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Abstract: Evapotranspiration (ET) is a significant aspect of the hydrologic cycle, notably in irrigated
agriculture. Direct approaches for estimating reference evapotranspiration (ET0) are either difficult
or need a large number of inputs that are not always available from meteorological stations. Over a
6-year period (2006–2011), this study compares Feed Forward Neural Network (FFNN), Radial Basis
Function Neural Network (RBFNN), and Gene Expression Programming (GEP) machine learning
approaches for estimating daily ET0 in a meteorological station in the Lower Cheliff Plain, northwest
Algeria. ET0 was estimated using the FAO-56 Penman–Monteith (FAO56PM) equation and observed
meteorological data. The estimated ET0 using FAO56PM was then used as the target output for the
machine learning models, while the observed meteorological data were used as the model inputs.
Based on the coefficient of determination (R2), root mean square error (RMSE), and Nash–Sutcliffe
efficiency (EF), the RBFNN and GEP models showed promising performance. However, the FFNN
model performed the best during training (R2 = 0.9903, RMSE = 0.2332, and EF = 0.9902) and
testing (R2 = 0.9921, RMSE = 0.2342, and EF = 0.9902) phases in forecasting the Penman–Monteith
evapotranspiration.

Keywords: reference evapotranspiration; FAO-56 Penman–Monteith; ANN; GEP; Lower Cheliff;
Algeria

1. Introduction

Food systems are under pressure to boost yields due to rising global food demand
despite water resource constraints. As a result, there is a need to shift to more sustain-
able farming techniques and optimized operations that allow for more efficient use of
water resources [1]. Appropriate irrigation management, which is dependent on accurate
predictions of crop water requirements, is a critical component of efficient agricultural
techniques [2]. Evapotranspiration (ET) is a measure of crop water requirements that
includes the transport of vapor water from the land to the atmosphere by evaporation from
the soil and transpiration from the plants [3]. ET is one of the most important components
of the hydrological cycle and global climate system [4,5]. Accurate estimation of ET is
necessary for water resource management, irrigation planning, watershed management,
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and the design of drainage systems [6]. To calculate the amount of ET for an agricultural
system, the reference evapotranspiration (ET0) is calculated first. However, estimating
ET0 is known to be very complex. ET0 is either measured directly (e.g., by lysimeter or
pan setups), or complex physics-based experimentally validated equations are used. It is
clear that direct measurements are very costly and time-consuming. Many commonly used
physics-based equations [7–11], including the FAO-56 Penman–Monteith, involve multiple
parameters which may not all be known from local observations [3]. Nevertheless, the
FAO-56 Penman–Monteith method has been accepted as a standard and used by scientists
in different climates. A high correlation is observed between the ET0 values obtained
from the FAO-56 Penman–Monteith method and direct measurements even in different
climatic conditions. Therefore, scientists have considered the values computed using the
FAO-56 Penman–Monteith method as the desired output of data-based artificial intelligence
methods and different combinations of meteorological variables as inputs for such methods
for accurately estimating ET0 [12–16].

The development of computing, software, informatics, and networking has facilitated
the measurement and computational estimation of meteorological variables to a great ex-
tent. As a result of these developments, data-based models are frequently used in modeling
stochastic and complex non-linear dynamics in water resources engineering [17–20]. For
example, de Oliveira Ferreira Silva et al. [21] presented the R package “agriwater” for the
spatial modeling of actual evapotranspiration and radiation balance. Thorp et al. [22] devel-
oped a methodology for unbiased evaluation and comparison of three ET algorithms in the
Cotton2K agroecosystem model. Guven et al. [23] successfully estimated the daily amount
of ET0 in California, USA, with Genetic Programming (GP). Rahimikhoob [24] predicted
ET0 values with Artificial Neural Networks (ANN) using temperature and relative humid-
ity parameters in an eight-station region of Iran with a subtropical climate. Ozkan et al. [25]
successfully estimated daily ET0 amounts using ANN and bee colony hybrid method using
the meteorological data of two stations in California, USA. Cobaner [26] estimated ET0
amounts in the USA using wavelet regression (WR) and class A pan evaporation data.
WR model results were found to give better results than the FAO-56 Penman–Monteith
equation. Ladlani et al. [27] applied Adaptive Neuro-Fuzzy Inference System (ANFIS)
and multiple linear regression models for daily ET0 estimation in the north of Algeria.
According to the results of the study, ANFIS yielded better results.

