), which was placed in a 250 mL flask.
The solution was heated to 60 ◦C in a water bath, stirred, and 0.25 mol/L NaOH solution
was added dropwise. The mixed solution gradually changed from orange to black, and
a large number of black granular solids were generated. When the pH increased to 9–10,
the mixture was stirred for 30 min. After being allowed to age for a certain time, mixing
was stopped, and then a magnet was put under the container. The mixture was kept still
until the black powder was fully immersed at the bottom of the container. The solution
became almost transparent, and the supernatant was removed using a liquid transfer tube.
The black particles were washed three times with deionized water and dried in vacuum to
obtain Fe3O4 nanoparticles.

2.2.2. SiO2 Wrapped Magnetic Fe3O4 Nanoparticles

A 0.5 g amount of Fe3O4 nanoparticles was placed in a 250 mL triple-mouth flask
with 0.6 g Na2SiO3·9H2O and 100 mL of deionized water. The mixture experienced strong
electric stirring, was heated to 60 ◦C in a stirred water bath, and the 0.25 mol/L nitric acid
solution was added dropwise. The pH of the system was adjusted to about 6, and the
mixture was heated for about 60 min in a water bath, and then stirring stopped. Finally,
a magnet was placed under the flask, and when the black powder was immersed at the
bottom of the flask, and the upper liquid was removed. The black powder was centrifuged
with deionized water and washed three times, and the final product was dried in a vacuum-
drying oven at 70 ◦C for 12 h. After drying, a nano-sized iron oxide wrapped in SiO2 was
obtained, and the product was sealed in a weighing flask.

2.2.3. Synthesis of MNP-NMDG

A 0.2 g amount of SiO2-modified magnetic nano-Fe3O4 particles was weighed and
dispersed in 10 mL deionized water, and then 1 mL of EDC solution and NHS solution
were added to the suspension and ultrasonically dispersed for 5 min. The MNP-NMDG
was prepared by adding 0.3 g N-methyl-D-glucamine, shaking the prepared reagent in a
constant temperature oscillation box for 2 h, putting the magnetic iron under the bottle to
separate and remove the mother liquor, followed by centrifugal washing with deionized
water three times and drying at 50 ◦C for 12 h in a drying closet (Figure 1).
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Figure 1. Sketch for the preparation of magnetic absorbent MNP-NMDG.

2.3. Characterization Experiments of Fe3O4 and Its Magnetic Composites

Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR),
and X-ray diffraction (XRD) were used to characterize the appearance and chemical com-
position of the adsorbent. Scanning electron microscopy (SEM) was used to analyze the
surface morphology of the composites using a Hitachi high-tech field emission scanning
electron microscope SU8200 (Hitachi High-Tech Group, Tokyo, Japan). The FT-IR spectra of
the Fe3O4 nanoparticles and MNP-NMDG were analyzed using a Nicolet/Nexus 670 in-
frared spectrometer (Nicolet, Madison, WI, USA), and the FT-IR spectrum was obtained
with a resolution of 4 cm−1 and at a scanning range of 400–4000 cm−1. The composite
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materials were analyzed by XRD in the range of 10–80◦ using a Rigaku D/Max-2400 X-ray
diffractometer (Rigaku Corp, Tokyo, Japan).

2.4. Adsorption Experiments of MNP-NMDG Magnetic Composites

Boron was removed from desalinated seawater by batch experiments and flow-through
column experiments. In the batch experiments, the effects of the adsorption time, adsorbent
dosage, pH, and initial concentration of boron on the adsorbent were studied, and the
adsorption effect of the boron absorbent was studied using adsorption isotherm and
kinetic methods. Different concentrations of a boric acid solution were configured, and
an appropriate amount of adsorbent was mixed with it in a conical flask; then, the conical
flask containing the mixture was placed in a constant temperature oscillator to oscillate.
Finally, the supernatant was collected by magnetic separation, and the absorbance was
measured using an ultraviolet spectrophotometer and compared with the standard curve
to determine the boron concentration in the adsorbed water.