Wen et al. [28] calculated daily ET0 amounts using the Support Vector Machine (SVM)
method in a region of China that was extremely arid. The authors utilized limited meteoro-
logical variables as model input. It was observed that modeling is sufficient in estimating
daily ET0 based on maximum and minimum temperature. Gocić et al. [29] used GP, ANN,
SVM-firefly optimization algorithm, and SVM-wavelet models for ET0 prediction in Serbia.
This particular study took the FAO-56 Penman–Monteith equation to be the basic method.
The results pointed to SVM-wavelet being the best performing methodology for the estima-
tion of ET0 under the given conditions. Petković et al. [30] estimated the amount of ET0
in Serbia between 1980 and 2010 using Radial Basis Function Neural Network (RBFNN)
coupled with particle swarm optimization and backpropagation RBFNN methods. Pandey
et al. [31] estimated daily ET0 by methods like ANN, support vector regression, and non-
linear regression. In this study, limited climatic parameters were used as model input. Daily
ET0 values calculated from the FAO56PM method were compared to the model output.
The results pointed to the acceptability of the ANN model estimations. Fan et al. [32]
estimated the daily ET0 amount using SVM, extreme learning machine models, and four
tree-based ensemble methods in China’s different climatic conditions. The results pointed
to the fact that tree-based ensemble methods can yield appropriate results in different
climates. Wu et al. [33] used cross-station and synthetic climate data to estimate the amount
of ET0. They also found that machine learning methods could perform successfully in the
prediction process.

The major objective of this study is to model reference evapotranspiration in a semi-
arid region. This study investigates the potential of RBFNN, Feed Forward Neural Network
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(FFNN), and Gene Expression Programming (GEP) models, as relatively new tools, for the
estimation of daily ET0 values using different combinations of climatic variables. The mod-
els are applied in a semi-arid farmland area, namely the Lower Cheliff Plain in northwest
Algeria. This research made use of the well-known FAO-56 (PM56) equation as the basic
method. In this article, the role of climatic parameters in ET0 estimation in this semi-arid
region was also determined.

2. Materials and Methods
2.1. Study Area and Meteorological Data Acquisition

The study area was the Lower Cheliff Plain in northwest Algeria (Figure 1), which is
located between latitudes 34◦03′12′′ and 36◦05′57′′ N and longitudes 0◦40′ and 01◦06′08′′ E
and covers 40,000 hectares [34]. The climate in this region is classed as semi-arid. The
average yearly rainfall is between 250 and 320 mm. Temperatures are highest in July and
August and lowest in January. The average annual temperature varies from 19.5 degrees
Celsius in the north to 25.3 degrees Celsius in the south. The Hmadna station (SYNMET
Automatic Station), located at latitude 35◦55′31′′ N and longitude 00◦45′04′′ E, supplied
historical data for this investigation. Table 1 lists the units of measurement and the sensor’s
measuring range.
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Table 1. Unit and measuring range of the sensors.

Name of Sensor Measuring Unit

Psychrometer %
Heliograph Minute
Anemometer 0.3 to 50 m/s
Wind direction 0◦ to 360◦

Pyranometer 0 . . . 1400 W/m2 (Max 2000)
Albedometer −2000 to 2000 W/m2

Air temperature −30 ◦C to 70 ◦C
Soil temperature −50 ◦C to 50 ◦C
Evaporation pan Mm of water
Rain gauge Mm of water (resolution 0.1 mm)

2.2. Description of Data

The meteorological data include daily observations of maximum, minimum, and
mean air temperatures (Tmax, Tmin, and Tmean), daily mean relative humidity (RH), wind
speed (WS), sunshine duration (SD), and global radiation (GR). The days with data that
proved to be inadequate were excluded from the patterns. The statistical parameters
pertaining to the daily climatic data are given in Table 2, in which the Xmean, Xmax, Xmin, Sx,
and CV stand for the mean, maximum, minimum, standard deviation, and coefficient of
variation, respectively.

Table 2. Daily statistical parameters of data set.