For the flow-through column experiments, a flow-through column device was estab-
lished using a peristaltic pump and an acid-type titration tube. As shown in Figure 2, a
certain amount of the prepared magnetic adsorption material, MNP-NMDG, is put into
the acid-type titration tube. At room temperature, desalinated seawater is input from
the upper end of the burette by the peristaltic pump at a certain inlet velocity that was
pre-determined for the boron removal experiments. Samples were taken from the outflow
at different intervals, and the number of boron ions in the raw desalinated seawater and in
the water after the adsorption treatment was detected by methimino-H spectrophotometry.
The breakthrough curve was plotted, and the dynamic boron removal adsorption capacity
was calculated. The adsorption efficiency and the removed boron rate was computed
following Equations (1)–(3):

qe =
(C0 − Ce)V

m
(1)

qt =
(C0 − Ct)V

m
(2)

%Removal =
(C0 − Ce)

C0
× 100 (3)

where C0 (mg·L−1) is the initial boron concentration, while Ce and Ct (mg·L−1) are the
equilibrium and the boron concentration at time, m (g) is the weight of the sorbent, V (L)
is the volume of the aqueous solution, and qe and qt (mg·g−1) are the amount of boron
adsorbed at equilibrium and at any time, respectively.
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3. Results and Discussion
3.1. Characterization of Fe3O4 and Its Magnetic Composites

Figure 3 shows High Resolution Transmission Electron Microscope (HRTEM) images
of bare (Figure 3a) and silica coated Fe3O4 nanoparticles (Figure 3b), the final magnetic
absorbent (Figure 3c), and an SEM image of the magnetic nanocomposite MNP-NMDG
(Figure 3d,e). From the SEM results in Figure 3d, it can be seen that MNP-NMDG is
spherical in shape and has a relatively uniform and small particle size. From the SEM
results in Figure 3e, it can be seen that the surface of the material is uneven and that there
are tiny bumps. Because magnetic nanoparticles of Fe3O4 and SiO2-coated particles are
spherical (Figure 3a,b), this can explain the adhesion of N-methyl-D-glucamine on the outer
surface. MNP-NMDG has a morphology in which N-methyl-D-glucamine is attached to the
surface of the magnetic material Fe3O4@SiO2, which is conducive to boric acid adsorption.
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absorbent (c), and an SEM image of MNP-NMDG (d,e).

The Fourier transform infrared (FT-IR) spectra of Fe3O4 and MNP-NMDG are shown
in Figure 4. In the figure, the absorption peak at 567 cm−1 corresponds to the vibration of
the Fe-O bonds in the crystalline lattice of Fe3O4 [30]. Compared with the bare magnetic
nanoparticles, new bands were present when the magnetic Fe3O4 nanoparticles were coated
with silica. The absorption peak at 3450 cm−1 corresponds to the stretching vibration of
the O-H bonds in the NMDG structure. The absorption peak at 1650 cm−1 corresponds to
the stretching vibration of C-O, while the absorption peak at 1100 cm−1 corresponds to the
asymmetric stretching vibration absorption peak of Si-O-Si (Figure 4b) [31]. Figure 4c shows
the infrared spectrum obtained for the final magnetic absorbent. The figure shows that
the intensity of the absorption peak at 3450 cm−1 increases significantly, as a result of the
stretching vibration of -O-H [32], and indicates that NMDG was immobilized successfully
on the magnetic nanoparticles.
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In order to determine the formation of the MNP-NMDG composites, powder X-ray
diffraction (XRD) analysis was carried out on Fe3O4, Fe3O4@SiO2, and MNP-NMDG. As
shown in Figure 5, six peaks could be clearly observed, and the corresponding diffraction
angles were 30.29◦, 35.67◦, 43.29◦, 53.66◦, 57.17◦, and 62.86◦, which belonged to the (220),
(311), (400), (422), (511), and (440) crystal planes of Fe3O4 powder [33]. The diffraction
patterns of Fe3O4@SiO2 and MNP-NMDG were similar to those of Fe3O4, and there were no
obvious differences in the positions of the diffraction peaks. Fe3O4@SiO2 has an intensity
that is relatively weaker, which may be due to the SiO2 coating on the surface of the
Fe3O4 nanoparticles, and it was also demonstrated that SiO2 wrapping has no effect on
the structure of Fe3O4 nanoparticles. The strength of MNP-NMDG is weaker than both,
indicating that Fe3O4@SiO2 is the main component of the MNP-NMDG composites and
that it helps to maintain a good crystal structure. At the same time, the introduction of
N-methyl-D-glucamine did not interfere with the structure of Fe3O4@SiO2. The MNP-
NMDG composites did not contain the peak value of N-methyl-D-glucamine, which is
likely due to the relatively low content of N-methyl-D-glucamine in the composite and its
high dispersion in the aqueous solvent.
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3.2. Boron Adsorption Test for MNP-NMDG
3.2.1. Effect of Solution pH on Boron Removal by MNP-NMDG

The effects of different pH values on boron adsorption by MNP-NMDG were studied
at 25 ◦C. Eight conical flasks were used, and a 25 mL volume of boric acid solution was
added into the flasks to ensure that the concentration of boric acid in each group was
1 mg/L along with 40 mg/L of the adsorbent. The pH was adjusted using 0.1 mol/L of a
diluted nitric acid solution and a sodium hydroxide solution by means of a micro-sampler.
The conical flask was placed in a water bath with a constant temperature oscillator set at
25 ◦C for 40 min to be tested. The pH value affects the adsorption process by changing the
existing form of boron. The boron adsorption experiment was carried out by adjusting the
solution’s pH to be between 3 and 10. As shown in Figure 6, the adsorption capacity of the
composite material for boron first decreases and then increases, and then decreases as the
pH increases from 3 to 10. The adsorption capacity was the largest at pH = 9, followed by
pH = 3, which indicated that the adsorbent has a good boron adsorption effect under acid
and alkali conditions. At pH = 3, the main form of boric acid is H3BO3, and at pH = 9, the
main form of boric acid is B(OH)4

−. B(OH)4
− forms a stable complex with the hydroxyl

structure of NMDG (Figure 7), which is also the reason why the adsorption capacity is
larger at pH = 9. However, considering that the water quality should meet the standards
for drinking water, pH = 7 was selected as the adsorption condition.
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3.2.2. Effect of Adsorbent Dose on Boron Removal by MNP-NMDG

The amount of adsorbent directly affects its adsorption capacity. In order to obtain the
best adsorption conditions, 0.5–3.0 mg of composite materials (with doses of 20–120 mg/L)
was added to a series of 25 mL volume and 1 mg/L concentration boric acid solutions to
carry out different experiments (GE Electronic Balance, Shanghai Youke Instrument Co.,
Ltd. (Shanghai, China)), and the oscillation time was 40 min. As shown in Figure 8, the
boron removal rate by composite materials shows an obvious increase as the dosage of
the adsorbent increases, but the increasing trend slows down when the dosage exceeds
2 mg. Considering the adsorption effect and cost, a dosage of 1 mg was selected for the
following adsorption experiments. It can be seen from the curve in the figure that the
adsorption capacity (qe) decreased as the adsorbent dosage increased. This is because
the active sites on the adsorbent surface were not saturated with boron. When the boron
concentration is constant, the increase in the dosage of the adsorbent will lead to a decrease
in the boron concentration compared to the amount of the adsorbent in a water-based
medium. Therefore, the adsorbent is in contact with less boron ions, which means that the
active sites in the adsorbent are unsaturated.
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3.2.3. Adsorption Kinetics

The effect of the adsorption time on the adsorption of boron by MNP-NMDG was
studied at 25 ◦C. Six boric acid solutions with 25 mL volume and 1 mg/L concentration
were prepared, and 1 mg of adsorbent (with a dose of 40 mg/L) was placed in a conical flask
and mixed with it; then, the conical flask containing the mixture was put into a constant
temperature oscillator and oscillated for 5–30 min. The boron concentration in the solution
decreased rapidly with the prolongation of the adsorption time (Figures 6 and 8). The
speed gradually slowed down within 15–25 min, and after 25 min, the boron concentration
increased slightly, which may be due to the slight desorption of the adsorbed substance,
but the concentration did not change after 40 min, indicating that the adsorption process
had reached equilibrium under the experimental conditions. In order to ensure complete
adsorption, the static adsorption time was 30 min in the following experiments.