Data Set Unit Xmin Xmax Xmean Sx CV (Sx/Xmean)

Tmin
◦C −4.30 26.29 11.68 6.87 0.59

Tmax
◦C 6.98 48.16 27.28 8.89 0.33

Tmean
◦C 3.87 37.23 19.48 7.53 0.39

RH % 21.50 95.66 59.69 14.39 0.24
WS m/s 0.00 28.94 6.66 3.81 0.57
SD h 0.00 14.10 7.21 4.14 0.57
GR mm 9.72 1791.04 969.52 446.08 0.46

2.3. Evapotranspiration Estimation Method

The FAO-56 Penman–Monteith method to calculate ET0 was implemented following
the formulation in [3] as a function of daily mean net radiation, temperature, water vapor
pressure, and wind speed. The procedure used was that outlined in Chapter 3 of FAO-56 [3].

ET0 = 0.408∆(Rn − G) + γ
900

Tmean + 273
U2 (1)

where ET0 is the reference crop evapotranspiration (mm day−1), Rn is the net radiation
(MJ m−2 day−1), G is the soil heat flux (MJ m−2 day−1), c is the psychrometric constant
(kPaC−1), es is the pressure of saturation vapor (kPa), ea is the pressure of the actual vapor
(kPa), D is the slope of the curve for saturation vapor pressure–temperature (kPaC−1), Ta is
the average daily air temperature (◦C), and U2 is the mean daily wind speed at 2 m (m s−1).

2.4. Multilayer Perceptron Artificial Neural Network

ANNs are non-linear mathematical models based on ideas about the behavior of
biological neural networks. An ANN consists of layers of interconnected nodes or neurons.
Each neuron gets a linear combination of the previous neuron’s outputs (∑wijxj), or (for the
first layer) of the network inputs and returns a non-linear transformation of this quantity.

The weights (wij) are the parameters added to each source defining this linear combi-
nation and typically also include an intercept term called the activation threshold [35]. A
non-linear activation function is then applied to the linear output combination (f (∑wijxj)).
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This activation function can be, for example, a sigmoid function, which constrains each
neuron’s output values between two asymptotes. Once the activation function is applied,
each neuron’s output feeds into the outputs of the next layer. The most frequently used
architecture for an ANN consists of an input layer in which the data is introduced into the
ANN, a hidden layer(s) in which the data undergoes processing, and the output layer in
which the effects of the input generate a predicted output value(s) [35].

The literature contains many kinds of neural networks that have been put to many
uses. The Multilayer Perceptron (MLP) is a commonly used ANN configuration utilized
regularly in the hydrological modeling field [36,37] (Figure 2). This study assesses the
usefulness of neural MLP networks for the estimation of EP. The MLP is the most frequently
used and simplest neural network architecture [38].

Figure 2. MLP architecture.

2.5. Radial Basis Function

Another architecture that is used commonly in ANN is the RBF. Multilayer and
feed-forward RBF is often used for multi-dimensional spatial interpolation. The word
“feed-forward” means the neurons in a layered neural network are arranged in layers [39].
The underlying architecture of a neural network with three layers is presented in Figure 3,
with one hidden layer between input and output layers. The activation function of each
neuron has the form of an RBF, generating a response only if the inputs are close to some
central value determined for that particular neuron.

2.6. Gene Expression Programming

While ANNs are complicated models that typically do not capture the physical rela-
tionships between different process components understandably, GEP models can express
the relationship between dependent and independent variables explicitly [40]. The pro-
cedure for modeling daily evapotranspiration (considered to be the dependent variable)
based on weather variables (considered as the independent variables) involves the follow-
ing: selecting the fitness function; selecting terminals T and set of functions F for creating
chromosomes; selecting chromosome architecture, and selecting the link function and
genetic operators (Figure 4) [35].
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2.7. Evaluation Criteria

The performance of the models utilized in this study was evaluated using standard
criteria for statistical performance evaluation. The statistical measures taken into account
were coefficient of determination (R2), root mean square error (RMSE), and Nash Sutcliffe
efficiency coefficient (EF) [41–43]. The calculation of the three criteria was done according
to Equations (2)–(4).

R2 = 1−
∑N

i=1

(
ETi(observed) − ETi(model)

)
∑N

i=1

(
ETi(observed) − ETmean

) (2)

RMSE =

√
1
N ∑N

i=1

(
ETi(observed) − ETi(model)

)
(3)

EF = 1−
∑N

i=1

(
ETi(observed) − ETi(model)

)2

∑N
i=1

(
ETi(observed) − ETmean

)2 (4)

where N is the number of observed ET data, ETi(observed) and ETi(model) are observed and
model estimations of ET, respectively, and ETmean is the mean of observed ET.

3. Results and Discussion

In this study, firstly, ET0 values were computed by the Penman–Monteith method using
climatic data. Then the following equation was used to normalize the input (meteorological
data) and output (calculated ET0 by Penman–Monteith):

Xn = 2· Xo − Xmin
Xmax − Xmin

− 1 (5)

where: Xn and Xo stand for the normalized and original data, while Xmin and Xmax repre-
sent the minimum and maximum values in the original data. Approximately 70% of the
available data period (from around 2006 to 2010) was selected for the training phase; the
remaining 30% belonged to the year 2011 and was used for the testing process. MATLAB
was used for the modeling process.

3.1. Application of MLP

In this study, the FFNN algorithm was used with a single hidden layer. More details
about the parameters used for the FFNN model with one hidden layer are listed in Table 3.
With the input data playing a considerable role in model development, several input
combinations were used for model development. The performances of all MLP-based input
combinations are listed in Table 4 for the training and testing stages. MLP-based model
development is a trial and error process. In this study, the tangent sigmoid transfer function
was used in the hidden layer, and the linear transfer function was used for the target.
To achieve ideal performance with MLP models, the number of neurons in the hidden
layer has to be optimized. The results in Table 4 suggest that the FFNN2 model, including
Tmax, Tmean, (Tmax − Tmin), RH, I, WS, and GR, performed better than other FFNN-based
input combination models with R2 values as 0.9903, 0.9921, RMSE values as 0.2332, 0.2342,
and E values as 0.9902, 0.9902 for both training and testing stages, respectively. Nineteen
neurons were used in the hidden layer to achieve this ideal performance. The performance
and agreement plot among actual and predicted values of the FFNN2 model for both the
training and testing stage are mapped out in Figure 5, which shows that max values lie very
close to the line of 450 and follow the same pattern as the actual values in both training and
testing stages. If all the values lie on the line of 450 and follow the same path, the model is
ideal and predicts values similar to actual ones.
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Table 3. Parameters used for FFNN with one hidden layer.

Parameter Value

Hidden layer transfer Function Tangent sigmoid transfer function (tansig)
Output layer transfer Function Linear transfer function (purelin)
Training function Levenberg-Marquardt
Maximum number of epochs to train 1000
Maximum validation failures 6
Minimum performance gradient 1 × 10−7

Initial mu 0.001
mu decrease factor 0.1
mu increase factor 10
Maximum mu 1 × 1010

Maximum time to train in seconds Inf

Table 4. Statistical criteria for an estimation of ET0 using different input variables for FFNN. The
bold part shows that this model is superior to others.

Model Input Neurons
Training Phase Testing Phase

R2 RMSE EF R2 RMSE EF

FFNN1 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, WS, GR 18 0.9903 0.2338 0.9901 0.9918 0.2389 0.9898
FFNN2 Tmax, Tmean, (Tmax − Tmin), RH, I, WS, GR 19 0.9903 0.2332 0.9902 0.9921 0.2342 0.9902
FFNN3 Tmin, Tmean, (Tmax − Tmin), RH, I, WS, GR 13 0.9905 0.2308 0.9904 0.9917 0.2368 0.9900
FFNN4 Tmin, Tmax, (Tmax − Tmin), RH, I, WS, GR 19 0.9903 0.2336 0.9901 0.9920 0.2378 0.9899
FFNN5 Tmin, Tmax, Tmean, RH, I, WS, GR 11 0.9899 0.2376 0.9898 0.9916 0.2393 0.9897
FFNN6 Tmin, Tmax, Tmean, (Tmax − Tmin), I, WS, GR 12 0.9782 0.3481 0.9781 0.9859 0.3102 0.9828
FFNN7 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, WS, GR 19 0.9883 0.2566 0.9881 0.9900 0.2536 0.9885
FFNN8 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, GR 14 0.9399 0.5799 0.9393 0.9603 0.5046 0.9544
FFNN9 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, WS 14 0.9676 0.4245 0.9675 0.9748 0.4032 0.9709
FFNN10 Tmean, RH, I, WS, GR 16 0.9895 0.2435 0.9893 0.9907 0.2513 0.9887
FFNN11 Tmean, RH, WS, GR 19 0.9875 0.2656 0.9873 0.9892 0.2623 0.9877
FFNN12 Tmean, RH, I, WS 11 0.9672 0.4265 0.9671 0.9716 0.4124 0.9695
FFNN13 RH, I, WS, GR 8 0.9217 0.6593 0.9215 0.9465 0.5533 0.9452
FFNN14 Tmean, RH, WS 19 0.9172 0.6770 0.9172 0.9165 0.6845 0.9161
FFNN15 Tmean, RH 14 0.8528 0.9047 0.8522 0.8966 0.7745 0.8926
FFNN16 Tmean, WS 7 0.8326 0.9633 0.8324 0.8520 0.9224 0.8477
FFNN17 RH, WS 20 0.7771 1.1120 0.7767 0.8439 0.9488 0.8388
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training and testing stages.