In order to describe the kinetic process of MNP-NMDG on boron more clearly, taking
1 mg/L of boron solution and a 2 mg dose MNP-NMDG, the pseudo-first-order kinetic
equation and pseudo-second-order kinetic equation were used to show the fit at 25 ◦C [34].
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The pseudo-first-order dynamic equation and pseudo-second-order dynamic equation
are shown in Equations (4) and (5) [35]:

ln(qe − qt) = ln qe −
k1

2.303
t (4)

t
qt

=
1

k2q2
e
+

t
qe

(5)

where k1 (min−1) and k2 (g·mg−1·min−1) are the pseudo-first-order and pseudo-second-
order adsorption rate constants, respectively, qe and qt (mg·g−1) are the amount of adsorbed
boron at adsorption equilibrium and at any time, and t (min) is the adsorption time.

The fitted kinetic data from the model are shown in Figure 9 and in Table 1. The
R2 values in the pseudo-first-order kinetic model and in the pseudo-second-order kinetic
model of MNP-NMDG are 0.8933 and 0.9981, respectively. The adsorption capacity of
the pseudo-first-order kinetics at adsorption equilibrium was 4.48 mg/g, which is quite
different from the equilibrium adsorption capacity of 9.21 mg/g in the experiment. The
adsorption equilibrium amount of the pseudo-second-order kinetics at adsorption equi-
librium was 9.59 mg/g, which is close to the adsorption capacity at the actual adsorption
equilibrium. This indicates that the boron adsorption by MNP-NMDG conforms to the
pseudo-second-order kinetic model, that is, the adsorption rate is controlled by chemical
adsorption and involves electronic covalent or electronic migration between the adsorbate
and adsorbent [36].
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Table 1. Kinetic parameters of MNP-NMDG for boron adsorption.

Model k R2 qe (mg·g−1)

the pseudo-first-order k1 = 0.41 0.8933 4.48
the pseudo-second-order k2 = 0.08 0.9981 9.59

3.2.4. Adsorption Isotherm

Six 25 mL volumes of boric solution with different concentrations were configured,
and 0.1 mol/L of diluted nitric acid or sodium hydroxide solution was used to adjust the
pH value of the solution to 7. Then, 1 mg of adsorbent (with a dose of 40 mg/L) was mixed
with it in a conical flask. The conical flask containing the mixture was placed in a constant
temperature oscillator for 40 min. It can be seen from Figure 10 that with the increase in the
concentration of the boron solution from 1 mg/L to 25 mg/L, the adsorption capacity of
the composite material for boron also increases continuously.
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The Freundlich model, which is an empirical equation based on the adsorption phe-
nomenon on a uniform surface, was used to analyze the boron adsorption by MNP-NMDG.
The corresponding parameters are shown in Table 2, and the mathematical linear formula
is shown in Equation (6) [37]:

ln qe = ln KF +
1
n

ln Ce (6)

where Ce (mg·L−1) is the boron concentration at adsorption equilibrium, qe (mg·g−1) is
the amount of adsorbed boron at adsorption equilibrium, KF (L·mg−1) is the Freundlich
adsorption coefficient, and n is the Freundlich constant.

According to Freundlich model fitting, the parameter n can indicate adsorption diffi-
culties. In this experiment, 1/n is 0.14 (Table 2), which is between 0.1 and 0.5, indicating
that the boron in the solution was easily adsorbed by MNP-NMDG.

Table 2. Freundlich adsorption isotherm fitting parameters of MNP-NMDG for boron adsorption.