Performance evaluation results suggest that the FFNN2 model performed better than
other input combination-based models. As to comparing various input combination-based
models with one another, the results in Table 4 indicate that several other models are
comparable in performance to the best model (FFNN2) while having a lower number of
required input meteorological variables. Overall, going with the assessment in Table 4,
the FFNN11 model (Tmean, RH, WS, and GR) is suitable for predicting ET with R2 values
as 0.9875, 0.9892, RMSE values as 0.2656, 0.2623, and E values as 0.9873, 0.9877 for both
training and testing stages, respectively. The same number of neurons (19) is used in the
single hidden layer for achieving this performance, similar to the FFNN2 model. The
performance and agreement plot among actual and predicted values of the FFNN11 model
for both the training and testing stage is shown in Figure 5, which points to the fact that
max values lie very close to the line of perfect agreement and follow the same pattern as
the actual values in both training and testing stages.

3.2. Application of RBF

For the RBF method as well, several input combinations were used for model develop-
ment. The performance of all input combination-based RBFNN models is listed in Table 5
for the training and testing stages. RBFNN model development is a trial and error process
similar to FFNN model development. In this study, the RBF models had a single hidden
layer. To achieve ideal performance with RBFNN models, the value of the spread must be
found through a trial and error process. The results of Table 5 suggest that the RBFNN5
model, including Tmin, Tmax, Tmean, RH, I, WS, and GR, performs better than other input
combination RBFNN based models with R2 values as 0.9907, 0.9911, RMSE values as 0.2270,
0.2374, and E values as 0.9907, 0.9899 for both training and testing stages, respectively. The
performance and agreement plot among actual and predicted values of the RBFNN5 model
for both training and testing stages are shown in Figure 6, which shows that max values
lie very close to the line of 450 and follow the same pattern as the actual values in both
training and testing stages.
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Table 5. Statistical criteria for an estimation of ET0 using different input variables for RBF. The bold
part shows that this model is superior to others.

Model Input Combination
Training Phase Testing Phase

Spread R2 RMSE EF R2 RMSE EF

RBF1 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, WS, GR 1187.55 0.9911 0.2215 0.9911 0.9909 0.2406 0.9896
RBF2 Tmax, Tmean, (Tmax − Tmin), RH, I, WS, GR 1187.55 0.9910 0.2238 0.9910 0.9910 0.2382 0.9898
RBF3 Tmin, Tmean, (Tmax − Tmin), RH, I, WS, GR 1385.47 0.9906 0.2279 0.9906 0.9910 0.2377 0.9899
RBF4 Tmin, Tmax, (Tmax − Tmin), RH, I, WS, GR 1385.47 0.9907 0.2265 0.9907 0.9910 0.2378 0.9899
RBF5 Tmin, Tmax, Tmean, RH, I, WS, GR 1385.47 0.9907 0.2270 0.9907 0.9911 0.2374 0.9899
RBF6 Tmin, Tmax, Tmean, (Tmax − Tmin), I, WS, GR 791.70 0.9805 0.3284 0.9805 0.9842 0.3216 0.9815
RBF7 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, WS, GR 1187.55 0.9890 0.2466 0.9890 0.9901 0.2445 0.9893
RBF8 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, GR 593.77 0.9456 0.5489 0.9456 0.9549 0.5076 0.9539
RBF9 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, WS 1781.32 0.9753 0.3696 0.9753 0.9616 0.4729 0.9600
RBF10 Tmean, RH, I, WS, GR 791.70 0.9907 0.2267 0.9907 0.9901 0.2530 0.9885
RBF11 Tmean, RH, WS, GR 593.77 0.9886 0.2514 0.9886 0.9892 0.2551 0.9884
RBF12 Tmean, RH, I, WS 1583.40 0.9704 0.4047 0.9704 0.9699 0.4298 0.9669
RBF13 RH, I, WS, GR 593.77 0.9300 0.6224 0.9300 0.9400 0.5873 0.9382
RBF14 Tmean, RH, WS 1385.47 0.9214 0.6599 0.9214 0.9140 0.6941 0.9137
RBF15 Tmean, RH 791.70 0.8569 0.8902 0.8569 0.8915 0.7834 0.8901
RBF16 Tmean, WS 791.70 0.8400 0.9413 0.8400 0.8480 0.9279 0.8458
RBF17 RH, WS 791.70 0.7779 1.1089 0.7779 0.8434 0.9441 0.8404
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The performance evaluation results suggest that the RBFNN5 model performs better
than other input combination-based models. On intercomparison among various input
combination-based models, the results in Table 5 indicate that the performance of several
other models was comparable to the best model (RBFNN5) and involved a lower number
of inputs. Overall, the assessment mapped out in Table 5 shows that the RBFNN11 model
(Tmean, RH, WS, and GR) is suitable for predicting the ET with R2 values as 0.9886, 0.9892,
RMSE values as 0.2514, 0.2551, and E values as 0.9886, 0.9884 for both training and testing
stages, respectively. A lower rate of spread (Table 5) was used in the development of
this model than in the case of the RBFNN5 model. The performance and agreement plot
among actual and predicted values of the RBFNN11 model for both training and testing
stages are shown in Figure 6, which shows that max values lie very close to the line of
perfect agreement and follow the same pattern as the actual values in both training and
testing stages.