Elements 1/n KF R2

B 0.14 6.02 0.8748
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3.2.5. Flow-Through Column Experiments

The breakthrough curve of MNP-NMDG is shown in Figure 11 and was obtained
under the following conditions: room temperature, a flow rate of 3 mL/min, a 1.5 mass
of MNP-NMDG in the column, and desalinated seawater with a boron concentration of
2.72 mg/L. In the curve, t is the time required for the flow-through column experiments,
and C and C0 are the boron concentrations of the effluent and feed, respectively. With the
injection of desalinated seawater, the composite adsorption material gradually became fully
saturated. When the inlet flow rate was 3 mL/min, boron leakage occurred in about 20 min,
and a significant jump occurred at 20–60 min until penetration. The saturation time of the
composite adsorption material was between 80–100 min. Generally, this remarkable leap
indicates that the composite material has a high selectivity for boron ions in desalinated
seawater [38].
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Figure 11. Effect of adsorption time on boron removal by MNP-NMDG (room temperature, a flow
rate of 3 mL/min, a 1.5 mass of MNP-NMDG in the column, and boron concentration of 2.72 mg/L).

3.3. Mechanism of Boron Removal

In a water environment (neutral pH), boron mainly exists in the form of boric acid.
Because of its high solubility, it is difficult to remove boron from the desalination membrane
during traditional water treatment process. It was previously found that the N-methyl-
D-glucosamine (NMDG) functional group is a polyol with five hydroxyl groups and one
triamine terminal that can provide more complexing sites and that has high boron selectivity.
Under acidic conditions, boron mainly exists in the form of B(OH)3 acid. B(OH)3 reacts
with the neighboring polyol groups (Figure 12), and it will release protons and move to the
left to achieve equilibrium, which explains the reason for the low boron recovery rate at low
pH levels [37]. Under alkaline conditions, it exists in the form of B(OH)4

− (Equation (7)),
and B(OH)4

− is complexed with NMDG to form a complex (Figure 13) [39]. In the process,
hydrogen ions are released and neutralized by amine groups (Equation (8)). When the free
hydrogen ions are neutralized by amine groups, the amount of boric acid in the aqueous
solution moves to the right, thus promoting the continued complexation of B(OH)4

− with
NMDG. The experiments were carried out in a weak alkaline environment because the
pKa of boric acid in water is 9.05, and the proportion of B(OH)4

− in solution increases in
alkaline conditions, so the optimum pH value for boron removal by boron specific resin is
around 9.
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Figure 13. Complexation reaction under alkaline conditions.
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Boric acid solution:

B(OH)3 + H2O→ B(OH)4
− + H+ (7)

–CH2–N(CH3)–CH2– + H + →–CH2–N+H(CH3)–CH2– (8)

4. Conclusions

In the present work, Fe3O4 nanoparticles were synthesized by means of the coprecipi-
tation method and compounded with N-methyl-D-glucamine with a high selectivity for
boron to prepare a new magnetic adsorption material, MNP-NMDG. The MNP-NMDG
was characterized by scanning electron microscopy (SEM), Fourier transform infrared
spectroscopy (FT-IR), X-ray diffraction (XRD), and other technical means, and the boron
removal ability and adsorption characteristics in desalinated seawater in static and dynamic
states were studied. According to the breakthrough curve for dynamic adsorption, it can
be seen that MNP-NMDG has a high boron adsorption capacity, and the static adsorption
capacity is 9.21 mg/g. The adsorption performance was the best at pH = 9, and adsorption
equilibrium was reached within 40 min. The boron adsorption observed here is in accor-
dance with the Freundlich adsorption isotherm and the pseudo-second-order kinetic model,
which indicates that adsorption is mainly influenced by chemical reactions. The prepared
material has both ferromagnetism and boron removal specificity, is convenient to prepare
and recover, is suitable for boron removal process in systems with a low boron content, and
avoids the environmental pollution problems that are associated with traditional adsorbent
preparation methods. This material has potential application prospects in boron removal
from desalinated seawater.
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