3.3. Application of GEP

The details of parameters used in the GEP model are listed in Table 6. The performance
of all input combination-based GEP models is listed in Table 7 for the training and testing
stages. GEP based model development is also a trial and error process similar to the
model development typical of FFNN and RBFNN models. For the performance of GEP
models under different input combinations, for the training phase, the R2 ranged between
0.6973 and 0.9664, RMSE ranged 0.4830–1.3112 mm day−1, and EF ranged 0.6895–0.9579.
So, for the test phase, the R2 ranged between 0.8057–0.9775, RMSE ranged 0.3701–1.1224
mm day−1, and E ranged 0.7744–0.9755 (Table 7). It is clear that the presence or absence
of critical meteorological variables in the input combinations significantly affected GEP
model performance. The results of Table 7 suggest that the GEP11 model, including Tmean,
RH, WS, and GR parameters in the input combination, performed better than other input
combinations and GEP based models with R2 values as 0.9606, 0.9775, RMSE values as
0.4830, 0.3701, and E values as 0.9579, 0.9755 for the training and testing stages, respectively.
The performance and agreement plot among actual and predicted values of the GEP11
model for both training and testing stages are shown in Figure 7, which indicates that max
values lie very close to the line of 450 and follow the same path as the actual values in both
training and testing stages. Table 7 concludes that the GEP11 model is the best performing
model with optimum input combinations.

Table 6. Used parameters in gene expression programming (GEP).

Parameter Value

Number of chromosomes 30
Head size 8
Number of genes 3
Linking function Addition
Fitness function error type RMSE
Mutation rate 0.044
Inversion rate 0.1
IS transposition 0.1
RIS transposition 0.1
One-point recombination rate 0.3
wo-point recombination rate 0.3
Gene recombination rate 0.1
Gene transposition rate 0.1
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Table 7. Statistical criteria for an estimation of ET0 using different input variables for GEP.

Model Input Combination
Training Phase Testing Phase

R2 RMSE EF R2 RMSE EF

GEP1 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, WS, GR 0.8959 0.7732 0.8920 0.9190 0.6945 0.9136
GEP2 Tmax, Tmean, (Tmax − Tmin), RH, I, WS, GR 0.9075 0.7227 0.9057 0.9323 0.6251 0.9300
GEP3 Tmin, Tmean, (Tmax − Tmin), RH, I, WS, GR 0.9026 0.7361 0.9021 0.9300 0.6652 0.9208
GEP4 Tmin, Tmax, (Tmax − Tmin), RH, I, WS, GR 0.8355 0.9692 0.8303 0.8627 0.9407 0.8416
GEP5 Tmin, Tmax, Tmean, RH, I, WS, GR 0.8415 0.9721 0.8294 0.9033 0.8151 0.8810
GEP6 Tmin, Tmax, Tmean, (Tmax − Tmin), I, WS, GR 0.9393 0.5804 0.9392 0.9629 0.4687 0.9607
GEP7 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, WS, GR 0.9664 0.4323 0.9663 0.9762 0.3795 0.9742
GEP8 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, GR 0.8636 0.8695 0.8635 0.9194 0.6925 0.9141
GEP9 Tmin, Tmax, Tmean, (Tmax − Tmin), RH, I, WS 0.9353 0.6081 0.9332 0.9537 0.5604 0.9438
GEP10 Tmean, RH, I, WS, GR 0.9085 0.7138 0.9080 0.9275 0.6435 0.9258
GEP11 Tmean, RH, WS, GR 0.9606 0.4830 0.9579 0.9775 0.3701 0.9755
GEP12 Tmean, RH, I, WS 0.9420 0.5885 0.9374 0.9597 0.5045 0.9544
GEP13 RH, I, WS, GR 0.8560 0.9004 0.8536 0.9236 0.7069 0.9105
GEP14 Tmean, RH, WS 0.8388 0.9563 0.8349 0.8797 0.8406 0.8735
GEP15 Tmean, RH 0.8136 1.0598 0.7972 0.8635 0.9331 0.8441
GEP16 Tmean, WS 0.7769 1.1312 0.7689 0.8057 1.0588 0.7993
GEP17 RH, WS 0.6973 1.3112 0.6895 0.8062 1.1224 0.7744
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3.4. Inter Comparison among Best and Optimum Input Combination Based Models

Table 8 shows that the FFNN2 based model works better than the RBFNN and GEP
based models. Figure 8 indicates that predicted values using the FFNN2 model lie closer
to the line of perfect agreement than the values predicted by the RBFNN and GEP based
models.

Table 8. Statistical criteria for the best combination of inputs.

Model
Training Phase Testing Phase

R2 RMSE E R2 RMSE E

FFNN2 0.9903 0.2332 0.9902 0.9921 0.2342 0.9902
RBFNN5 0.9907 0.2270 0.9907 0.9911 0.2374 0.9899

GEP11 0.9606 0.4830 0.9579 0.9775 0.3701 0.9755
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The overall performance of the FFNN2 based model is reliable and suitable for the
prediction of ET0. As such, Tmax, Tmean, (Tmax − Tmin), RH, I, WS, and the GR input
combination-based FFNN model could be used for the prediction of ET0. However, the
results mapped out in Table 9 of single-factor ANOVA suggest that there is no significant
difference between observed and predicted values using FFNN, RBFNN, and GEP best
combination-based models.

Table 9. Single-factor ANOVA results for the best combination of inputs.

Source of Variation F p-Value Fcrit Variation among Groups

Actual-FFNN2 0.171751 0.678682 3.854264 Insignificant
Actual-RBFNN5 0.101036 0.750681 3.854264 Insignificant

Actual-GEP11 0.126406 0.72229 3.854264 Insignificant

Figure 9 displays box plots for prediction errors for the best input combination-based
models using the test period. The values of the descriptive statistics of prediction errors
for the best input combinations are listed in Table 10. According to Table 10 and Figure 9,
the FFNN2 model followed the corresponding observed values with lower minimum error
(−0.8840), lower maximum error (1.4199), and the width of the first quartile is less than
other best input combination based models.

Table 10. Statistical criteria for the best combination of inputs.

Statistic FFNN2 RBFNN5 GEP11

Minimum −0.8840 −1.2231 −0.8671
Maximum 1.4199 1.5204 1.9343
1st quartile −0.0681 −0.0726 −0.1503
Median 0.0606 0.0250 −0.0055
3rd quartile 0.2091 0.1742 0.2176
Mean 0.0713 0.0548 0.0630
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The Taylor diagram of the observed and predicted ET0 by different best input
combination-based models over the test period is depicted in Figure 10. It is clear that
the representative points of all the applied models have nearly the same position. The
FFNN2 model is located nearest to the observed point with the lower value of RMSE and
SD and higher value of the coefficient of correlation, which picks out this model as the
superior model.
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Table 11 proposes that the RBFNN11-based model works better than FFNN and GEP
based models. Figure 11 indicates that predicted values using the RBFNN11-based model
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lie closer to the line of perfect agreement than the values predicted by the FFNN and
GEP based models. The overall performance of the RBFNN11 based model is reliable
and suitable for the prediction of ET0, which suggests that Tmean, RH, WS, and GR input
combination-based RBFNN model could be used for the prediction of ET0. The results in
Table 12 of single-factor ANOVA suggest that there is no significant difference between
observed and predicted values using FFNN, RBFNN, and GEP optimum input combination-
based models.

Table 11. Statistical criteria for the optimum combination of inputs.

Model
Training Phase Testing Phase

R2 RMSE E R2 RMSE E

FFNN 0.9875 0.2656 0.9873 0.9892 0.2623 0.9877
RBF 0.9886 0.2514 0.9886 0.9892 0.2551 0.9884
GEP 0.9606 0.4830 0.9579 0.9775 0.3701 0.9755
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Table 12. Single-factor ANOVA results for the optimum combination of inputs.

Source of Variation F p-Value Fcrit Variation among Groups

Observed-FFNN11 0.101466 0.750169 3.854264 Insignificant
Observed-RBFNN11 0.119424 0.72976 3.854264 Insignificant
Observed-GEP11 0.126406 0.72229 3.854264 Insignificant

Figure 12 displays the box plot for the prediction errors for the optimum input
combination-based models using the test period. The descriptive statistical values of
prediction errors for the optimum input combinations are listed in Table 13. According
to Table 13 and Figure 12, the RBFNN11 model has followed the corresponding observed
values with lower maximum error (1.3700), and the width of the first quartile (−0.0952) is
less than other optimum input combination based models.

The Taylor diagram of the observed and predicted ET0 by different optimum input
combination-based models over the test period is depicted in Figure 13. It is clear that
the representative points of all the applied models have nearly the same position. The
RBFNN11 model is located nearest to the observed point with the lower value of RMSE, SD,
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and higher value of the coefficient of correlation, making this model emerge as a superior
model with the optimum number of input parameters.

Water 2022, 14, x FOR PEER REVIEW 19 of 22 
 

 

Table 13. Descriptive statistic of prediction errors for the optimum combination of inputs. 

Statistic FFNN11 RBFNN11 GEP11 
Minimum -0.6918 -0.7073 -0.8671 
Maximum 1.5230 1.3700 1.9343 
1st Quartile -0.1227 -0.0952 -0.1503 
Median 0.0119 0.0221 -0.0055 
3rd Quartile 0.2228 0.2111 0.2176 
Mean 0.0548 0.0599 0.0630 

 
Figure 12. Box plot for best performing optimum number of input combination-based models. 

The Taylor diagram of the observed and predicted ET0 by different optimum input 
combination-based models over the test period is depicted in Figure 13. It is clear that the 
representative points of all the applied models have nearly the same position. The 
RBFNN11 model is located nearest to the observed point with the lower value of RMSE, 
SD, and higher value of the coefficient of correlation, making this model emerge as a 
superior model with the optimum number of input parameters. 

Figure 12. Box plot for best performing optimum number of input combination-based models.

Table 13. Descriptive statistic of prediction errors for the optimum combination of inputs.

Statistic FFNN11 RBFNN11 GEP11

Minimum −0.6918 −0.7073 −0.8671
Maximum 1.5230 1.3700 1.9343
1st Quartile −0.1227 −0.0952 −0.1503
Median 0.0119 0.0221 −0.0055
3rd Quartile 0.2228 0.2111 0.2176
Mean 0.0548 0.0599 0.0630
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4. Conclusions

This study aimed to investigate the potential of FFNN, RBFNN, and GEP to estimate
daily evapotranspiration in a semi-arid region in Algeria using different combinations of
input meteorological variables. The results pointed to the fact that both the neural network
(i.e., FFNN and RBFNN) and GEP models make for optimal levels of agreement with the
ET0 obtained by the FAO PM method. They yielded reliable estimations for the semi-arid
area in question. The study also found that modeling ET0 utilizing the ANN technique
leads to better estimates than the GEP model.

The current results suggested that the FFNN based model 2 outperformed all other
applied models. Another major conclusion was that the RBFNN model 11 performed
better than other applied models with a smaller number of required meteorological inputs.
ANN and GEP based models suggest that Tmean, RH, WS, and GR parameters are the
optimum parameters for the estimation of daily evapotranspiration in the semi-arid region
of Algeria. The overall performance of all applied models is satisfactory, as there is no
significant difference between actual and predicted values using the optimum number of
input parameters in the models.
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